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a b s t r a c t

To reduce CO2 emissions in response to global climate change, shale reservoirs could be ideal candidates
for long-term carbon geo-sequestration involving multi-scale transport processes. However, most cur-
rent CO2 sequestration models do not adequately consider multiple transport mechanisms. Moreover, the
evaluation of CO2 storage processes usually involves laborious and time-consuming numerical simula-
tions unsuitable for practical prediction and decision-making. In this paper, an integrated model
involving gas diffusion, adsorption, dissolution, slip flow, and Darcy flow is proposed to accurately
characterize CO2 storage in depleted shale reservoirs, supporting the establishment of a training data-
base. On this basis, a hybrid physics-informed data-driven neural network (HPDNN) is developed as a
deep learning surrogate for prediction and inversion. By incorporating multiple sources of scientific
knowledge, the HPDNN can be configured with limited simulation resources, significantly accelerating
the forward and inversion processes. Furthermore, the HPDNN can more intelligently predict injection
performance, precisely perform reservoir parameter inversion, and reasonably evaluate the CO2 storage
capacity under complicated scenarios. The validation and test results demonstrate that the HPDNN can
ensure high accuracy and strong robustness across an extensive applicability range when dealing with
field data with multiple noise sources. This study has tremendous potential to replace traditional
modeling tools for predicting and making decisions about CO2 storage projects in depleted shale
reservoirs.
© 2023 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This
is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/

4.0/).
1. Introduction

Because of the harmful effects of greenhouse gases on climate,
energy-related CO2 emissions have become a severe environmental
issue worldwide, with far-reaching implications for the
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simultaneous and sustainable development of society, ecology, and
economy (Cai et al., 2021; Mora et al., 2018; Xiao et al., 2022). With
global anthropogenic CO2 emissions having reached an all-time
high of 330 billion tons in 2021, dozens of countries and regions
have proposed “emission peak” and “carbon neutrality” climate
goals to realize the long-term vision of an environment-friendly
and carbon-free future (Chen et al., 2022; Jeffry et al., 2021). Car-
bon capture, utilization, and storage (CCUS)dwhich transforms the
traits of CO2 from “harm in the sky” to “treasure in the
ground”dhas become a critical technology for controlling and
reducing large-scale industrial greenhouse gas emissions by using
decarbonization devices to collect and transport large volumes of
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Nomenclature

C Concentration, sm3/m3

CD Wellbore storage factor, dimensionless
Cg Gas compressibility, MPa�1

DE Effective diffusion coefficient, m2/s
DK Knudsen diffusion coefficient, m2/s
DM Molecular diffusion coefficient, m2/s
f Content, dimensionless
h Formation thickness, m
H Solubility coefficient, m3/(Pa$m3)
K Permeability, D
L Loss function
M CO2 storage capacity, m3

Mg Molar mass, g/mol
p Pressure, MPa
pL Langmuir pressure, MPa
q Injection rate, m3/d
r Radius, m
Ro, Rk, Rm Radii of organic particle, kerogen, and matrix, m
RSRV, Re Radii of SRV region and external region, m
S Skin factor, dimensionless
t Time, h
T Temperature, K
VL Langmuir volume, m3

w Hydraulic fracture width, m
x, y, z Cartesian coordinate, m

Greek symbols
a Slip coefficient, dimensionless
b Shape factor, dimensionless
f Porosity, dimensionless
u Reservoir factor vector

g Permeability modulus, Pa�1

m Viscosity, mPa$s
s Standard deviation
r Density, kg/m3

ε Relative error
l Inter-porosity flow coefficient
xhf Hydraulic fracture half-length, m

Subscripts
c Clay minerals
er Exterior region
f Natural fracture
g Gas
hf Hydraulic fracture
i Initial condition
k Kerogen
m Shale matrix
o Organic matter
SRV SRV region
w Wellbore

Abbreviations
CCUS Carbon capture, utilization, and storage
DeLISA Deep learning based iteration scheme approximation
FCNN Fully connected neural network
HPDNN Hybrid physics-informed data-driven neural network
IELM Improved extreme learning machine
LNN Legendre neural network
L-IELM Legendre improved extreme learning machine
PDEs Partial differential equations
PINN Physics-informed neural network
SRV Stimulated reservoir volume
SEM Standard error of mean
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CO2 from its sources to secure geological reservoirs for secondary
utilization or storage (Chen et al., 2022; Yan and Zhang, 2019). CO2
storage options include geological formations such as saline aqui-
fers in deep sea areas, unrecoverable coal seams, and depleted oil or
gas reservoirs (Dai et al., 2020; Goodman et al., 2020; Jia et al.,
2022a; Kou et al., 2021; Xie et al., 2023).

In recent years, depleted reservoirs have been regarded as
desirable geological structures for CO2 sequestration in that the
essential infrastructures (including surface facilities, injection/
production wells, and transportation facilities) do not require the
huge costs of additional construction, in addition to prominent
geological features for storage safety and significant storage ca-
pacity (Chu et al., 2023; Gao et al., 2022; Zhang et al., 2022b).
Moreover, unconventional reservoirs, especially depleted shale
reservoirs with sealing caprocks and abundant micro- and nano-
scale pore-throat structures, have promising storage potential and
sequestration security due to the higher specific surface area and
rich organic matter characteristics (Feng et al., 2020; Sun et al.,
2020; Zhang et al., 2022a). In addition, the shale matrix has a
greater affinity for CO2 than methane, meaning that CO2 will be
preferentially adsorbed in the nanopores while facilitating
methane desorption from the particle surface, thus generating in-
terest in CO2 sequestration while enhancing the oil/gas recovery
(Jia et al., 2019; Zhou et al., 2019). However, accurate character-
ization of CO2 transport and storage processes in shale reservoirs
remains challenging due to the complex petrophysical properties of
shale formations (Wang et al., 2023). Gas transport properties are
influenced by shale microstructure, composition as well as flow
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regimes, thus the complex multi-scale structure hinders the pre-
diction of CO2 transport in shale and the evaluation of reservoir CO2
storage capacity, which is essential for the implementation of CO2
storage engineering projects in depleted shale reservoirs (Kou et al.,
2022).

The long-term stable storage of CO2 injected into depleted shale
reservoirs inevitably involves special geological issues that are
different from those of conventional hydrocarbon reservoirs,
including the complicated transport and storage mechanisms of
CO2 (Tayari and Blumsack, 2020). During CO2 sequestration in shale
reservoirs, CO2 exists in the multiscale medium system of shale in
various storage forms, including free gas, dissolved gas, and
adsorbed gas (Chu and Zhang, 2023; Jia et al., 2022a). Free gas refers
to CO2 stored in the pore space of the shale, including micro- and
nano-pores, natural fractures and hydraulic fractures (Gao et al.,
2022). Adsorbed gas represents CO2 adsorbed on the pore walls
of shale, mostly on the surface of kerogen due to the high affinity,
but also partially on the surface of clay minerals (Gou and Xu, 2019;
Klewiah et al., 2020). At the same time, due to the strong interaction
between kerogen and CO2, kerogen bulk can be considered as an
important storage vessel into which CO2 molecules diffuse and can
be deposited in the form of dissolved gas (Lyu et al., 2021). Various
sequestration forms and multi-scale media systems, especially
those containing abundant nanoscale pores, result in a strong
coupling of multi-scale multi-physicochemical processes with
discontinuous behaviors during CO2 storage in depleted shale
reservoirs.

CO2 storage in shale formations involves complex multi-scale
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physicochemical transport processes (Afagwu et al., 2022). Shale
formations have the characteristics of tight and ultra-low perme-
ability, usually requiring the application of multi-stage hydraulic
fracturing techniques to facilitate the formation of a multi-scale
system consisting of organic matter (kerogen), inorganic matter
(clay minerals, calcite, pyrite, quartz), natural fractures, and hy-
draulic fractures for effective shale-reservoir development (Wang
et al., 2020). Therefore, the migration of CO2 in depleted shale
formations consists of several stages: Darcy flow in hydraulic
fractures and natural fractures, slip flow and transition flow in
micro- and nano-pores, adsorption and desorption of clay minerals
and kerogen, solid diffusion in organic matter, and Knudsen diffu-
sion in nanopores (Javadpour et al., 2021). Accurate description of
integrated CO2 migration mechanisms in shale is an essential pre-
requisite for formation parameter inversion and carbon storage
capacity (Shen et al., 2022). Accurate prediction of CO2 injection
performancedbased on the reservoir information, boundary con-
ditions, and well characteristics that determine carbon sequestra-
tion capacitydhas enormous implications for the economic
evaluation and field implementation of CO2 sequestration projects
(Xu et al., 2021a). However, the establishment of CO2 geological
storage model integrated with multiple transport and storage
mechanisms is one of the necessary prerequisites for accurately
predicting the dynamic characteristics and determining the carbon
sequestration capacity.

Modeling and predicting transport processes in multi-physics
and multi-scale systems remains an ongoing scientific problem
(Karniadakis et al., 2021; Zhang et al., 2023). The CO2 storage in
depleted shale reservoirs is a uniquely complex system, the dy-
namics of which are governed by an intricate interplay of physical
and chemical processes on temporal and spatial scales spanning 17
orders of magnitude (Feng et al., 2018; Iddphonce et al., 2020). It is
generally known that partial differential equations (PDEs) have a
major contribution to the description of physicochemical phe-
nomena; however, there are very few cases where PDEs have easily
obtainable analytical solutions (Chen et al., 2021; Feng et al., 2021).
The PDEs applied in the multi-scale model of CO2 storage in
depleted shale reservoirs cannot provide analytical solutions under
the corresponding boundary conditions (Wang et al., 2020).
Therefore, various physics-based methods, such as finite difference,
finite element, and finite volume, have been established to
approximate analytical solutions capable of illustrating complex
practical problems employing deduction, for which the ultimate
objective is to make them intelligible to users (Steiner, 2022).
Traditional discretization methods that usually involve tedious
meshing and discretization into iterative solutions for large sparse
nonlinear systems have the advantage of solid theoretical analysis
(Nicolas et al., 2022). However, the controlling equations for CO2
storage in strongly heterogeneous shale reservoirs are multivariate,
multi-scale, and highly-dimensional; consequently, the prediction
of injection dynamics and reservoir parameter inversion for CO2
sequestration using physics-based methods is time-consuming and
laborious.

More specifically, the parameter inversion of shale reservoirsda
reverse modeling processdalso occupies a significant place in CO2
storage implementation; indeed, its inherently unique solutions
pose the greatest challenge to the accuracy of inversion results (Xu
et al., 2021b). There are many sources of non-unique solutions for
reservoir parameter inversion, such as data errors, human manip-
ulation, and the uncertainty of the inversion process, which are
equally substantial sources of uncertainty (Alguliyev et al., 2022).
With the increment of uncertain factors and complexity of the in-
verse problem, there are inevitably drawbacks such as slowand low
accuracy of curve fitting, which may be unreliable due to human
factors or data noise, so the problem of non-unique solutions
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becomes serious (Wang et al., 2021b). In order to accurately invert
reservoir parameters based on production data, automatic history
fitting estimation methods are receiving increasing attention (Zhou
and Wang, 2022). Probability estimation methods such as the
Bayesian, Markov chain Monte Carlo, and Ensemble Kalman filter
are also extensively applied in parameter inversion because of their
excellent stability (Zhan et al., 2022). However, the above ap-
proaches are heavily influenced by the preliminary value assigned,
resulting in lower operational efficiency and not effective in solving
the problem of non-unique solutions.

In contrast, recently emerging deep learning techniques can
extract key features concealed in complex multi-source data, thus
solving the high-complexity and high-uncertainty problem-
sdnamely, automatically predicting the production and injection
dynamics of shale reservoirs and performing the dynamic inversion
of reservoir parameters (Liu et al., 2021; Ray et al., 2021; Wang
et al., 2021c). Xue et al. proposed a pressure-transient data-driven
framework combining random forest and Kalman filteringmethods
to estimate the aquifer/reservoir properties of natural gas reser-
voirs and accurately identify water intrusion patterns (Xue et al.,
2022a). Dong et al. established an automatic interpretation model
of well-test data using a one-dimensional convolutional neural
network that can automatically identify the curve type and invert
the relevant formation parameters (Dong et al., 2022). Li and Misra
proposed a reinforcement learning algorithm based on deep Q-
networks and continuous deep deterministic policy gradients for
the automatic history matching of numerical reservoir models (Li
and Misra, 2021). In general, CO2 sequestration processes in
depleted shale reservoirs can be efficiently assessed by deep
learning networks (data-driven models), but the inference trans-
port mechanisms are not yet fully comprehended and explained by
physicochemical equations. Consequently, they are opaque to users
and the acquisition of high-quality datasets is both time-
consuming and resource-intensive, emphasizing the significance
of architecting data analysis-prediction systems that combine
physics-based and data-driven models.

Powerful deep-learning frameworks enable us to solve arbi-
trarily complex problems by increasing computational resources;
indeed, significant progress has beenmade in the physics-informed
neural network (PINN) model (Tang et al., 2022). Yang et al. pro-
posed the Legendre improved extreme learning machine (L-IELM)
method to solve elliptic PDEs by combining the Legendre neural
network (LNN) and improved extreme learning machine (IELM)
algorithms (Yang et al., 2020). Li et al. proposed a deep learning
based iteration scheme approximation (DeLISA) framework; a
neural network is then used to approximate an iterative format that
integrates the physical information of the governing equations with
time to finally solve high-dimensional PDEs (Li et al., 2022b). In
addition, Raissi et al. proposed a deep-learning based hidden fluid
mechanics capable of encoding critical physical laws governing
fluid motion to solve the forward and backward problems associ-
ated with PDEs (Raissi et al., 2020). Therefore, physics-informed
deep neural network can obtain physically consistent solutions by
introducing physical biases into the training samples, model ar-
chitecture, and reasoning algorithms of data-driven models,
whereas the optimization of data-driven models can be con-
strained by PDEs to significantly improve the speed of neural
network convergence.

In summary, it is essential to incorporate physics with data-
driven approaches by introducing and integrating a PINN to
accelerate the convergence of the entire network, thereby insuring
the interpretability, transparency, and high accuracy of the data
analysis-prediction systems to achieve highly autonomous and
error-free operation for CO2 transport and storage in depleted shale
reservoirs. In this study, we developed an integrated multi-scale
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model involving strongly non-homogeneous media systems to
characterize the CO2 storage in depleted shale reservoirs. On this
basis, we proposed an innovative hybrid physics-informed data-
driven neural network (HPDNN) model that can be generated with
a limited number of simulation runs and can significantly accel-
erate the forward and inversion processes by incorporating physical
principles (PDEs, boundary/initial conditions) and practical the-
ories (engineering regulation and expert experience), enabling the
prediction of CO2 injection dynamics and accurate inversion of
reservoir parameters, as well as estimating the CO2 storage capacity
of shale reservoirs. Furthermore, to evaluate the application per-
formance of the HPDNN, several cases of CO2 sequestration in shale
were designed to evaluate the extrapolation ability of the model to
field application scenarios with different noise factors. We
demonstrated that the HPDNN is capable of solving the time-
consuming and labor-intensive challenges of numerical simula-
tions and accurately assesses multi-scale CO2 sequestration in
depleted shale reservoirs with strong heterogeneity.

2. Methodology

2.1. Establishment of numerical model

This section presents the establishment of the numerical model
for CO2 storage in depleted shale reservoirs, considering systems
with different scales. The proposed multi-scale mod-
eldconstructed with a commercial numerical simulator (COMSOL
Multiphysics) using parameters derived from actual reservoirsdare
employed to generate CO2 injection performance data as an infor-
mation base used to train the deep learning model. This model can
intelligently predict injection performance, perform reservoir
parameter inversion, and evaluate CO2 sequestration capacity un-
der different conditions. Specifically, the injection results that were
generated and the partial parameter distributions during the in-
jection process were assembled into a comprehensive knowledge
base, from which hybrid acceleration training and verification of
the model were performed with the neural network system for
solving PDEs. Details of the physical model, reservoir grid, PDEs,
and selection of the basic parameters are provided.

2.1.1. Physical model
Shale gas reservoirs that have been developed by horizontal

wells are composed of heterogeneous and anisotropic porous sys-
tems, typically containing organic matter (nanoscale), porous
kerogen (microscale), clay minerals (microscale), inorganic matrix
(mesoscale), natural fractures (mesoscale) and hydraulic fractures
(mesoscale), such that the injected CO2 involves multiple transport
and sequestration mechanisms in depleted shale formations
(macroscale), the schematic diagram of which is shown schemati-
cally in Fig. 1. The injected CO2 is transported in the above multi-
scale systems and extensively distributed in the nanoscale and
microscale pores of the shale matrix, and eventually stored in
different forms such as dissolved gas (CO2 dissolved inside organic
matter particles, not considering dissolved in oil and water in this
paper), adsorbed gas (porous kerogen and clay minerals), and free
gas (micro-nanopores and fractures). Various storage forms,
particularly in systems involving a large number of nanoscale
pores, lead to coupledmultiscale multiple transport mechanisms as
follows: (1) transport of ground-injected CO2 from the horizontal
wellbore to the reservoir system; (2) gas migration from the frac-
ture network to the shale matrix mainly by Darcy flow; (3) slip flow
in the pore network and adsorption to clay particles in the inor-
ganic matrix system; (4) slip flow in the nanopores and adsorption
to organic particles in the kerogen system; (5) gas on the surface of
nanopores migrates by solid diffusion to form dissolved gas inside
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the organic particles caused by the concentration difference. On
this basis, the physical model of sequestration in depleted shale
reservoirs is established, as shown in Fig. 2. The near-well area
where a horizontal well exists in the center has been repeatedly
fractured and SRV to form a fracture network different from the
conventional two-wing fractures, prompting the hydraulic frac-
tures to interconnect with the natural fractures, while forming an
internal region with high permeability. Therefore, shale reservoirs
with the external closed boundary typically contain hydraulic
fractures with finite conductivity, natural fractures, and the SRV
region. For most CO2 sequestration processes, the injected CO2 is in
supercritical state due to high reservoir temperature and pressure.
Other assumptions of the proposed model are presented as follows.

C Reservoir fluids other than CO2 in the depleted shale for-
mation are ignored (Shen et al., 2023).

C The content of dissolved gas is characterized by Henry's law,
while the transport of the dissolved gas is governed by Fick's
diffusion law (He et al., 2016).

C Permeability of inorganic matrix system and kerogen system
is modified by slippage effects (Cui et al., 2022).

C The transport of CO2 contains multiple forms of intertwined
diffusive flows, including molecular diffusion and Knudsen
diffusion, so that the effective diffusion coefficient (DE) is
introduced as (Jeon et al., 2014; Lucas et al., 2004):

1
DE

¼ 1
DM

þ 1
DK

(1)

whereDM refers tomolecular diffusion coefficient; and DK indicates
Knudsen diffusion coefficient.

C The depleted shale formation has a constant temperature T
(Kou et al., 2021).

C Since the variation of reservoir pressure affects the perme-
ability performance of natural fractures, the stress-sensitive
effect should be taken into account (Afagwu et al., 2020).

C Effects of gravity and capillary pressure are neglected (Chu
et al., 2019b).
2.1.2. Reservoir grid
A commercial numerical simulatordCOMSOL Multi-

physics®dis used to simulate the proposed model of realistic CO2
sequestration processes in depleted shale formations by solving
PDEs via the finite element method. A multi-fractured horizontal
well is arranged in the center of a cylindrical depleted shale
reservoir with a radius of 3000 m, which constitutes the research
object of this study, as shown in Fig. 3. In addition, our numerical
model includes established PDEs to describe the CO2 adsorption,
diffusion, dissolution, Darcy flow, and slip flow in different systems
at multiple scales. An unstructured grid technique is used to
establish irregular hydraulic fractures. And a local grid refinement
methodology is used to enhance the reliability of the numerical
simulation results. Furthermore, the time step of the pre-injection
stage is set smaller than that of the post-injection stage to improve
computational efficiency.

2.1.3. Governing equations
According to the above physical model and assumptions made

according to the actual situation, the multi-scale governing equa-
tions (PDEs) considering CO2 diffusion, dissolution, adsorption/
desorption, slip flow, and Darcy flow are established for CO2
sequestration in depleted shale reservoirs (Fig. 2). Depleted shale
reservoirs typically involve two regions: the SRV region and the



Fig. 1. The schematic diagram of CO2 transport and sequestration in depleted shale reservoirs (modified from Wang et al., 2023).

Fig. 2. The physical model of CO2 transport and sequestration in depleted shale
reservoirs.

Fig. 3. The numerical model of CO2 sequestration in depleted shale reservoirs.
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original formation, containing organic matter, porous kerogen,
inorganic matrix, and fractures. The detailed mathematical model
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for CO2 sequestration in the depleted shale reservoir is shown in
this section.
2.1.3.1. SRV region of the depleted shale reservoir
2.1.3.1.1. Organic particle system. Because of the high affinity of

CO2molecule to organicmatter, it is easy to dissolve in solid organic
matter (Huang et al., 2021). Considering the extremely low
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permeability of organic matter in shale, it can be assumed that CO2
dissolved in shale organic matter is driven by concentration dif-
ferences rather than by pressure gradients, implying that the
transport process of dissolved gas in organic matter is controlled by
the combination of molecular diffusion and Knudsen diffusion (Chu
et al., 2019a). Therefore, the continuity equation for the organic
particle system can be obtained (He et al., 2016):

1
r2o

v

vro

�
r2oroboDE

vCo
vro

�
¼ ro

vCo
vt

(2)

where Co refers to the concentration of CO2; bo is the shape factor of
the organic particles; and ro is the radius of the organic medium.
(Please see the Nomenclature section for a complete list of defini-
tions for the symbols used throughout all equations.) The initial and
boundary conditions can be written:

Cro¼Ro ;rk ¼Hpkjrk External boundary condition (3)

DErobor
2
o

0:941� 10�3
vCo
vro

����
ro/0

¼0 Internal boundary condition (4)

Cjt¼0 ¼Ci ¼ Hpi Initial condition (5)

2.1.3.1.2. Kerogen system. Kerogen contain an abundant amount
of nanopores with high specific surface area, which is the main
storage space for CO2 in shale. The injected gas can be stored in the
porous kerogen in a variety of states, involving adsorbed gas on the
surface of organic particles, free gas in organic nanopores, and gas
migrating into organic particles by diffusion. Therefore, the mass
conservation equation for the porous kerogen system is formulated
(Wang et al., 2023):

1
r2k

v

vrk

�
r2krk

3:6bkakKki
m

vpk
vrk

�
� rk

VLkpk
ðpk þ pLkÞ2

vpk
vt

�
�
1� fk

fk

�
3
Ro

roboDE
vCo
vro

����
ro¼Ro ;rk

¼ v

vt

�
pkMgCgkfk

ZRTfk

�
(6)

where ak is the permeability correction coefficient considering the
slip flow effect (Afagwu et al., 2022; Liehui et al., 2019); bk repre-
sents the shape factor, expressed as follows:

ak ¼ Kk
Kki

¼
"
1þ 128Knarctan

�
4Kn0:4

�
3p2ð1� 4=bÞ

#�
1þ 4Kn

1� bKn

�
(7)

bk ¼4

 
1
x2k

þ 1
y2k

!
(8)

where Kki denotes the absolute permeability of kerogen; Kk rep-
resents the apparent permeability of kerogen. The initial and
boundary conditions can be written:

pkjrk¼Rk;rm ¼pmjrm External boundary condition (9)

rkbkakKkir
2
k

0:941� 10�3m

vpk
vrk

�����
rk/0

¼0 Internal boundary condition (10)
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pkjt¼0 ¼pi Initial condition (11)

2.1.3.1.3. Inorganic matrix system. The shale matrix system is
mainly composed of porous kerogen and clay minerals. The injec-
ted gas can be stored in the inorganic matrix in various states,
involving adsorbed gas on the surface of clay mineral particles, free
gas in inorganic micropores, and gas migrated into kerogen in
consideration of slip effects. Therefore, the mass conservation
equation for the inorganicmatrix system is formulated (Wang et al.,
2023):

1
r2m

v

vrm

�
r2mrm

3:6bmamKmi
m

vpm
vrm

�
� rmfc

VLcpm
ðpm þ pLcÞ2

vpm
vt

� 10:8
Rk

rkfkbk
Kk
m

vpk
vrk

����
r¼Rk;rm

¼ v

vt

�
pmMgCgmfm

ZRT

�
(12)

where am is the permeability correction coefficient introduced by
considering the slip flow effect, expressed as follows (Afagwu et al.,
2022; Liehui et al., 2019):

am ¼ Km

Kmi
¼
"
1þ 128Kn arctan

�
4Kn0:4

�
3p2ð1� 4=bÞ

#�
1þ 4Kn

1� bKn

�
(13)

where Kmi denotes the absolute permeability of the shale matrix,
and Km represents the apparent permeability of the shale matrix.
The initial and boundary conditions can be written:

pmjrm¼Rm;r ¼pirjr External boundary condition (14)

rmbmamKmir2m
0:941� 10�3m

vpm
vrm

�����
rm/0

¼0 Internal boundary condition

(15)

pmjt¼0 ¼pi Initial condition (16)

2.1.3.1.4. Natural fracture system. Natural fractures are one of
the important components in shale reservoirs, performing an
essential contribution to storing and transporting CO2. Therefore,
the continuity equation for the natural fracture system in the SRV
region can be obtained (Chu et al., 2019a):

3:6
r

v

vr

 
rrir

K1fie�aðpi�pirÞ

m

vpir
vr

!
� 10:8

Rm
rmbm

Km

m

vpm
vrm

����
r¼Rm;r

¼ v

vt

�
pirMgCgirffir

ZRT

�
(17)

The initial and boundary conditions can be written:8><>:
pirjr¼rSRV ¼ perjr¼rSRV

vpir
vr

����
r¼rSRV

¼ 1
M12

vper
vr

����
r¼rSRV

External boundary condition

(18)
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Kirfie�aðpi�pirÞrh
1:842� 10�3m

vpir
vr

����
r¼rw

¼ �qscB Internal boundary condition

(19)

pirjt¼0 ¼pi Initial condition (20)
2.1.3.2. Hydraulic fracture system. For the mass transfer within
hydraulic fractures surrounded by the porous media of shale (on
the basis of previous assumptions), hydraulic fractures are inti-
mately connected to natural fractures and inorganic matrix, so the
governing equation of CO2 transport in the hydraulic fracture sys-
tem with finite-conductivity can be obtained by integrating the
mass balance, flow, and state equations, respectively (Kou et al.,
2022):

v

vx

�
Khf

phf
mZ

vphf
vx

�
þ v

vt

�
Khf

phf
mZ

vphf
vt

�
¼ v

vt

�
fhfCghfphf

Z

�
;�

0 � x � xf ; 0 � t � whf
2

�
(21)

The interface between the hydraulic fracture system and SRV
region does not account for mass loss, so the continuum condition
can be expressed formulated in terms of the equivalent production
rate as follows:

phfTsc
pscTZ

Khf
m

vphf
vt

����
t¼whf=2

¼ pirTsc
pscTZ

Kirf
m

vpir
vt

����
t¼whf=2

(22)

Due to the large aspect ratio of hydraulic fractures (obvious
differences between the length and width of fractures), the CO2
migration rate at each radial hydraulic fracturewas ignored and the
following formula was obtained:

vphf
vx

����
x¼xf

¼0 (23)

For the mass conservation equation of each hydraulic fracture,
the CO2 injection rate can be obtained:

phfTsc
pscTZ

Khf
m

h
ðwhf=2

0

vphf
vx

�����
x¼0

dt ¼ qhf
2

(24)

Based on the equation pw ¼ phf
���
x¼0

, the wellbore injection

pressure can be obtained by substituting Eqs. (22)e(24) into Eq.
(21), yielding the injection performance curve during CO2 seques-
tration in depleted shale reservoirs.
2.1.3.3. Exterior region of the depleted shale reservoir. The external
area of the reservoir can be considered as the initial shale forma-
tion, unaffected by the reservoir reconstruction. Similarly, the
continuity equation governing for the exterior region with imper-
meable boundary is formulated (Wang et al., 2023):
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The initial and boundary conditions are represented by Eqs. (26)
and (27):

vper
vr

����
r¼re

¼0 External boundary condition (26)

perjt¼0 ¼pi Initial condition (27)

2.1.3.4. Calculation of CO2 storage capacity. To obtain CO2 storage
capacity in depleted shale reservoirs, a scope of CO2 injection rates
must be evaluated that consider reservoir physical parameters,
geologic conditions, injection equipment requirements, and eco-
nomic factors, and then a constrained injection pressure can be set
for CO2 injection and storage. Based on the proposed multi-scale
model, the CO2 sequestration capacity can be acquired by the cu-
mulative CO2 injection volume when the constrained pressure is
reached:

M ¼
ðtc
0

Qindt (28)

where M refers to CO2 storage capacity; Qin indicates the injection
rate of CO2; tc denotes the injection duration when the constrained
pressure is reached.

2.1.4. Basic parameters
The ideal ranges of basic parameters for the numerical simula-

tion are determine from previous publications. The parameters
chosen in shale reservoirs should be as diverse as possible to pro-
vide users with a variety of mine application options while satis-
fying the field applications. Each input variable was created
randomly according to actual situations. The basic parameters
involved in the numerical simulation of CO2 sequestration in
depleted shale reservoirs are shown in Table 1 and can be changed
according to the needs of the actual application scenarios. The input
parameters of the model are determined according to the actual
reservoir data, eliminating the effects of unreasonable input pa-
rameters and providing sufficient cases for the training of HPDNN
model.

2.2. Neural network structure

In recent years, deep learning has made outstanding contribu-
tions to the fields of oilfield development and geological CO2 stor-
age, such as the prediction of dynamic changes in high-dimensional
physical fields and production parameters (Peng et al., 2022; Wang
et al., 2021d), reservoir parameter inversion based on automatic
history matching (Wang et al., 2021a), and multi-objective opti-
mization of production and storage based on deep reinforcement
learning (Hourfar et al., 2019). Compared with traditional physical
and numerical simulation techniques for reservoir development
and CO2 storage, deep learning-based methods have a higher pre-
diction accuracy, faster operation speed, and broader application



Table 1
Basic parameters involved in the numerical simulation.

Item Parameter Value

Reservoir Reservoir temperature, K 338.15
Reservoir thickness, m 20e50
Depleted pressure, MPa 0.6
Porosity of natural fractures 0.0045
Permeability of natural fracture, mD 1 � 10�3

Porosity of inorganic matrix 0.045
Permeability of matrix, mD 1 � 10�5

Slip coefficient of matrix 1e5
Inter-porosity flow coefficient of matrix 10�5e10�1

Porosity of kerogen 0.001e0.01
Content of kerogen 0.01e0.1
Permeability of kerogen, mD 1 � 10�6

Slip coefficient of kerogen 1e5
Inter-porosity flow coefficient of kerogen 10�6e10�2

Porosity of organic matter 0.025
Content of clay minerals 0.1e0.5
Hydraulic fracture half-length, m 20e100
Permeability of hydraulic fracture, mD 1000
SRV radius, m 600
Boundary radius, m 1500e20000
Mobility ratio 2e20

Well Well length, m 800
Well radius, m 0.09144
Constrained pressure, MPa 5e25
Wellbore storage 0.1e1
Skin factor �0.1e0.1

CO2 Injection rate, m3/d 104e106

Effective diffusion coefficient, m2/s 1 � 10�7e1 � 10�4

Compressibility, MPa�1 0.048
Langmuir volume of kerogen, m3/m3 10
Langmuir pressure of kerogen, MPa 10
Viscosity, mPa$s 0.01
Coefficient of compressibility 0.8
Langmuir volume of clay minerals, m3/m3 5
Langmuir pressure of clay minerals, MPa 10
Z factor 0.8
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scenarios and scope. In this study, we used a deep learning tech-
nique to fit the relationship between the parameters of the pro-
posed model and the injection performance results. Therefore, on
the basis of the simulation results generated by COMSOL, a deep
fully connected neural network (FCNN) was used to fit the rela-
tionship between the static and spatiotemporal dynamic reservoir
parameters and the injection pressure results.

A schematic of the PINN structure is shown in Fig. 4, containing
three functional modules: dynamic prediction of CO2 injection
pressure, inversion of reservoir parameters, and evaluation of CO2
sequestration capacity. According to Eq. (21), the CO2 injection
pressure is closely related to the intermediate variable known as
hydraulic fracture pressure (phf) and the final target CO2 storage
capacity can be calculated from the injection performance curve.
Therefore, the fitting target of the neural network can be changed
to hydraulic fracture pressure. If the neural network can accurately
fit the variables, the algorithm can effectively predict the dynamic
change in the CO2 injection pressure and accurately evaluate the
CO2 storage capacity. In summary, a fully connected neural network
(F) needs to be trained to predict the dynamics of CO2 injection
pressure by introducing reservoir factors and spatiotemporal
variables:

Fðx; t;u; qÞ/uðx; tÞju (29)

where x refers to the spatial coordinate; u is the reservoir factor; u
is the solution of the PDEs; and q is the trainable weight of the
neural network.
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The first layer of the neural network used was the factor-input
layer, from which the reservoir properties and engineering pa-
rameters in Table 1 and the dynamic spatiotemporal information of
the grid were input into the neural network. It is worth noting that
the absolute differences between the different parameters are
significant; for example, the effective diffusion coefficient holds
values in the range of 1 � 10�7 to 1 � 10�4, while the boundary
radius holds values in the range of 1500e20000, which inevitably
has an impact on the training of smaller parameters in the neural
network. Furthermore, standardized data are most suitable for the
operation of neural networks; therefore, it is necessary to regu-
larize various input parameters as follows (Yang et al., 2019):

x0i ¼
xi � mðxÞ

sðxÞ (30)

where m(x) denotes the mean value and s(x) refers to the standard
deviation, determined by uniformly random sampling of the
training dataset.

As mentioned above, the main goal of the neural network was to
fit the simulated data of CO2 transport and storage based on
COMSOL. The process of finite element numerical simulation is
complex, especially for proposed model of CO2 sequestration in
depleted shale reservoirs with strong heterogeneity; it involves
controlling equations with many factors and complex meshing
patterns. Consequently, it is inefficient to calculate and store
enough of high-quality training data. On the other hand, deep
learning is a data-driven computational technique that out-
performs traditional statistical methods in extracting features from
ultrahigh-dimensional data (Cai et al., 2022; Li et al., 2022a; Wen
et al., 2023). However, the training effectiveness of deep learning
networks relies heavily on the quality and quantity of the data
(Chen and Lin, 2014; Najafabadi et al., 2015). Therefore, a hybrid
training method was used to improve the training efficiency and
effectiveness of neural networks bogged down by the aforemen-
tioned practical problems.

Previous research has shown that deep FCNN can approximate
complex nonlinear physical systems simply by learning phys-
icsdi.e., using neural networks to fit solutions to the equations of
the physical system, even without observational data as a training
set, constituting an efficient and exciting research direction.
Compared to complex and tedious analytical methods, neural
networks can utilize gradient descent parameter updates to
approximate the exact numerical solution to a system of physical
equations; moreover, such networks have made progress in solving
hydrodynamic problems (Mao et al., 2020; Raissi et al., 2019).
Therefore, training neural networks simultaneously using physical
knowledge (PDEs) and sampled data is a natural idea for network
training acceleration; furthermore, this method of combining
physics-informed and data-driven neural networks constitutes a
data assimilation algorithm (Wu and Qiao, 2021). Unlike existing
studies of data assimilation that primarily aim to solve determin-
istic equations (i.e., the parameters are single-invariant in the PDE
system), the present study used a hybrid training approach to fit the
relationship between the system factors and the target results
simultaneously. The objective function (loss function) of the entire
hybrid training system consists of two parts: 1) loss of the neural
network on the sampled data (the result of numerical simulation
calculation); and 2) loss of the neural network on the PDE system,
consisting of three sub-losses. The PDEs are transformed into re-
siduals using the nonlinear differential operator F, with the specific
form of the hybrid training represented as follows:



Fig. 4. Schematic diagram of the hybrid physics-informed data-driven neural network (HPDNN) structure.
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Fðx; t;u; vxu; vtu;…;uÞ ¼ 0; x2U; t2½0; T � (31)

where U and vU represent the spatial domain and boundary,
respectively, while u is the solution of the PDEs satisfying boundary
condition B and initial condition I:

Bðx; t;u; vxu; vtu;…;uÞ ¼ 0; x2vU; t2½0; T � (32)

Iðx;0;u; vxu;…;uÞ ¼ 0; x2U (33)
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The idea of hybrid training is to fit the observed data and solve
the system of PDEs simultaneously; the training loss of the neural
network can then be written as:

L¼ Ls þ lf,Lf þ lf,Lb þ li,Li (34)

where Ls is the loss of the neural network on the observed data
(sampled data based on numerical simulation results); Lf, Lb, and Li
denote the loss of the neural network on the PDEs, boundary
conditions, and initial conditions, respectively; and lf, lb, and li are
the corresponding adjustable weights to assess the proportion and



Fig. 5. Prediction results of the proposed CO2 sequestration model in the field
application.
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influence of the physical knowledge. Initially the same weights can
be used for all terms, which can then be further adjusted according
to the value of loss functions to obtain a more promising perfor-
mance. The specific forms of the four sublosses are:8>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>:

L sðqÞ¼ 1
jGj

X
ðx;t;uÞ2G

�
Fðx;t;u;qÞ�uðx; tÞju

�2
L f ðqÞ¼

1
jGj

X
ðx;t;uÞ2G

ðFðx;t;FðuqÞ;vxFðuqÞ;vtFðuqÞ;…;uÞÞ2

L bðqÞ¼
1

jvGj
X

ðx;t;uÞ2qG

Bðx;t;Fðu;qÞ;vxFðu; qÞ;vtFðu; qÞ;…;uÞ2

L iðqÞ¼
1
jGj

X
ðx;0;uÞ2G

Iðx;0;Fðu;qÞ;vxFðu;qÞ;…;uÞ2

(35)

where G is the sampled dataset; |G| is the size of the dataset; and vG

is the subset of the sampled dataset, the spatial location of which is
on the boundary vU. The entire training process was optimized

using the Adam optimizer to train the optimal set of weights ~q for
the neural network to minimize the total loss L (Xue et al., 2022b).

~q¼ argmin
q

LðqÞ (36)

In contrast to traditional data-driven approaches, an innovative
HPDNN was constructed to obtain different field information by
integrating physics-informed and data-driven neural networks,
making it possible to train the model with only a small number of
field samples and predict the values of arbitrary spatiotemporal
parameters without solving the entire field. On the one hand, the
proposed HPDNN does not require computation on each grid dur-
ing training or prediction, similar to the gridless method. On the
other hand, the HPDNN ensures that the prediction results strictly
conform to the given constraints (e.g., governing equations,
boundary conditions, and initial conditions) by embedding domain
knowledge in the grid. However, in many scientific and field op-
erations, some of the parameters of the model are poorly defined,
and few measurements are available. Consequently, it is necessary
to extrapolate hard-to-obtain parameters that describe the system
from given measurements in order to more accurately predict
model responsedknown as the inverse problem, i.e., reservoir
parameter inversion. Inverting reservoir parameters by injection
pressure dynamics requires solving a set of equations:

~u¼ argmin
u

X
x

X
t
ðFðx; t;u; ~qÞ � uðx; tÞÞ2 (37)

Therefore, under certain conditions, the inverse modeling
problem can be understood as an optimization problem. Overall,
the developed HPDNN can not only accurately predict the dynamic
characteristics of CO2 injection and evaluate the CO2 sequestration
potential, but also perform reservoir parameter inversion.

3. Results and discussion

3.1. Field application and model validation

After establishing the multi-scale CO2 transport model, its field
applicability must be checked using dynamic CO2 injection data in
the field. While operating the numerical model, the physical
properties of reservoirs and CO2 injection parameters were deter-
mined based on the actual CO2 sequestration project in the
295
Changlin-Weiyuan shale reservoir in the Sichuan Basin, China. Basic
parameters can be obtained through detailed analysis of the core,
fracturing operations, etc. The geometry and distribution of hy-
draulic fractures were determined by microseismic event. There-
after, the CO2 injection pressure difference was simulated using our
model and comparisons weremade between the simulation results
and the field data. The fitting curves of the injection test data
including the pressure difference (Dpw) and pressure difference
derivative (Dpw 0) for the proposed model are shown in Fig. 5. As
depicted in the figure, the simulation results of the proposedmodel
are in good agreement with the field data, substantiating the reli-
ability of our numerical model. The CO2 transport characteristics of
different scale media exist in the typical curves, which can be used
to estimate the composition, structure, and properties of shale
reservoirs and ultimately to evaluate the CO2 sequestration ca-
pacity on the basis of the injection performance.
3.2. Results of the HPDNN model

In this section, the performance of the proposed HPDNN model
was evaluated using stochastic CO2 transport and sequestration
cases to demonstrate the accuracy and robustness of the HPDNN
model for different applications. The results of the proposed model
are presented in detail from three aspects: prediction of injection
dynamics, inversion of formation parameters, and evaluation of CO2
sequestration capacity.
3.2.1. Prediction of CO2 injection performance
The prediction results of the proposed HPDNNmodel on the CO2

injection performance in depleted shale reservoirs based on data
obtained from 500 sets of random numerical simulation operations
are shown in Fig. 6. Fig. 6(a) and (b) constitute a comparison of
prediction and simulation results of the pressure difference deriv-
ative curves at t ¼ 105 h and t ¼ 102 h, respectively, where the
vertical axis is the Dpw obtained from the simulation and the hor-
izontal axis is the prediction result on the test set. The solid black
slanted line in the figure is y ¼ x; the closer the visible scatter point
is to the solid black line, the higher is the fitting accuracy of the
neural network. On this basis, the Pearson correlation coefficient
(r) and goodness-of-fit (R2) were used to further measure the
fitting accuracy of the two groups of scattering sets; the closer the



Fig. 6. Prediction performance of CO2 injection dynamic curves of the HPDNN model.
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two indicators were to 1, the higher the fitting accuracy of the
neural network. The r and R2 values of the deep learning model at
different time points were 0.992, 0.983, 0.985, and 0.969, respec-
tively, indicating that the fitting results of the CO2 pressure injec-
tion dynamics were very accurate. The average fitting accuracy of
the injection pressure predictions at all time points in the neural
network is shown in Fig. 6(c). It is worth noting that the values at
different times on the injection performance curves have signifi-
cant numerical differences. Therefore, in addition to the Pearson
correlation coefficient and goodness-of-fit, the relative error should
be used to measure the performance of the neural network in the
prediction of the CO2 injection curves. To be closer in value to the
above two indicators (convenient to display in one figure), one is
added to the relative error; therefore, the closer the measurement
result is to 1, the higher the prediction accuracy (the modified
relative error is used by default to show the accuracy; no special
statement will be made later). The average modified relative error
(ε) is

ε¼1þ 1
n

X���ypred � ytrue
���

ytrue
(38)

It can be concluded from the prediction results that the HPDNN
model has a high fitting accuracy at different times, indicating that
the dynamic change in the injection curves can be well predicted.
Furthermore, the single-parameter fitting accuracy of all input
parameters was also evaluated, with the results shown in Fig. 6(d)
where the black vertical bars represent ± 2 � SEM. Each main
parameter was selected in turn as the target factor. The selected
parameters were taken sequentially within a range of values of 100
equal points. In contrast, the remaining parameters that were not
selected were taken as the mean value, resulting in 100 sets of test
data for each parameter. It can be seen that the fitting results of the
deep learning model on a single factor are also very accurate,
indicating that our model can be used to analyze the influence of a
single parameter on the injection performance curve or to infer the
formation parameters and other tasks accurately.

The prediction results of the proposed model for the dynamic
injection performance during CO2 sequestration in depleted shale
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formations are shown in Fig. 7. There are four randomly selected
prediction curves of CO2 injection performance that contain sub-
plots with local enlargement. The blue scatter lines represent the
numerical simulation results and the red curves depict the pre-
diction results of the HPDNN model. It is evident that the HPDNN
model can accurately fit the injection dynamics of the numerical
simulation operation, revealing excellent prediction performance.
In addition, a comparison between the pressure fields obtained
from the numerical simulations and those predicted by the HPDNN
model for these two stochastic scenarios was performed. Three
pairs of reservoir property parametersdHelk, lmefk, and
K2feredwere considered, all of which have more significant effects
on the CO2 transport processes in shale than other influencing
factors. The value ranges of the parameters are H2½10�8; 10�5�,
lk2½10�6; 10�4�, lm2½10�3; 10�1�, and re2½1800;20000�, which
are the values of uniform division under logarithmic coordinates;
therefore, the horizontal and vertical coordinates of the pressure
field are also in the order of logarithmic coordinates. It should be
noted thatdexcept for the two parameters currently under obser-
vationdthe remaining parameters are taken as the logarithmic
mean. The second, third, and fourth rows in Fig. 7 show the nu-
merical simulation results, prediction results of the HPDNN model
and the relative error between them, respectively. The Dpw distri-
bution results at two time points for each pair of
parametersdt ¼ 100 h (first column) and t ¼ 4600 h (second col-
umn)dwere investigated separately. It can be seen that the pre-
diction results of the HPDNN model are consistent with the
calculation results of the numerical simulation; furthermore, the
relative error distribution diagram shows that the maximum rela-
tive error does not exceed 5% for any of the cases. In summary, our
deep HPDNN and training strategy can efficiently and accurately
predict and fit the computational results of actual numerical sim-
ulations, providing a powerful tool for two downstream tasks: (1)
automatic inversion of reservoir parameters and (2) accurate
assessment of CO2 storage capacity.
3.2.2. Parameter inversion
The process of reservoir parameter inversion for shale with a

multi-scale structure based on CO2 injection performance was



Fig. 7. The prediction accuracy results of the HPDNN model.

Y.-W. Wang, Z.-X. Dai, G.-S. Wang et al. Petroleum Science 21 (2024) 286e301
conducted as follows: (1) a set of reservoir parameters {4i} was
obtained based on geophysics, core analysis, and production
testing; (2) the injection performance curves under the obtained
parameters were calculated by numerical simulation and converted
into the injection pressure vector in time and space {pt}; and (3) the
deep learning network is trained according to the pressure vector
{pt} to invert the reservoir parameters that were close enough to
the actual parameters {4i}. In addition, the value ranges of all pa-
rameters are not entirely free, as they each occupy a specific
reasonable range. For example, the organic matter content is usu-
ally lower than 5% and the inter-porosity flow coefficient of porous
kerogen (lk) is generally lower than that of matrix (lm). The opti-
mization objective function is the difference between the predicted
value of the deep learning network and the result of the numerical
simulation based on the mean square error:

Loss¼1
n

X
t
ðpt � bptÞ2 þg,FðbpjlimsÞ (39)

where FðbpjlimsÞ is the limit function and lims represents the preset
range of parameter values, such that when the optimized variablebpt jumps out of the predetermined range, F will impose a penalty
on the objective function. To infer the input shale formation pa-
rameters, we used a trained neural network and froze its parame-
ters. A set of initial input parameters was randomly generated, then
the gradient descent method Adam was used to continuously
optimize the input parameters to obtain the minimized error loss.
To avoid multiple possible solutions and improve computational
efficiency, it was important to use the target parameter set plus a
larger interference to replace the completely random initial value.

Considering that the dynamic injection curves required in field
applications of CO2 storage in depleted shale reservoirs are usually
not smooth and may be disturbed by various factors such as mea-
surement and sampling errors, it is essential to examine the
robustness of the parameter inversion method for field data
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containing different levels of noise. The performance of the reser-
voir parameter inversion portion of the HPDNN model was tested
for the following three cases: (1) the original CO2 injection pressure
vector {pt} calculated by numerical simulation was taken as the
input data; (2) the injection pressure vector {pt} plus a vector of
uniformly distributed noise of ±10% was taken as the input data;
and (3) the injection pressure vector {pt} plus a vector of uniformly
distributed noise of ±20% was taken as the input data.

Using a randomly selected case in the test set as an example, the
parameter inversion results of the HPDNN model for the observed
data with different noise levels are shown in Fig. 8. The difference
between the calculated and actual values of the reservoir param-
eters without noise in the injection performance is shown in
Fig. 8(a). It can be seen that the deep learning algorithm has high
accuracy in the inversion of reservoir parameters for this case, with
an average relative error of 1.116 for all parameters. Random dis-
turbances of 10% and 20%were then added to the injection dynamic
data to generate datasets with different noise levels. On this basis,
the parameters of the shale reservoir were inverted based on the
dynamic injection curve with disturbance information; the statis-
tical results of 100 realizations are shown in Fig. 8(b) and (c). It can
be seen that the random interference of injected data affected the
accuracy of reservoir parameter inversion to a certain extent.
Specifically, the inversion accuracy of the algorithm for field data
withmore noise interference is lower. The average relative errors of
all parameters in the two cases were 1.157 and 1.197, respectively.
Moreover, it can be seen that the inversion difficulty of the factors
H, lm, and lk was slightly larger than other parameters. In addition,
future injection dynamics can be predicted based on the deduced
values of the formation parameters. Therefore, a circular validation
method can be used to demonstrate that the HPDNN can accurately
relate the reservoir parameters to the dynamic injection perfor-
mance. With the addition of different disturbances, the predicted
CO2 injection curves based on the inverted reservoir parameters are
shown in Fig. 8(d), (e), and (f). It can be seen that the injection



Fig. 8. Parameter inversion performance of the HPDNN model when noise exists (the sequence of factors is consistent with Fig. 6(d)).
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dynamic curves predicted by using the parameters obtained by
inversionwere not significantly different than the real data, further
confirming that the HPDNN model has strong robustness and an
extensive applicability range when dealing with field data
involving multiple noise sources.

The relative error results of the three cases based on 500 sets of
numerical simulation data are shown in Fig. 9(a), (b), and (c), where
each bar represents the average relative error of a parameter and
the black implementation at the top of the bar represents 2 � SEM.
When the result is closer to the innermost 1.0 dotted line, the
parameter inversion of the algorithm is more accurate. It can be
seen from the figure that the three dotted lines in the polar coor-
dinate system represent relative errors of 1.0, 1.1, and 1.2, respec-
tively. When there was no noise, results for the inversion of
formation parameters were the most accurate. As the noise grad-
ually increased, the average relative error and standard deviation of
the mean gradually increased. However, the overall increase in
relative error was slight, with the average relative error of all pa-
rameters at approximately 1.2deven under 20% noisedindicating
that themodel has a certain degree of robustness and can overcome
the multi-noise problem of the injection pressure data in practical
applications.
Fig. 9. The accuracy results of reservoir parame
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3.2.3. Evaluation of CO2 sequestration capacity
Another essential function of the proposed HPDNN model was

to determine the carbon sequestration potential of the target
depleted shale formation based on the predicted injection perfor-
mance. The CO2 storage potential can be evaluated based on CO2
injection rate and time obtained from the injection performance. To
successfully predict the CO2 sequestration capacity of the target
depleted shale formation, we applied the following settings for the
storage capacity prediction algorithm: given that the CO2 injection
pressure difference is usually significant, the minimum injection
time corresponding to the minimum pressure difference was fixed
at a constrained pressure that must be less than the fracture
pressure of the shale reservoir; moreover, there is an intersection
with the injection performance curve. Given that the range of in-
jection pressure is not fixed under different reservoir parameters,
regularized ~P replaced P, with the relationship between the two
represented as:

Pi ¼ Pimin þ ~P,
	
Pimax � Pimin



(40)

where Pi denotes the constrained injection pressure in case i; Pimin

and Pimax are the minimum and maximum values of Pi, respectively.
ters inversion based on the HPDNN model.



Fig. 10. Evaluation performance of CO2 storage capacity of the HPDNN model.
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The prediction results when ~P ¼ 0.5 and 0.7 are shown in
Fig. 10(a) and (b), respectively, using a total of 500 sets of simulated
data as the test set; the closer the scatter position is to the black
dashed line in the middle indicates the more accurate prediction of
the algorithm. As depicted in the figure, the deep learning algo-
rithm for predicting the CO2 storage capacity is more accurate in
both cases, with correlation coefficients r of 0.984 and 0.986 and R2

of 0.969 and 0.971, respectively. The regularized injection pressure
~P takes 1000 equal intervals in the range of [0,1]; therefore, for each
~P, the prediction accuracy can be measured using the test data. The
statistical results for the prediction accuracy of CO2 sequestration
under different reservoir parameters and injection pressures are
shown in Fig. 10(c). It can be seen that the three indicators are very
close to 1.0, indicating that the deep learning algorithm has high
accuracy in predicting levels of CO2 sequestration and maintains
excellent performance under different injection pressures.

To explore the applicability of the deep learning-based CO2
sequestration model for different scenarios, a sensitivity analysis of
the effects of the various basic parameters (including fk, fc, dc, dk, am,
ak, H, DE, lm, lk, Xf, Mk, h, S, CD, Cf, re) on the CO2 sequestration
capacity was conducted. The global importance of each factor in the
model can also be calculated using the deep learning algorithm
proposed in this study. The Sobol method was used to study the
sensitivity of each reservoir parameter to CO2 storage capacity us-
ing a trained neural network (Jia et al., 2022b). This can also be
understood in terms of the influence of the parameters on the
storage capacity: the greater the sensitivity, the more significant
the impact of parameter changes on the final storage capacity. The
global sensitivities of each parameter were calculated and
normalized for all sensitivity values and the sensitivity results are
shown in Fig. 10(d). It can be seen that with an increase in the
normalized injection pressure ~P, the influence of the permeability
K2f of the outer zone and the reservoir thickness h on the CO2
storage capacity gradually increased. K2f and h of the depleted shale
reservoir at ~P ¼ 1.0 had a greater impact on the CO2 storage ca-
pacity, because when a higher injection pressure was reached, the
pressure wave was transmitted to the outer area of the reservoir. It
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can be concluded that the reservoir thickness and permeability of
the outer zone throughout the well control area had a greater effect
on CO2 sequestration at higher constrained pressures. When ~P was
small, factors such as fk, lk, lm, and HD also had a greater impact on
CO2 sequestration levels. It can be concluded that the kerogen
content, inter-porosity flow coefficients of inorganic matrix and
kerogen, and effective diffusion coefficient had a more substantial
effect on CO2 storage capacity, indicating that these parameters
should be prioritized when selecting shale sites for CO2 storage.
Comparatively, the impacts of the kerogen adsorption performance,
clay content, slip flow coefficient, and other factors on the CO2
storage capacity can be deprioritized based on their small-range
variations. Furthermore, as the constrained pressure increased,
the CO2 storage capacity increased and the influence of various
parameters on the capacity underwent constant change.
4. Conclusions

As a promising carbon reduction technology, CO2 storage in
depleted shale reservoirs is critical to alleviating the effects of
greenhouse gases. In this study, a novel integrated model based on
numerical simulation (COMSOL) was developed to precisely char-
acterize the multiscale transport and sequestration processes. On
this basis, a novel deep learning framework (HPDNN) applicable to
practical prediction and decision makingdspecifically when
addressing a significant amount of the fundamental parameter-
sdwas developed for CO2 sequestration under complex scenarios.
The HPDNN model incorporates scientific theories such as PDEs,
engineering knowledge and expert experience, enabling deep
learning to be driven not only by data from numerical simulations,
but also by physical rules and engineering principles, thereby
improving the accuracy, generalizability, and robustness of the
model. By introducing the physical constraints, the proposedmodel
can perfectly replace traditional laborious and time-consuming
numerical simulations. Based on our verification and test results
of the HPDNN model, the following conclusions can be drawn.
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(1) A novel multiscale model of CO2 storage in depleted shale
formations, considering organic matter, porous kerogen,
inorganic matrix, natural/hydraulic fractures, and SRV re-
gion, was developed and validated for multiple storage forms
and transport mechanisms, including CO2 diffusion,
adsorption, dissolution, slip flow, and Darcy flow.

(2) Based on the proposed training strategy of integrating
physical information, engineering theory, and observed data
from numerical simulations, the HPDNN model efficiently
and accurately fitted and predicted the injection perfor-
mance and effectively discriminated the different transport
processes of CO2 in multi-scale systems of shale reservoirs.

(3) Drawing on the practice of history matching in traditional
oilfield development and the fine-tuning technology of the
neural network, the function of automatic reservoir param-
eter inversion in the HPDNN model was developed.
Compared to the traditional parameter inversion method,
this framework ensures higher accuracy, strong robustness,
and an extensive applicability range when dealing with field
data involving multiple noise sources.

(4) The HPDNN model also accurately determined the CO2
storage capacity and performed a complex sensitivity anal-
ysis of the target depleted shale reservoir based on the
physical characteristics obtained for the reservoir and engi-
neering parameters applied, upon which field engineers is
able to better control the CO2 injection and choose a more
suitable geo-structure for CO2 storage engineering.

(5) This research is envisioned to bridge the basic system of
knowledge on multi-scale transport processes and provide
an indispensable basis for proceeding with the study of CO2
geological sequestration in shale reservoirs. It is worth
mentioning that multiphase fluid transport and CO2-water-
shale interaction are ignored in this study. Therefore, the
proposed model will not be applicable when the mecha-
nisms of multiphase fluid migration and water-rock reaction
are dominant during the CO2 storage in water-bearing shale
gas reservoirs. Despite the limitations, the proposed model
can still capture the main transport and storage mechanisms
during CO2 injection into depleted shale reservoirs. More
importantly, compared with traditional methods, the pro-
posed HPDNN can more intelligently predict injection per-
formance, precisely perform reservoir parameter inversion,
and reasonably evaluate CO2 storage capacity under different
conditions, thereby assisting engineers in formulating CO2

sequestration plans in depleted shale formations more
quickly and accurately.
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