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a b s t r a c t

To assess whether a development strategy will be profitable enough, production forecasting is a crucial
and difficult step in the process. The development history of other reservoirs in the same class tends to be
studied to make predictions accurate. However, the permeability field, well patterns, and development
regime must all be similar for two reservoirs to be considered in the same class. This results in very few
available experiences from other reservoirs even though there is a lot of historical information on
numerous reservoirs because it is difficult to find such similar reservoirs. This paper proposes a learn-to-
learn method, which can better utilize a vast amount of historical data from various reservoirs. Intui-
tively, the proposed method first learns how to learn samples before directly learning rules in samples.
Technically, by utilizing gradients from networks with independent parameters and copied structure in
each class of reservoirs, the proposed network obtains the optimal shared initial parameters which are
regarded as transferable information across different classes. Based on that, the network is able to predict
future production indices for the target reservoir by only training with very limited samples collected
from reservoirs in the same class. Two cases further demonstrate its superiority in accuracy to other
widely-used network methods.
© 2023 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This

is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Oilfield development and production forecasting play a vital
guiding role in the future planning of oilfields. The traditional
method used to forecast consists of the most traditional analytical
method and the numerical simulation method. The most classical
one is the decline curve analysis method (DCA). Hakim Elahi (2019)
uses DCA and updates its parameters at the time that operation on
wells changes, but they have to adjust parameters manually. To
make the DCA more automatic, Masini et al. (2020) and Li et al.
Zhang), snchen@ucalgary.ca

y Elsevier B.V. on behalf of KeAi Co
(2022) take advantage of machine learning and the Bayesian
method to discard the outliers and generate the distribution of
parameters in DCA to make the curve more flexible. When facing a
multiphase flow situation, a single curve is not expressible enough
to describe the rule. As a result, Makinde and Lee (2016) use hybrid
(combination) decline curve analysis methods to reflect multiphase
flow. However, it is still aiming at predicting trend information
though the decline is fast to calculate. Another way to perform
production forecasting is through numerical simulation, which
solves the equations governing fluid flow in porous media
numerically, i.e., through a series of iterations. Nolen (1973) and
Douglas et al. (1997) proposed numerous numerical simulators that
represent underground flow processes. To address the time-
consuming nature of numerical simulators, Bakhty et al. (2020)
proposed simplified formulae that are based on material balance to
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save time at the expense of accuracy. To deal with a more complex
recovery method such as steam-assisted gravity drainage, Dehdari
and Deutsch (2020) added Butler's Original Theory into the original
method to extend its functionality. This type of method (Zhong and
Wu, 2017) requires a deep understanding and accurate formulae
construction of the mechanism which is too difficult to implement
when encountering unconventional developing policies or
reservoirs.

Another approach to tackle the production forecasting problem
is machine learning methods. It completes the training of internal
parameters through a large number of samples (Song et al., 2017) to
realize the prediction of future data (Oreshkin et al., 2021). The
most commonly used network (Li et al., 2019) structure for time
series data is Recurrent Neural Network (RNN). Li and Han (2017)
predict the relation between production rate and fracture param-
eters in unconventional reservoirs with an RNN network. Alimo-
hammadi et al. (2020) adopt a revised recurrent neural network
(RNN) based network to perform short-term prediction of oil pro-
duction rate. To show its advantages, Temizel et al. (2020) compare
the differences between DCA, XGboost, and another RNN network
named long short-term memory (LSTM), and show that LSTM
works best and this performance is also proved by Gupta
et al. (2021). To extend its application to gas indices prediction,
Kocoglu et al. (2021) utilize an upgraded RNN network named
Bidirectional Long Short Term Memory (Bi-LSTM). Still, these pro-
posed networks cannot make use of the static information of wells,
such as permeability or porous. Having obtained the geological
model Du et al. (2022) made an effort to add information from the
geological model into history that was learned by the network in
the training process. Precisely, they merge the convolutional layers
into LSTM to distill temporal and spatial features simultaneously.
However, Razak et al. (2021) resort to existing formulae by using
the sum of results from a network and numerical simulator, thus
improving accuracy in trend prediction at the expense of modeling
time. However, an existing limitation is the insufficient and un-
balanced samples. In order to make better use of the huge amount
of data that has distribution differences from the target data, re-
searchers begin to study transfer efficiency. Researchers have suc-
cessfully employed transfer learning to predict many goals. Odi
et al. (2021) use transfer learning to help fracture matching. Dong
et al. (2021) make use of stacked LSTM by transferring their pa-
rameters from a well-trained network in a public dataset. Mohd
Razak et al. (Mohd et al., 2022) adopt this method in unconven-
tional reservoirs by taking the advantage of public datasets in the
same transfer way. The aforementioned transfer concept is to copy
parameters from a well-trained network in a public dataset at the
initial stage of network finetuning. This operation only works well
under the assumption that the target data distribution does not
deviate much from the public data distribution. Otherwise, the
source and target may distract each other leading to chaotic results.
However, the public dataset may include production indices from
many different classes of reservoirs that have few samples
respectively, and their data are much different from each other.

In order to solve the above problems, this paper proposes an
RNN-basedmodel-agnostic machine learning (RMAML) framework
which derives from a few-shot learning method by (Iwata and
Kumagai, 2020). Currently, combining few-shot learning with
RNN networks is very rare, let alone the network designed for
reservoir data. This is because few-shot learning was not originally
designed for sequences. The term “model-agnostic” refers to a
particular computing framework, often known as a “meta-learner”.
Most deep learning network models can be integrated with this
meta-learner as a base learner. Technically, it is able to not only
extract common laws but also effectively reduce mutual interfer-
ence between the samples that are largely different, and thus it has
717
a stronger transferability among other reservoirs and target
reservoirs.

2. Problem statement

In this section, we hope to state our problem more clearly.
Different classes of reservoirs, imply different permeability fields
and different developing policies, such as different control rates in
production and injection and different well placement, and thus
may result in a large difference in the distribution of their pro-
duction indices. However, this big difference in distribution may
lead to mutual distraction during training. In consequence, the
parameters in the network can hardly find their way to optimal
points.

Here, we use simulated data by Eclipse software (Schlumberger)
on a self-defined square to describe the problem, as shown in Fig. 1.
In practice, we take permeability fields, well placement, and control
regimes as variables to construct models. In each model, we
generate the indices sequences, including liquid production rate,
injection rate, oil and water production rate, water injection rate,
and other accumulative quantities. Then we use the principal
component analysis (PCA) method (Jolliffe et al., 2016) to turn se-
quences in each model into two-dimensional data for easier
display, as shown in Eqs. (1) and (2).

The PCA is to find a new basis coordinate that maximizes the
variance of the data matrix features and minimizes the covariance
between features. Here X is the 0e1 normalized input matrix which
has the shape ofm by nwherem represents the number of samples
and n denotes the number of features. C is the covariance matrix of
X, a1; a2;…; an are the eigenvectors corresponding to the first n
largest eigenvalues of matrix C.

C¼XXT

m
(1)

Y ¼ ½a1; a2;…; an�TX (2)

The distribution of data after PCA is shown in Fig. 2, where each
point is a production sequence and points in different colors are
from reservoirs with different variables. For instance, in Fig. 2(a)
and (b), different color means the sequence is generated from
different permeability field while other variables are the same. We
can find that when the permeability field and control regimes
changed, the data remained fairly evenly distributed. But when the
well location changed, the data began to show distinct distribution
clusters for each class. Evenworse, the distance between clusters is
much larger than that of points in a single cluster. The performance
in prediction by the common method is shown in the Case Study
section. Therefore, we can learn that different classes of reservoirs
that have different well placements may lead to entirely unrelated
data representation and thus it is hard to infer the future perfor-
mance of one from others.

3. Methodology

3.1. Related work

In this section, we propose an RNN-based model-agnostic ma-
chine learning (RMAML) method for multi-classes prediction,
referring to few-shot learning and meta-learning methods (Lemke
and Gabrys, 2010; Oreshkin et al., 2021; Caena and Stringher, 2022)
which are widely used in the field of few-shot tasks. The main
methods of few-shot learning can be roughly divided into two
categories, gradient-based methods, and conditional-based
methods. The gradient methods (Yang et al., 2021) achieve



Fig. 1. Exhibition of different permeability and well pattern.

Fig. 2. The distribution of data when changing different factors.
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optimizing the classification model independently in different
tasks and update the common initial parameters. Since various
tasks use updated parameters in their own way, the differences
between tasks are considered. In order to improve the calculation
efficiency, Simon et al. (2020) propose a first-order gradient update
method to improve training speed. Ma et al. (2022) also proposed a
multi-model version to enrich the calculation method for initial
parameters and make it more flexible. Another type of method is
the conditional neural network (CLNN) method (Wang et al., 2019),
which is also within the concept of the learn-to-learn approach. But
different from gradient methods, it uses sample information as
context information, which is fused into the input information of
the target after transformation. Since the method is affected by the
relationship between input information and label information, Lu
718
et al. (2022) propose a series of regularization technique to
strengthen the influence of the context part on the results. In
general, the gradient method is more versatile and more suitable
for few-shot training, while the conditional method is more flexible
and has a stronger fitting ability, but requires more samples to
assist learning (Gao et al., 2022).

3.2. Learn-to-learn concept and problem symbolization

In terms of training strategy, different from general network
training, we use the learn-to-learn concept to train networks.
Intuitively, we are trying to force the network to learn the rules
from samples in their own cluster but share the way of learning
between clusters. In practice, we carry out this idea by learning the



H.-C. Wang, K. Zhang, N. Chen et al. Petroleum Science 21 (2024) 716e728
optimal initial parameters of the network for all clusters and
independently updating them in each cluster without interfering
with others.

Technically, the points in different clusters represent different
classes of reservoirs that have different control regimes or
permeability fields, or well placement. Then we construct a self-
defined recurrent neural network, denoted function f with initial-
ized parameters q optimized by the MAML framework, that can
quickly learn the map from both control regimes D and static at-
tributes of wells S to oil production rate Ytest for a target reservoir
with a small number of samples. Here we denote Ytest ¼ f ðXtestÞ
where Xtest ¼ D; S; and the set includes both X and Y which are
named query data Q test ¼ Xtest;Ytest. Other sets in the same cluster
with Q test are called support set S test ¼ Xtest;Ytest representing the
information from similar classes of reservoirs. In order to find the
best initial parameters q for f , the network has to learn from a large
number of known pairs S ti

train, Q
ti
train from a different cluster i.

Generally, we regard prediction in different clusters as different
tasks t ¼ t1; t2:::; t3 where each of ti denotes a certain cluster. Both
S ti

train and Q ti
train are from the same cluster i and S train and Q train

construct training sets. After training, the parameters in the
network are updated to optimal q0. Then it is further trained

through the support set S test in target cluster to ~qt which will be
used to predict the future of the target reservoir Q test in the test set.
In the subsequent algorithm description, S and Q are used to
represent the support set and query set respectively in order to
simplify symbol expression in both the training and testing process.
In training, S and Q refer to S train and Q train, while during testing,
S and Q mean S test and Q test.

3.3. Workflow

Our method deals with data in four steps. The first step is data
collectionwhich splits data recorded during reservoir development
into samples. Then, the feature normalization step transforms data
into a standard scale ranging from 0 to 1. After that, the network
propagation updates the parameters in the network through the
training dataset and predicts the future production index of the
target reservoir. For measuring the accuracy of our work and
calculating the gradient for backpropagation, we have a metric
selection operation at the end of the process.

3.3.1. Data collection
We collect samples from development experience by different

well patterns. The input data is divided into two parts: static data
and dynamic data. Static data is the attributes of wells, including
location information, permeability information, and porosity in-
formation. Dynamic data includes control regimes for well pro-
duction. The target output is the oil production rate for each well.

We classify them into different reservoir classes according to
clusters shown in Fig. 3. All series in each cluster are divided into
two sets named support set and query set in proportion 0.7 and 0.3,
respectively. These two data sets’ names are taken from the few-
shot learning concept. The support set and query set are utilized
for inner loop training and outer loop training, respectively and
there is no intersection between them. Then, each sample is con-
structed with a fixed proportion of data sampled from two sets. It is
worth noticing that the data of the target reservoir for prediction
must be in the query set.

This type of sample construction is determined by the nature of
the method. Because our method aims at finding out the shared
information between different clusters while preserving the dif-
ferences between them. Therefore, the support set shows the
network the distinct features of each cluster, while the query set
719
enables the network to find out the information that can be
generalized with the help of previous hints of their differences.
3.3.2. Classification
Since the sample data comes from different well pattern forms

and different permeability field distributions, the distribution
pattern of the final production data is too scattered. For network
training, a really preferable data distribution should be relatively
uniform. Therefore, we try to classify these scattered data so that
the data presents a relatively uniform distribution within its own
class. In this paper, we use the methods of PCA and k-means to
achieve data classification, and the effect after classification is
shown in Fig. 2.
3.3.3. Feature normalization
In terms of data normalization, we use Min-Max standardiza-

tion to scale the data into the range 0e1, as Eq. (3), and all features
use their respective maximum andminimum values as parameters.

~xi ¼ xi � ximin

ximax � ximin

(3)

where i is the index of features, xei is the normalized data, xi is the

raw data, ximin is the minimum value and ximax is the maximum

value of ith feature.
3.3.4. Performance metrics
The absolute error L1 is used as our loss function in both the

inner and outer loops. It measures the absolute error between the
real results and predicted values, as shown in Eq. (4). Here n is the
total number of samples, yi and yi are the target results and the
corresponding prediction value in the grid block, respectively. It is
worth mentioning that in the training process, the injection and
production rate have a strong decisive role in the actual results.
Therefore, in order to avoid the network ignoring context infor-
mation, we utilize Kullback-Leibler divergence (DKL), as shown in
Eq. (5), as an extra regularization term (Li et al., 2022), where PðxÞ
and QðxÞ are the probability distribution of x.

L1 ¼
Xn
i¼1

jyi � byij (4)

DKLðPjQÞ ¼
X
x2X

PðxÞlog
�
PðxÞ
QðxÞ

�
(5)
3.3.5. Network training
Our framework can be divided into two parts, named the inner

part and the outer part. The inner part is to update the network for
each cluster or task separately and the outer part is to search for a
common initial point. The whole algorithm process is shown in
Table 1. For more specific theoretical proof, please refer to (Yang
et al., 2021).
3.3.5.1. Inner loop.
The inner loop network is proposed by ourselves and used for

the separate training of every single task or cluster. When the
training of each task is completed, the network parameters are
updated from the same initial value q, but converge to different

optimal values ~qt for each task t, as shown in Eq. (6).



Fig. 3. The process of constructing samples for both training and target prediction.

Table 1
Algorithm training Workflow.
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~qt¼minimumqL t;S

�
f kt;SðqÞ

�
(6)

where f kt;S is the operator that updates q by k iterations using data

about task t sampled from S . In few-shot learning, L corresponds
to a loss function that performs gradient descent on batches of data
720
sampled from t.
The structure of the network is shown in Fig. 4 where C in a circle

represents concatenate operation. To calculate the impact of his-
torical information, we adopt the RNN framework as its main feature
extraction structure. Specifically, we use two different GRUnetworks
as a base learner to extract features for static features and dynamic



Fig. 4. The structure of the inner-loop network.
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features named static network and dynamic network. Each GRU
network is composed of four equations, as shown by Eqs. (7)e(10).

rt ¼ s
�
Wr*Ht þUr*HLt�1

�
(7)

it ¼ s
�
Wi*Ht þ rt 1Ui*HLt�1

�
(8)

zt ¼ s
�
WzHt þUzHLt�1

�
(9)

HLt ¼ zt5HLt�1 þ ð1� ztÞ5it (10)

Here, 1 is the matrix dot product and 5 is the element-wise
product. Reset Gate rt determines the degree of change in hidden
features. s is an active function and matrices W and U are weight
parameters; Ht is the input hidden feature at the current step, and
HL
t�1 is a long-term feature left from history. it is the updated

hidden feature at the current step by considering historical fea-
tures. zt is the update gate, which determines the change degree of
origin features affected by fusion features, and it is also a weight
parameter. HL

t is the final updated specific features of each field.
Furthermore, combined with the future control regimes, the

network produces a forecast of future oil production rates. In
addition, we also employ a learnable multi-dimensional adjacency
matrix to simulate inter-well interference. Since this matrix is
entirely learned by the network without any physical information,
we cannot figure its physical meaning out yet. It is worth
mentioning that, in order to distinguish different flow phases in
control regimes, we divide water injection and liquid production
into two different feature dimensions. Further, we directly adopt
the idea of the heterogeneous graph, using two different multi-
layer perception networks (MLP), as shown in Eq. (11) for oil and
water wells to map two types of features into a commonly hidden
721
feature space. Wi and bi are the weight matrix and bias matrix,
respectively. s is the activation function.

y¼ sðW1 1 ðsðW2 1Xþ b1Þþ b2ÞÞ (11)

3.3.5.2. Outer loop.
The outer loop is a core part of this work looking for the shared

optimal initial parameters of the network. At first, the inner loop

starts from the initial parameters q and updates them to ~q according
to their own gradient based on support sets S in each task. Then
the outer loop further optimizes the original parameters q with the

gradient calculated from updated parameters ~q on query dataset Q ,
as shown in Eq. (12), so that each task shared the same optimal
initial parameter q.

q0 ¼minimumqEt
�
L t;Q ð~qtÞ

	¼minimumqEt

h
L t;Q

�
ft;S ðqÞ

�i
(12)

In gradient calculation, we first record the process of each up-
date in the inner loop according to support set S . This updating
process is also a non-in-place operation, so it also generates gra-
dients on initial parameter values q as well. Then, we use the query
set Q to calculate the loss in each task (except in the test part,
because the query set in the test part is the target data that need to
be predicted) thus the second-order gradient is obtained, as shown

in Eq. (13). Here, ~q ¼ ft;S ðqÞ, and f 0t;S ðqÞ is the Jacobian matrix of

the update operation. ft;S , ft;Q corresponds to adding a sequence of
gradient vectors to the initial vector, i.e. ft;S ðqÞ ¼ qþ g1 þ g2 þ :::þ
gk. Finally, a back-propagation comes to work to update q. The
update process is shown in Fig. 5 where the blue curve arrow is the
updated trajectory of each inner loop and the colorful arrows are



Fig. 5. The update process for initial parameters q.
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the gradient of clusters in the outer loop. Furthermore, the sum of
colorful arrows (black arrow) is the final gradient of initial pa-
rameters q for one update step.

g¼ v

vq
L t;Q

�
ft;S ðqÞ

�
¼ f 0t;S ðqÞL 0

t;Q ð~qÞ (13)

3.3.6. Prediction
The optimal initial parameters q0 of the network after training

can then be used for production prediction of the target type of
reservoir. Specifically, we use the network with parameter q0 and
the support set S test of the target type for further training to obtain

the network with parameter ~qt which is applicable to the target
reservoir Q test Finally, the network predicts future oil production
rate based on the historical data and control policy of the target
reservoir.

4. Case Study

4.1. Case1: square model

The self-designed square model is primarily used to confirm our
approach is available. Each grid in the model has a grid number of
20*20*1 and a size of 50 m*50 m*10 m.

4.1.1. Dataset setup
In this part, we use a dataset generated by numerical simulation

to validate the effectiveness of the proposed method. To obtain the
dataset in the distribution of multiple clusters as shown in the
problem statement. We have run simulations on various classes of
reservoirs by the software Eclipse (Schlumberger). In practice, we
have designed 50 classes of reservoirs with different permeability
field control regimes and well placement, as shown in Fig. 6 which
exhibits 4 different reservoir classes. Each of them runs 10 times
numerical simulations to generate 10 series and each series con-
tains the production rate of wells in this class of reservoir. Precisely,
each series contains 50 time steps and each step length is 30 days.
Then, we use the data from the first 49 reservoirs to form the
training part and the last one as the target class which is also
considered a test set. More precisely, for each class, we split the
series into the support sets and the query sets with 8 series and 2
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series respectively. It is worth noticing that the future part of the
query set in the target class is what we are aiming for, we thus draw
it with the red dash line. Then we randomly sampled 3 series from
the support set and 1 series from the query set in the same class to
construct every sample.

Specifically, 12 wells including 8 production wells and 4 injec-
tion wells are located randomly in each geological model. Based on
their random attributes, we used the indicated kriging interpola-
tion to interpolate the permeability field and porosity field with
random azimuth and lag distance. Since these wells are relatively
far apart, we have limited their nugget values to fixed values to
improve stability and visuals. In the process of generating the
production sequence, we make use of stochastic control regimes to
control production and injection. The liquid production rate and
water injection rate range from 0 to 100 m3=d.

In practice, the input of the network contains two parts, that is,
the dynamic part and the static part. We consider control regimes
as the dynamic part and permeability as the static part then output
oil production rate. The reason that we do not input the location of
wells is that we treat them implicitly as the criteria for discrimi-
nating tasks. Here, we utilize L1 to present L1 þ DKL in our paper to
measure the accuracy of our work.

4.1.2. Performance
We find that both the training losses and testing loss can

converge to a very small level, as shown in Fig. 7 and Table 2. Be-
sides, we can clearly see that the network can achieve an accurate
prediction on the target sequence after being further trained by 9
samples of the same class in the support set, as shown in Fig. 8
where the yellow line is the prediction result of our method and
green points are real production rate.

Technically, RMAML is a meta-learning method that can
converge parameters into a class-adapted optimal point rather than
the common optimal point calculated by general one-order
network work such as MLP. Precisely, the parameters in the
network will be independently further updated when encoun-
tering any support set after having optimized its initial value by the
RMAML method. Meantime, the RNN class network in the inner
loop has a powerful ability to match the relation between input and
output. Therefore, a nice performance is achieved.

4.1.3. Comparison with other methods
We have introducedmany networkmethods in the Introduction

section. Many of them have achieved nice performance, but some
instinct limitation is still hidden in their methods. To make it more
clear, we compare the results from the other three common
methods. The first one is transfer learning, that is, regardless of
reservoir class, all classes except the target class are fused and
trained in mini-batch, then finetuning the learned parameters with
few samples in the target class. Another is the class-only method,
that is, only the first 9 samples of the target pattern are used,
completely blocking the interference from other classes. The third
one is mixed training, which combines samples from all classes of
reservoirs including the samples of support set in the test part and
tests the network on the query set of the test part. The test loss
values of the fourmethods are shown in Table 2 and the final results
are shown in Fig. 8. It is obvious that our method performs best
among those methods. Specifically, the largest error is the result
predicted by the mixed training method. When we analyze it from
the perspective of data distribution, this is due to the centers of
other clusters being far away from that of the target cluster.
Therefore, when the network calculates the joint distribution of (x,
y), it will be trying its best to cover all clusters, and in consequence,
the target cluster will not be valued. For the class-only method,
since the distribution of 10 samples inside the target class is not



Fig. 6. Random permeability and porosity field in samples.
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Fig. 7. The loss on the training set by our method.

Table 2
The test loss of all four methods.

Method RMAML Transfer learning Mix training Class-only

Test loss 0.0013 0.0096 0.015 0.011
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enough to form the correct distribution shape, the network lacks
enough gradient direction to update its parameters, which causes
the prediction result deviates from the true value. Transfer learning
works best compared with the above two methods because the
network starts from more reasonable initial parameters that were
learned from mixed learning through other classes of reservoirs.
However, the initial parameters are still not good enough to shield
interference from other classes. In our method, since the initial
parameters are fully optimized without being affected by others, it
is able to quickly approach better initial parameters of the network.
After being tuned by query set data, the target sequence is accu-
rately predicted.

4.2. Case2: EGG model

We try to simulate real application scenarios to test our method
and the EGG model is a commonly used benchmark model. Spe-
cifically, it has 12wells, including 4 productionwells and 8 injection
wells. The boundary of the entire model is elliptical and consists of
60*60*7 grids in total while the grid size is 8 m*8 m*4 m. The
permeability field distribution shows typical fluvial facies deposi-
tion where channel and beach micro-facies can be clearly seen
inside, as shown in Fig. 9. We test the accuracy of our method on
this EGG model and complete the comparison with other methods,
so as to obtain more realistic and reliable conclusions.

4.2.1. Given the condition and target
In order to better show the application results of our method on

the EGG model. We assume that the boundary shape of the EGG
model is known, and we plan to deploy 4 production wells, 8 water
injection wells, and their corresponding injection-production re-
gimes. The goal is to predict future production from the four pro-
ducing wells without performing precise geological modeling.

4.2.2. Data collection and exhibition
Based on the boundary shape of the EGG model, we collected

production data, including injection and recovery, and oil produc-
tion, under various conditions through random permeability fields,
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random well locations, and random working regimes. The total
number of sequences is 1000 and each contains 60 time steps in
which each step's length is 30 days. They are shown in Fig. 10 after
dimensionality reduction by PCA. It can be seen that the data points
of these samples are relatively scattered, and there is no obvious
data center. Moreover, these data points show the characteristics of
clustering, which means that these data can be classified.

4.2.3. Data classification
After obtaining the data, we need to classify the data first, firstly,

classify the training samples, and the classification method used is
the K means method mentioned earlier. In order to make the dis-
tribution of each class of data more uniform, we finally divided the
training data into 100 classes, and the classification results are
shown in Fig. 11. In addition, because we ultimately need to predict
the target data from specified reservoir permeability distribution
and determined well pattern, we need to determine the class it
belongs to base on its historical data. Specifically, we still use the K-
means method used in the training data to predict the class of target
data and add target data as a black point in Fig. 11. It is obvious that
the target data is closest to the purple cluster, so the target data can
be classified into the class to which the purple data belongs.

4.2.4. Model training and testing
Although our data is divided into many classes, when we divide

the training set and the test set, we still mix different classes of
samples together and then split them. It is worth noticing that we
need to ensure that the samples in each batch belong to a different
class. Specifically, we use 10% of the data as test data, 10% as vali-
dation data, and the remaining 80% as training data. During
training, we use 3000 epochs to complete the training, and after
every 50 training, a validation will be performed, and the optimal
network parameters will be saved. The training loss curve is the red
line shown in Fig. 12.

4.2.5. Application on target situation
To accomplish the final goal, we apply the trained network to

the target data. In detail, we first select other samples (those purple
sample points) that are in the same class as the target data and use
the trained network to perform an inner loop based on these
samples to update the network, so as to obtain the optimal pa-
rameters under the current class. Then directly import the input
data of the target data to get the prediction result, as shown in the
yellow line in Fig.13. It can be clearly seen that the predicted yield is
basically consistent with the actual yield.

4.2.6. Comparison with other methods
In order to reflect the advanced nature of our method, and to

clarify the reasons for achieving some of these, we again compare
the other three methods. From Table 3 and Fig. 13, we can see the
prediction results of the fourmethods on the target data. The values
of test loss on target data by these methods draw the same
conclusion as training loss. Specifically, themethod with the largest
error is the mixed training method, followed by the class-only
method. The closest to the results of our method is the transfer
learning method. Here, we conclude that this happens mainly due
to the following reasons. First, a large number of samples of
different classes, especially those on the edge of the distribution,
can cause misleading gradients to deviate from the optimal solu-
tion. Therefore, mixed training makes the training error the largest
among these methods. Secondly, the loss of the class-only method
is also relatively high, which is due to the unreasonable initial point
of the network and too few samples. We can imagine that the
network parameters converge from a random initial point. How-
ever, this random initial parameter may be very far from the global



Fig. 8. The result predicted by many methods including our method.
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Fig. 9. The permeability field distribution of the EGG model.

Fig. 10. The distribution of production data after PCA. Fig. 11. Classes of data in the dataset including target data.
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optimum, and the gradient provided by a small number of samples
is very fixed. Therefore, this optimization process will fall into a
local optimum region that is difficult to escape. Thirdly, the per-
formance of the transfer learning method is better than the pre-
vious two methods, because it finds an initial state that is closer to
the global optimal solution based on a large number of non-similar
samples during pre-training, and then goes through the finetune
process to quickly convergence. However, because this method uses
the initial state obtained by mixing samples, it is inevitable to
encounter mutual interference between the different classes
mentioned above, which makes this initial point not good enough.
Fourthly, as a very useful recursive algorithm, LSTM is widely used
in the prediction of many kinds of time series data. However, the
use of LSTM as a base learner is not a good decision because it is
more sophisticated than our use of GRU as a base learner, which on
the one hand increases computing time while on the other makes
726
the overfitting phenomena worse. Finally, our method works best
in the selection of initial points. As can be seen from the red line
and orange line in Fig. 12, although the initial loss value of our
method is larger than that of transfer during the training process,
our method can converge faster and the loss after convergence is
lower. Because our learn-to-learn method can be seen as a second-
order network that is more flexible than the general one-order
network, the mapping is more flexible and its solution is closer to
the best result. Additionally, Recursive networks typically lose ac-
curacy over time. The degree of oil production variance does,
however, diminish as the development phase moves into the
middle and late stages, which is a feature of reservoir production
statistics that other common data do not have. This is brought on by
the slowing down of the water content rise rate. Therefore, as
development time increases, the difficulty of prediction gradually
decreases, offsetting the intrinsic tendency of network prediction



Fig. 12. The training loss curve from different methods.
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accuracy dropping as time increases, giving the impression that the
results of prediction are still quite accurate.

5. Conclusion

The RMAMLmethod first obtains the corresponding parameters
Fig. 13. The prediction of target

Table 3
The test loss on target data by different methods.

Method RMAML MAML-LSTM

Target_loss 0.0016 0.0020
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for each class by independently updating copied initial GRU
network in each class. Then, the expectation of gradients is calcu-
lated based on the query data set in each class to improve the initial
network parameters. Next, the optimal network parameters appear
after training with a small number of samples in the same class as
the target reservoir. Finally, future production indices of the target
reservoir are accurately predicted with these network parameters.
From its application in two cases, the following conclusions are
summarized.

1. The distribution of a reservoir's production data varies
depending on its permeability fields, well patterns, and pro-
duction regimes, while the well pattern exerts the most
influence.

2. Samples from various classes of reservoirs greatly distract the
gradient direction of learning since the best network parame-
ters for each class differ. Consequently, it has the largest pre-
diction error at 0.0096 among these methods when the network
is trained with huge amounts of samples from totally different
reservoirs.

3. A small number of samples from the same class can not guar-
antee the network parameters converges to the global optimum.
Due to the significant nonlinearity of the mapping itself, the
gradient direction brought on by the lack of samples may make
the optimization process stuck in a local suboptimal point.
data by different methods.

Transfer learning Mix training Class_only

0.0075 0.0096 0.0088
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4. The RMAML method can identify the variations and similarities
among different classes, making it possible to efficiently learn
the rules that are helpful for transferable prediction. The pro-
posed RMAML method, in training, only requires a few samples
from the same class to learn the special knowledge that is
different from the common knowledge. As a result, its predic-
tion error reduces to only 0.0016, which is nearly one-fifth of the
error predicted by other methods.
6. Discussion

The method proposed in this article exhibits excellent general-
ization performance. However, changes in the dataset may lead to
different computational results. The data samples used in this
article were obtained from theoretical models of sandstone reser-
voirs with good permeability, without any on-site measurement
errors, and with similar fluid properties. Therefore, the laws of
these samples may be shared to a large extent, which makes the
prediction results very good. However, when the data comes from
reservoirs with significant differences in properties or with on-site
measurement errors, although the method proposed in this article
may yield better prediction results than conventional methods, it
cannot guarantee perfect accuracy. Therefore, it is recommended
that readers conduct data screening before using this method.
Additionally, better data classification methods and dimension
reduction techniques can also serve as helpful data preprocessing
methods.
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