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ABSTRACT

Pore pressure is essential data in drilling design, and its accurate prediction is necessary to ensure
drilling safety and improve drilling efficiency. Traditional methods for predicting pore pressure are
limited when forming particular structures and lithology. In this paper, a machine learning algorithm and
effective stress theorem are used to establish the transformation model between rock physical param-
eters and pore pressure. This study collects data from three wells. Well 1 had 881 data sets for model
training, and Wells 2 and 3 had 538 and 464 data sets for model testing. In this paper, support vector
machine (SVM), random forest (RF), extreme gradient boosting (XGB), and multilayer perceptron (MLP)
are selected as the machine learning algorithms for pore pressure modeling. In addition, this paper uses
the grey wolf optimization (GWO) algorithm, particle swarm optimization (PSO) algorithm, sparrow
search algorithm (SSA), and bat algorithm (BA) to establish a hybrid machine learning optimization al-
gorithm, and proposes an improved grey wolf optimization (IGWO) algorithm. The IGWO-MLP model
obtained the minimum root mean square error (RMSE) by using the 5-fold cross-validation method for
the training data. For the pore pressure data in Well 2 and Well 3, the coefficients of determination (R?) of
SVM, RF, XGB, and MLP are 0.9930 and 0.9446, 0.9943 and 0.9472, 0.9945 and 0.9488, 0.9949 and 0.9574.
MLP achieves optimal performance on both training and test data, and the MLP model shows a high
degree of generalization. It indicates that the IGWO-MLP is an excellent predictor of pore pressure and
can be used to predict pore pressure.
© 2023 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This
is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/
4.0/).

1. Introduction

accuracy for pore pressure (Hottman and Johnson, 1965). Many
scholars have established a nonlinear relationship model between

Pore pressure, also known as formation pore pressure, is the
force on the pore fluid in a formation (Azadpour et al., 2015). Pre-
dicting pore pressure is critical in oil and gas development (Jorden
and Shirley, 1966). Accurate pore pressure prediction results can
help avoid the problems associated with drilling operations, reduce
the cost of drilling operations, and improve the safety and efficiency
of oil and gas development (Li et al., 2022). Traditional methods for
calculating pore pressure can be divided into pre-drilling predic-
tion, monitoring during drilling, and post-drilling evaluation. The
post-drilling evaluation model usually has the highest compliance

* Corresponding author.
E-mail address: s21040820033@smail.cczu.edu.cn (S.-K. Xu).

https://doi.org/10.1016/j.petsci.2023.09.001

rock physical parameters and effective stress and obtained pore
pressure by effective stress theorem. Eaton (1972) developed a
mathematical model for predicting pore pressure using mudstone
properties obtained from logging data by the fitting method. This
method is the most widely used method to calculate pore pressure.
This is a suitable method for the calculation of pore pressure caused
by under-compaction (Bektas et al., 2015). Bowers (1995) proposed
the relationship between velocity and effective stress based on
stress experiments, which can be divided into loading and
unloading curves. This method is not only suitable for under-
compaction, but also for abnormal pore pressure caused by fluid
expansion. Therefore, this model has been applied in many types of
research and has obtained a high accuracy in the calculation of pore
pressure (Czerniak et al., 2017). Atashbari et al. (2012) derived the
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formula of pore pressure relying on compression coefficient and
porosity under the condition of compaction. However, this model
only considers the under-compaction case and does not solve other
calculation methods for the cause of abnormal pore pressure. These
models have many empirical parameters, limited ability to gener-
alize, and a time-consuming correction process (Kuang et al., 2021).
Moreover, the univariate calculation model of pore pressure does
not take into account the physical properties of different rocks, and
there are many restrictive conditions in use.

The traditional pore pressure prediction model generally only
uses acoustic velocity as its characteristic, and does not take into
account that acoustic velocity will be affected to some extent when
encountering specific structures and lithology, so there are some
limitations. A multivariable model is considered to be able to better
reflect the variation of effective stress under sand mudstone for-
mation, thus obtaining higher accuracy of pore pressure calcula-
tion. Eberhart-phillips et al. (1989) and Sayers et al. (2003)
suggested acoustic velocity models based on previous studies and
established the relationship between acoustic velocity and shale
content, porosity, and effective stress. Because the multivariable
model considers the influence of various rock properties, it is more
suitable for predicting pore pressure. However, the establishment
of a traditional multivariate nonlinear model is complicated, and it
is difficult to obtain the best empirical relationship model. The
machine learning algorithm is excellent in nonlinear fitting prob-
lems, so it is suitable to build pore pressure prediction models.
However, there are few studies on predicting pore pressure with
machine learning techniques (Xu et al., 2010). Since the machine
learning algorithm has a powerful nonlinear fitting ability, this
paper establishes a nonlinear relationship model between these
characteristic parameters and effective stress through the machine
learning algorithm. Finally, the effective stress theorem Terzaghi
et al. (1996) proposed is employed to calculate the pore pressure.

With the development of artificial intelligence technology and
the increase in the processing power of computers, machine
learning technology has advanced with the times. It has significant
advantages for solving complex nonlinear problems and is widely
employed in oil (Moazzeni et al.,, 2015). Machine learning algo-
rithms have been widely used in petroleum engineering. In petro-
physical and geomechanical, machine learning can make
predictions based on learning from already explored and developed
reservoirs, their rock properties, and cross-water fluid flow
behavior in different situations (Syed et al., 20223, b). In artificial lift
optimization systems, machine learning has been used in artificial
lift selection, their predictive maintenance, and equipment mal-
functioning detection (Syed et al., 20223, b). In addition, petroleum
engineering is a comprehensive discipline that relies on a variety of
physical laws, and integrating physical laws into machine learning
can effectively solve the shortcomings of insufficient interpret-
ability of data-driven models. As a machine learning approach that
combines physical laws, physics-informed machine learning allows
the integration of physical laws in the form of partial differential
equations into loss functions of machine learning, thus limiting the
training of complex problems based on physical, experimental, and
mathematical boundaries (Muther et al., 2022). This approach en-
sures that the model developed conforms to physics and may be
widely used in petroleum engineering in the future.

Some scholars have established direct or indirect models of pore
pressure by using machine learning algorithms based on features
that can represent the pore pressure state. Hu et al. (2013) con-
structed a new neural network framework to use this feedforward
backpropagation artificial neural network to predict pore pressure.
The characteristic of this structure is that the hidden layer has two
layers. The inputs to the first layer of their model are gamma rays
and formation density, and the inputs to the second layer are
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output and acoustic time difference, formation density, and depth.
In their study, this new network structure predicted pore pressure
with more than twice the accuracy of conventional neural net-
works. Rashidi and Asadi (2018) selected mechanical-specific en-
ergy and drilling efficiency that were highly correlated with
pressure difference through theoretical discussion. In this study,
the artificial neural network model was used to establish the model
of these two parameters and pore pressure, which obtained a good
performance in the Iranian sandstone formation. However, this
model does not take into account the wear and hydraulic param-
eters of the bit, which may lead to large errors in soft or hard for-
mations and can be further improved. Yu et al. (2020) used acoustic
velocity, shale content, and porosity as inputs to offshore explora-
tion well data to predict effective stress. This study compared four
models of RF, gradient boosting decision tree, SVM, and MLP, and
found that the RF model has the highest prediction accuracy for
effective stress. Their study used pore pressure data from the
normal compaction interval. The trained model can be applied to
high-pressure formations caused by under-compaction, but those
caused by fluid expansion need to be modified by the unloading
index. Huang et al. (2022) compared MLP, radial basis function
neural networks, SVM, RF, and gradient boosting decision tree, and
found that MLP with acoustic velocity, shale content, porosity, and
density as input perform best in pore pressure prediction. Zhang
et al. (2022) used the feature analysis method to select 9 features
among 12 characteristic parameters to characterize pore pressure.
Their study compared artificial neural networks, decision trees, RF,
and SVM algorithms and found that the decision tree algorithm had
the best performance in predicting pore pressure in three wells in
the Middle East Oilfield. According to the authors, this is the first
time anyone has applied the decision tree algorithm to the pre-
diction of pore pressure. However, in the study of the machine
learning model, they did not try to use an intelligent optimization
algorithm to improve the performance of the model.

Hyperparameters are the critical parameters of the machine
learning model. Grid search is a traditional approach for identifying
the optimal hyperparameters of machine learning models (Fayed
and Atiya, 2019). This method combines all the hyperparameters
through exhaustive attempts and compares the prediction accuracy
in the machine learning model. This method is extremely time-
consuming. The intelligent optimization algorithm is a guided
random search method, which can obtain an approximate optimal
solution in a larger search space in less time (Guria et al., 2014).
Therefore, an intelligent optimization algorithm improves the
machine learning model (Fu and Wen, 2018). Grey wolf optimizer is
an algorithm inspired by the hunting behavior of grey wolves
(Mirjalili et al., 2014). The optimal hyperparameters of the model
are determined quickly and efficiently, making it suitable for opti-
mizing the machine learning model. This paper presents an IGWO
algorithm and tests it with GWO, PSO, SSA, and BA on eight
benchmark functions. The results show that the IGWO algorithm
has the best performance on the seven test functions. In addition,
the IGWO algorithm is improved compared with the GWO algo-
rithm in all test functions.

This paper combines these intelligent optimization algorithms
with machine learning algorithms to form multiple hybrid machine
learning optimization algorithms. The performance of these models
was trained and tested by collecting data from three wells. The
results show that the IGWO algorithm has the best optimization
performance among all intelligent optimization algorithms. The
MLP model performed better than the SVM, RF, and XGB models in
Well 2 and Well 3 for testing. The results show that the IGWO-MLP
algorithm not only has higher training accuracy in pore pressure
prediction but also has better generalization ability.
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2. Grey wolf optimization and improvement algorithm
2.1. Grey wolf optimization

The grey wolf optimization algorithm is a global random search
algorithm developed by simulating grey wolves' hunting and
searching behavior during hunting (Emary et al., 2016). There are
four levels of grey wolf population from high to low: « wolf, § wolf,
¢ wolf, and w wolf. Target hunting is conducted strictly according to
the wolf pack's hierarchy. The group hierarchy of grey wolves is
shown in Fig. 1 and the search process of the algorithm for the
optimal solution is shown in Fig. 2.

The hunting process of the grey wolf can be divided into three
parts: encircled prey, hunting, and searching and attacking prey.

2.1.1. Surround the prey

Grey wolves will gradually approach and surround prey when
searching for prey, and the behavior can be expressed in Egs. (1)
and (2) as follows:

D = |M-X,(t) — X(t)| (M

X(t+1)=Xp(t)—A-D (2)
where t is the number of current iterations, X,(t) and X(t) are the
position vectors of prey and grey wolf, X(t+1) is the new location of
the grey wolf, and D is the distance between the grey wolf and prey.
M and A are coordination coefficient vectors that can be defined by
Egs. (3) and (4):
A=2a-r—a

(3)

M = 2'1‘2 (4)
where a is the convergence factor that linearly decreases from 2 to
0 during the iteration process, and r; and r, are random numbers
between 0 and 1.

2.1.2. Hunting the prey
Under the guidance of good wolves, wolves can identify the

Fig. 1. Group hierarchy of grey wolves.
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location of potential prey and keep approaching it. This behavior is
determined by Eqgs. (5)—(8):

Dy = [M1-Xo — X(8)],X1 = Xo — A1 +Dq (5)
Dy = [My-X5 — X(t)], X5 = X5 — Ay -Dg (6)
D; = |[M5-X; — X(t)[,X5 = X; — A3-D; (7)
o) KX ®

where « is the closest wolf to the prey, g is the second closest wolf
to the prey, and ¢ is the third closest wolf to the prey. The updated
average of «, (8, and 0 wolves gives the new grey wolf location.

2.1.3. Search for and attack prey

Grey wolf groups mainly hunt according to the information of «
wolf, ¢ wolf, and ¢ wolf. In the mathematical description, the value
of coordination coefficient vector A is employed to control whether
the grey wolf is searching for prey or attacking prey. When |A | > 1,
the grey wolf from the prey expands its search scope to locate prey
more effectively. When the | A | < 1, the grey wolf narrows the
search area to attack prey.

2.2. Improve methods and validation

The grey wolf optimization algorithm is a metaheuristic swarm
intelligence algorithm based on the grey wolf hierarchy. Although it
is faster than the traditional algorithm, it still has the problem that
it is easy to fall into local optimal solutions to complex problems
(Dhargupta et al., 2020). Hence, this paper improves the grey wolf
optimization algorithm by three methods and verifies the superi-
ority of the improved algorithm by eight typical benchmark
functions.

2.2.1. Method of decreasing cosine law of convergence factor

One way to enhance the performance of the meta-heuristic al-
gorithm is to balance the global search ability and local develop-
ment ability effectively to improve the algorithm's optimization
ability. The cooperation coefficient vector A value of the grey wolf
optimization algorithm affects the behavior of the grey wolf and
determines whether the algorithm is in the global search or local
development process. In the GWO algorithm, the value of A de-
creases linearly from 2 to 0 by the convergence factor a. However,
this linear decreasing method cannot meet the balance of the global
search and local search ability of the algorithm. Because this
method leads to the reduction of the search space equilibrium in
the whole iterative process, it cannot reflect the emphasis on the
optimization process of nonlinear problems in different iterative
processes. Therefore, this paper proposes a nonlinear convergence
factor based on cosine law. The method can be described in Eq. (9):

a=cos|{— | +1
n

where n is the total number of iterations, as shown in Fig. 3. The
convergence factor under the cosine law decreases nonlinearly. The
improved algorithm has a larger convergence factor value in the
early stages of iteration, which means that the search range is
expanded early. It improves the global search ability of the algo-
rithm and reduces the possibility of the algorithm falling into the
local optimum. At the same time, the enhanced convergence factor
decreases faster in the later stages of the algorithm, which

9)
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Fig. 2. Search process of the algorithm for the optimal solution.
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Fig. 3. Comparison of decreasing law of convergence factor.

accelerates the convergence speed of the algorithm. This can make
the algorithm pay more attention to the local development in the
final stage and improve the algorithm's accuracy.

2.2.2. Dynamic weight update

In the GWO algorithm, « wolf, 8 wolf, and ¢ wolf give the same
guiding weight to w wolf, which does not conform to the class
concept of wolves and cannot reflect the leadership role of excel-
lent wolves. At the same time, equal weight will slow the conver-
gence speed of the algorithm, making it easy to fall into local

538

optimization. Hence, this paper proposes an improved dynamic
weight position update method. The method can be expressed as
Eq. (10) through (13):

1X1]
wy=— 1 10
i AR A (10)
1X>|
wy=— < 11
2= K0+ Kol 15| ()
‘X3| (12)

wy=— =
> Xa ]+ X + X

t
X(t+1) = (wy-X; +wpXp +W33°X3)(1 _T) +[(1-n

—D-X1 +n-Xy +1-X3]

i~

(13)

where wy, wy, and ws are the new positions after the updated
positions of a wolf, § wolf, and § wolf, w11, wpy and wss are the new
values of wy, wy, and ws in descending order, n and I are random
values between 0 and 0.3. The improved dynamic weight updating
method can better balance the learning and searching ability of the
algorithm. At an early stage of iteration, the enhanced method can
highlight the leadership ability of « wolf more effectively. In the
final iteration, the leadership of « wolf is guaranteed, and the
randomness of the leadership of 8 wolf and ¢ wolf is added to
prevent local optimum from forming.
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2.2.3. Local random walk method

The dynamic weight updating method can ensure the guidance
of superior wolves and accelerate the convergence speed of the
algorithm. However, the problem of insufficient search interval can
occur in the early stage of iteration. Therefore, to improve the al-
gorithm's ability to avoid the local optimum, a mutation operation
similar to the GA algorithm is introduced to make the grey wolf
perform a random walk near the current position. This method can
be represented by Eq. (14):
X(t+1)=X(t)+7r-(Xa—Xp) (14)
where r is a random value between 0 and 1, X, is a random indi-
vidual wolf in the wolf pack between the current wolf and the
position after the dynamic weight update, and X}, is a random in-
dividual wolf in the wolf pack. The purpose of local search is to add
a random disturbance near each wolf in the wolf pack to obtain a
new solution near these potential optimal solutions and avoid local
optimization.

2.3. Algorithm performance test

To verify the performance of the improved algorithm, five
unimodal test functions, F1 to F5, and three multimodal test func-
tions, F6 to F8, are selected to test the algorithm's performance. The
unimodal test function can effectively reflect the accuracy and
convergence speed of the algorithm, while the multimodal test
function can represent the global search ability and the capability
to avoid the local optimum of the algorithm. Table 1 contains the
mathematical expression of the benchmark function, and Fig. 4
depicts the two-dimensional search space of the test function.

In addition to IGWO and GWO algorithms, this paper selected
PSO of the simulated bird population, SSA of the simulated sparrow
population, and BA of the simulated bat population for comparison.
The test parameters selected by the five algorithms are as follows:
the initial population number is 30, the maximum number of it-
erations is 500, and each function is solved 30 times. The accuracy
and stability of the algorithm are evaluated comprehensively by
worst values, best values, means, and standard deviations. Table 2
includes the test results.

Table 2 indicates that IGWO achieves better performance in each
test function compared with the GWO algorithm. The convergence
ability and global optimization ability of the IGWO algorithm are
improved. Except for the F4 test function, SSA performs better than
the other four algorithms. IGWO and GWO algorithms have better
performance in seven test functions than the other three algo-
rithms. In the F1, F2, and F7 test functions, the performance of
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IGWO and GWO algorithms is much better than the other three
algorithms. On the F6 and F8 test functions, both the IGWO algo-
rithm and GWO algorithm find the real optimal solution 0. In
conclusion, compared with other intelligent optimization algo-
rithms, the population guided by the grey wolf is better than the
other three animal populations in the ability to find the optimal
solution.

3. Methodology
3.1. Data collection

Well 1 and Well 2 selected in this study are located in the
southern margin of Junggar Basin. Well 3 is located in the Dongping
area of the Qaidam Basin. The southern margin is one of the most
abundant oil and gas resources in the Junggar Basin. The strati-
graphic lithology distribution in this area is relatively regular.
Fourth, Tertiary strata from top to bottom to sand conglomerate,
sand mudstone. The Paleogene is dominated by mudstone. The
Cretaceous strata are mainly composed of sandy mudstone and
argillaceous siltstone. Jurassic strata are mainly siltstone and
argillaceous siltstone. The bedrock in the Dongping area is rich in
natural gas resources and is an important area for future explora-
tion in Qaidam Basin. The bedrock reservoirs in this area are lith-
ologically complex, with both magmatic rocks and metamorphic
rocks. The pore structure is diverse and has the characteristics of a
double pore structure of fracture dissolution pore.

Data preprocessing removes invalid and vacant values and noise
points in logging data. The acoustic velocity is calculated by taking
the reciprocal of the acoustic time difference, the shale content is
calculated by natural gamma rays, and the porosity is calculated by
density logging data. Eq. (15) describes the calculation method of
shale content. Eq. (16) describes the calculation method of porosity.

GR—GR
2 (GRmax ’a\z‘;in)
Vg, —0.33 (2 -1

(15)

Pm — P
16
¢ Pm — Pf ( )

where Vy;, is shale content; ¢ is porosity; GR is natural gamma value,
API; GRpjy, is natural gamma value corresponding to pure mudstone
formation, API; GRpax is natural gamma value corresponding to
pure sandstone formation, API; p is rock density, g/cm’; p is rock
skeleton density, g/cm?; pr is rock fluid density, g/cm>.

In this paper, the Bowers method is used to obtain the actual

Table 1
The parameters of the benchmark function test.
Name Function Range Dimension
F1 fix) = 253:1",-2 [-100,100] 30
R 5 D [-10,10] 30
L) = X2 x|+ [l
o1
. 2 _
B 0 = X223 100060 —x)° + (5 — 1)) [=30.30] 30
F4 fal0) = X2 (% +05))° (~100,100] 30
F5 fs(x) = X1 ix} + random(0, 1] [-128,128] 30
F6 fox) = X2 [x2 — 10 cos(2mx;) + 10] [-5.12,5.12] 30
F7 — 1 <o [-3232] 30
fr(x) = — 20 exp(— 0.2 /5 Zi:1x,-2> — exp {5 Zi:]cos(Zﬂ:xi) +20+e
F8 [-600,600] 30

D .
fa(x) = ﬁ Zi]x? - Hcos(%) +1




S. Deng, H.-Y. Pan, H.-G. Wang et al.

(a)

Fig. 4. 2D search space visualization of benchmark functions:

Table 2
Test results of five algorithms in F1 to F8.

Name Algorithm Worst value Best value Mean Standard deviation
F1 IGWO 8.12E-34 2.94E-37 1.45E-34 2.46E-34
GWO 4.52E-27 5.14E-29  8.61E-28 1.13E-27
SSA 1.85E-07 3.00E-08  7.78E-08 4.33E-08
PSO 1.18E+04 1.34E+03 4.34E+03 3.69E+03
BA 1.07E+04 426E-02  2.99E+03 3.89E+03
P2 IGWO 7.03E-22 3.93E-23  299E-22 2.37E-22
GWO 3.48E-16 3.20E-17 1.11E-16  7.52E-17
SSA 4.08E+00 8.60E-01  2.12E+00 8.97E-01
PSO 4.83E+02 2.01E+01 8.62E+01 1.41E+02
BA 5.09E-+04 5.84E-01 5.11E+03 1.61E+04
F3 IGWO 2.51E+01 242E+01 246E+01 2.88E-01
GWO 2.85E+01 2.57E+01 2.78E+01 6.08E-01
SSA 8.54E-+02 2.77E+01 2.24E+02 2.60E+02
PSO 6.49E+05 5.18E+03 3.01E+05 2.01E+05
BA 2.57E+02 245E+01 1.11E4+02 9.83E+01
F4 IGWO 2.53E-01. 1.19E-06  5.05E-02  1.06E-01
GWO 1.49E+00 8.21E-05  7.52E-01 3.56E-01
SSA 1.99E-07 4.29E-08  8.48E-08 5.31E-08
PSO 2.43E+04 8.64E+02 7.84E+03 8.65E+03
BA 1.12E+04 2.69E-02 2.99E+03 4.13E+03
F5 IGWO 4.62E-03 8.72E-04  2.20E-03  1.20E-03
GWO 5.11E-03 7.83E-04  2.46E-03 1.26E-03
SSA 6.45E-01 2.33E-01 4.42E-01 1.03E-01
PSO 8.03E+08 5.32E+05 1.11E+08 2.46E+08
BA 1.65E+09 3.21E-01 3.66E+08 6.52E+08
F6 IGWO 2.01E4+00 0 2.01E-01 6.35E-01
GWO 1.91E+01 0 4.26E+00 4.97E+00
SSA 8.01E+01 2.78E+01 4.86E+01 1.75E+01
PSO 2.88E+02 1.63E+02 2.37E+02 3.47E+01
BA 3.61E+02 291E+02 3.31E+02 2.37E+01
F7 IGWO 1.42E-14 1.06E-14 1.35E-14  1.50E-15
GWO 1.46E-13 7A46E-14  1.06E-13 2.08E-14
SSA 3.88E+00 9.31E-01  2.63E4+00 9.13E-01
PSO 1.99E+01 6.69E+00 1.69E+01 5.38E-+00
BA 1.99E+01 1.99E+01 1.99E+01 9.72E-04
F8 IGWO 1.48E-02 0 2.23E-03  5.01E-03
GWO 2.60E-02 0 6.21E-03  8.69E-03
SSA 2.79E-02 1.16E-04  9.89E-03  8.38E-03
PSO 9.99E+01 1.01E+01 3.75E+01 3.30E+01
BA 3.61E+02 1.16E+02 2.19E+02 7.96E+01

value of pore pressure, and the actual value of effective stress is
obtained by subtracting the pore pressure from the overburden
pressure. Moreover, observing the relationship between acoustic
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(a) F1; (b) F2; (c) F3; (d) F4; (e) F5; (f) F6; (g) F7; (h) F8.

velocity and effective stress removes the noise points that deviate
from the overall trend. Besides, deleting noise points can ensure the
training data's rationality and the trained model's reliability. After
data processing, Well 1 has 881 data sets for model training. Well 2
and Well 3 have 538 and 464 data sets for model testing. The data
for Well 1, Well 2, and Well 3 are shown in Fig. 5, Fig. 6, and Fig. 7
respectively.

3.2. Machine learning algorithm

3.2.1. Support vector machine

The support vector machine is a machine learning method
developed from statistical learning theory. It was initially proposed
to study linear separability problems. In the process of inversion
using SVM, the selection of kernel function is crucial. The applica-
tion of the kernel function can transform it from low-dimensional
to high-dimensional space without changing the original data,
allowing the high-dimensional dot product to be calculated in low-
dimensional space (Wang et al., 2008).

The commonly used kernel functions are linear kernel function,
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Fig. 5. Well 1 data used to train the model.
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Fig. 7. Well 3 data used to test the model.

polynomial kernel function, Sigmoid kernel function, and Gaussian
radial basis kernel function. Because the Gaussian radial basis
kernel function can realize nonlinear mapping and has fewer pa-
rameters, which reduces the model's complexity and the calcula-
tion difficulty, this paper adopts the Gaussian radial basis kernel
function as the kernel function used in the algorithm. The hyper-
parameters in SVM are the penalty factor C and the Gaussian kernel
parameter gamma. C is the tolerance of the model for error, and
gamma reflects the distribution of the data after mapping to the
high-dimensional feature space (Rebentrost et al, 2014). The
combination results of C and gamma affect the SVM fitting accu-
racy. To avoid overfitting or underfitting, it is necessary to optimize
the selection of these two kinds of parameters.

3.2.2. Random forest

RF algorithm is a machine learning algorithm that combines the
Bagging ensemble learning theory with the random subspace
method. Its prediction principle is to combine multiple decision
tree algorithms into a forest and rely on the voting results of each
tree to determine the final predicted value. The structure of this
voting system allows each decision tree to grow naturally and be
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independent of each other. Therefore, compared with a single de-
cision tree algorithm, it can effectively improve the prediction ac-
curacy of the model. At the same time, because of the random
growth of each decision tree, the overfitting phenomenon of the
model can be reduced (Fawagreh et al., 2014).

The hyperparameters of the random forest are the number of
decision trees and the maximum depth of the decision tree. Nor-
mally, the number of base models for RF algorithms is directly
proportional to the prediction accuracy. However, too many deci-
sion trees and too much depth will lead to reduced generalization
ability of the model and overfitting phenomenon. Therefore, it is
necessary to optimize the selection of these two parameters.

3.2.3. Extreme gradient boosting

XGB algorithm is an improved machine learning algorithm
based on a gradient-boosting decision tree algorithm. Unlike the
gradient boosting decision tree algorithm, which only uses the first
derivative when optimizing the loss function, XGB performs the
second-order Taylor expansion of the loss function. The algorithm
adds regular terms to the objective function, so it can control the
complexity of the model and reduce the variance of the model.
After each iteration, the learning rate is assigned to leaf nodes, and
the weight of each tree is reduced to provide a better learning space
for the following (Torlay et al., 2017). In addition, XGB considers
multithreading to improve the efficiency of the algorithm when the
amount of data is large and memory is insufficient.

Similar to the RF algorithm, the number of decision trees and the
maximum tree depth of decision trees are also two parameters that
affect the fitting accuracy of the XGB algorithm. In addition, the
XGB algorithm adds a learning rate parameter, which is used to
control the degree of learning results of each decision tree in the
training process.

3.2.4. Multilayer perceptron neural network

MLP is a feedforward artificial neural network. Feedforward
neural network is an efficient nonlinear function fitting method
that uses a gradient descent algorithm to minimize the loss func-
tion. MLP neurons have a hierarchical structure, generally consist-
ing of an input layer, one or more hidden layers, and an output
layer. The neurons in each layer are connected by weights, and the
neurons in the output layer and the hidden layer also have
thresholds to regulate the output (Panchal et al., 2011). The MLP
adjusts the connection weights and related thresholds between
neurons according to the training data during the learning process.

To make the MLP model better learn the nonlinear relationship
between data, this paper sets three hidden layers for the MLP
model. For the loss function optimization algorithm and activation
function of the MLP model, this paper selects the stochastic
gradient descent method and tanh function which converge faster.
The optimizer's batch size is set to 200 to maximize the use of in-
formation from the training data set while maintaining reasonable
computational efficiency. Using smaller batches speeds up training
and reduces memory requirements, For the MLP model, the num-
ber of hidden layers and the number of neurons in each hidden
layer are the main parameters that affect the performance of the
algorithm. In addition, regularization parameters and learning rate
are also important parameters that affect the prediction accuracy
and training efficiency of the MLP model. Therefore, the number of
neurons in the hidden layer, regularization parameters, and
learning rate are taken as the parameters to be optimized for the
MLP model in this paper.

3.2.5. Comparison of models
To reflect the differences among different models, this paper
summarized the advantages and disadvantages of SVM, RF, XGB,
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Table 3
Advantages and disadvantages of four machine learning models.
Model Advantages Disadvantages
SVM  Good generalization performance is also applicable to high-dimensional problems. Sensitive to missing data, not suitable for large sample sets.
RF Using random sampling, the trained model has a small variance and strong generalization ability. In the noisy sample set, the model is easy to fall into
overfitting.
XGB The second order Taylor expansion and regularization terms are introduced to improve the accuracy The process of pre-sorting is time-consuming.
and flexibility.
MLP Excellent self - adaptation, and self-learning function. The training time is long and the optimization process is
complicated.
Logging data
\ 4 A\ 4 \ 4
Porosity Shale content Acoustic velocity

\ 4

Pore pressure

Fig. 8. Pore pressure prediction flow.
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Fig. 9. The workflow of 5-fold cross-validation.
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Fig. 10. RMSE decline curves for different hybrid machine learning optimization models: (a) SVM; (b) RF; (c) XGB; (d) MLP.

Table 4
Comparison of optimization results of the four methods.
Model Hyperparameter Search space Result of optimization Best RMSE
SVM C [0,1000] 53 0.4262
gamma [0,1000] 0.1887
RF n_estimators [1,100] 30 0.5094
max_depth [1,100] 19
XGB n_estimators [1,100] 98 0.5104
max_depth [1,100] 40
learning_rate [0,1] 0.0769
MLP hidden_layer_sizes ([1,100], [1,100], [1,100]) (18, 59, 44) 0.4246
alpha [0,1] 0
learning_rate_init [0,1] 0.0024

and MLP models. Table 3 lists the advantages and disadvantages of
each of the four models in use.

3.3. Forecasting process

The effective stress theorem and acoustic velocity model are the
basis of pore pressure prediction. Eq. (17) describes the effective
stress theorem. Eq. (18) describes the acoustic velocity model. The
acoustic velocity model shows that the velocity decreases with the
increase in porosity and shale content and increases with the in-
crease in effective stress. It can be seen that one way to predict
effective stress is to use acoustic velocity, shale content, and
porosity as input characteristics to build a nonlinear model be-
tween effective stress and them. Therefore, using the fitting ability
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of the machine learning model, the nonlinear model of acoustic
velocity, shale content, porosity, and effective stress can be estab-
lished. Then the pore pressure is obtained according to the effective
stress theorem.

Pe=Po—Pp (17)

Vp=5.77 - 6.94¢ — 1.73\/Vq, + 0.446 (P —e7187%) - (18)
where Pg is effective stress, MPa; Pg is overburden pressure, MPa; Pp
is pore pressure, MPa; Vp is acoustic velocities, km/s. The overall
flow of the machine learning model optimized based on the
intelligent optimization algorithm to predict the pore pressure is
shown in Fig. 8.
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Fig. 11. The linear fitting results of the four machine learning models for the predicted and actual effective stress values of Well 1: (a) SVM; (b) RF; (c) XGB; (d) MLP.

3.4. Model evaluation index

The root means the square error is used to measure the devia-
tion between the observed value and the predicted value. It is a
statistical index often used to measure the prediction accuracy of
machine learning models. The smaller the value of RMSE, the
higher the prediction accuracy of the model. The coefficient of
determination is commonly used to evaluate the degree of agree-
ment between the predicted and actual values of regression
models, where the larger the R? the better the fitting effect.
Therefore, RMSE and R? were selected in this paper as the evalua-
tion index. These metrics can be expressed mathematically as
shown in Eqgs. (19) and (20):

RMSE — %En: (vi-vs)” (19)
i=1
Zn: (J/i —Yip>2
RP=1-E1- ° (20)
3 Wi — Ym)?

Il
—_

where y; is the true value, y,, is the average value of the true value,
and yjp is the predicted value.
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3.5. Model validation method

The traditional method of data set partitioning is to divide the
data set into a training set and a test set. Most of the data is used as
the training set, and a few data is used as the test set. The perfor-
mance of the model on the test set is improved by adjusting the
hyperparameters. This approach identifies the models that perform
best on the test set. But its performance on the new data is still
unknown. Unlike traditional data set partitioning approaches, K-
fold cross-validation is a model evaluation method that avoids the
limitations and particularity of fixed data sets. In this method, the
training set data is equally divided into k groups, and each subset
data is verified once, and the rest k-1 subset data is used as the
training set. It is important to note that these data were randomly
assigned to ensure that the model fully learned the changes
throughout the well. Then we have k models. The average value of
the evaluation results of the validation sets of the k models was
taken as the final performance index of the model. The hyper-
parameter combination with the best performance under K-fold
cross-validation will be used as the best combination of the new
model, and the model will be retrained with the training set data.
At this time, the test set data can be used as the new sample data
that has not been learned to test the generalization ability of the
model. The common choices for k values are usually 3, 5 or 10. To
avoid too long a training time for the model, this paper chooses the
method of 5-fold cross-validation. The workflow of 5-fold cross-
validation is shown in Fig. 9.
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Fig. 12. The linear fitting results of the four machine learning models for the predicted and actual effective stress values of Well 2: (a) SVM; (b) RF; (c) XGB; (d) MLP.

4. Results and discussion
4.1. Data preprocessing

Machine learning is a data-driven approach that requires more
data sets to train models. Indeed, the data quality in machine
learning prediction is just as important as the quality of the
regression or the classification models. To improve the general-
ization performance of prediction results, it is necessary to process
the training data. Therefore, before training the machine learning
model, the training feature values need to be converted into the
same range.

Data normalization can be done by placing the value of the
smaller feature (porosity and shale content) in the same order of
magnitude as the larger feature value (acoustic velocity), to elimi-
nate the influence that the larger value may have on the smaller
value in the training model. Data normalization can not only
improve the training accuracy of the model but also accelerate the
convergence rate of the model. The max-min method is the most
widely used data normalization method in machine learning. This
method scales all data between 0 and 1, eliminating dimensional
effects. This method can be expressed as described in Eq. (21):

* X — Xmin

pY (21)

Xmax — Xmin

where Xmin and Xmax are the minimum and maximum values of this
parameter in all samples, respectively, and x and x* are the values of
the current sample points and the normalized values of this
parameter.
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4.2. Developing prediction models

This paper implements machine learning models based on
intelligent algorithms using Python programming. In this paper,
four kinds of machine learning models and five kinds of intelligent
optimization algorithms are combined respectively to form 20
kinds of hybrid machine learning optimization algorithms. To
reflect the performance gap between the selected algorithms, the
same number of population and algorithm iteration times were set
to train the machine learning model. Considering that the machine
learning model in this paper needs to optimize 2 to 5 hyper-
parameters, the optimal solution can be found with a small number
of populations and iterations. Therefore, in this paper, the popula-
tion of the intelligent optimization algorithm is 5, and the
maximum number of iterations is 50.

For the training process of the model, RMSE is used as the per-
formance index of cross-validation in this paper. The RMSE descent
process of the machine learning model optimized by the intelligent
optimization algorithm is shown in Fig. 10. It can be seen from
Fig. 10 that the four machine learning models optimized by the
IGWO algorithm all obtain the best RMSE results. In addition, the
optimization performance of the BA and PSO algorithm on the MLP
model is poor. This shows that the BA and PSO algorithms can not
find the potential location of the global optimal solution well on the
high-dimensional features. In the early iteration stage of the algo-
rithm, the optimal target location is not determined, so it falls into
the local optimal solution. In terms of convergence speed, the IGWO
algorithm is also significantly faster than other intelligent optimi-
zation algorithms. Therefore, the IGWO algorithm also has more
opportunities to find the position of the optimal solution in the late
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Fig. 14. The results of comparison of the four machine learning models for the pre-
dicted and actual pore pressure values of Well 2: (a) SVM; (b) RF; (c) XGB; (d) MLP.

iteration period and improve the solving accuracy of the algorithm.
In addition, the RMSE result of the MLP model was 0.4246 MPa,
which was lower than 0.4262 MPa for the SVM model, 0.5094 MPa
for the RF model, and 0.5104 MPa for the XGB model. This shows
that the MLP model has the best predictive generalization ability
under 5-fold cross-validation. Table 4 shows the hyperparameter
results of four machine-learning models optimized by the IGWO
algorithm.

Since the cross-validation is only used to evaluate the
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The linear fitting results of the four machine learning models for the predicted and actual effective stress values of Well 3: (a) SVM; (b) RF; (c) XGB; (d) MLP.
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Fig. 15. The results of comparison of the four machine learning models for the pre-
dicted and actual pore pressure values of Well 3: (a) SVM; (b) RF; (c) XGB; (d) MLP.

generalization ability of different combinations of hyperparameters
in the training data set, it is also necessary to apply the hyper-
parameters in Table 4 with the optimal performance under the 5-
fold cross-validation to the training of all Well 1 data. Fig. 11
shows the linear fitting results of the four machine learning
models for the predicted and actual effective stress values of Well 1.
The four models in Fig. 11 show high nonlinear fitting accuracy in
training data. The RF and XGB models were close to a perfect fit,
showing almost identical predicted and actual values in Well 1.

In SVM and MLP models, the predicted results of some low
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Fig. 16. The linear fitting results of the four machine learning models for the predicted and actual pore pressure values of Well 2: (a) SVM; (b) RF; (¢) XGB; (d) MLP.

effective stress values are higher than the actual values. This is
because, at the lower effective stress, there are some low effective
stress values caused by abnormally high pressure. Since the
acoustic velocity is proportional to the effective stress, however,
higher acoustic velocity will produce lower effective stress at these
abnormally high pressures. Therefore, for these points, porosity and
shale content should be used to correct the predicted results of
effective stress. In the process of model fitting, the SVM and MLP
models ignore some marginal data, resulting in the phenomenon of
underfitting, which leads to the reduction of the generalization
ability of the model. As a result, some predicted values were higher
than actual values in well 1. However, RF and XGB models consider
more outliers to fit the model, so the predicted and actual values are
very close to each other. However, this does not mean that RF and
XGB models will be better at predicting new samples because
overfitting can occur.

4.3. Model prediction results

Although this paper has proved that the machine learning
model fitted under the hyperparameter has certain generalization
ability through the 5-fold cross-validation. However, such high
training accuracy may still lead to overfitting problems, and the
performance of low prediction accuracy may appear in the new
data set. Therefore, the performance of these four models will be
tested with data from Well 2 and Well 3. Figs. 12 and 13 show the
linear fitting results of the four machine learning models for the
predicted and actual effective stress values of Well 2 and Well 3.
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The R? of the MLP model was the highest in the data of Well 2,
reaching 0.9438. This result was better than 0.9385 for the XGB
model, 0.9363 for the RF model, and 0.9222 for the SVM model. The
R? of the MLP model was the highest in the data of Well 3, reaching
0.9497. This result was better than 0.9398 for the XGB model,
0.9383 for the RF model, and 0.9373 for the SVM model. Figs. 12 and
13 show that the MLP model has the best predictive performance of
effective stress on the data from Well 2 and Well 3, which also
verify that the generalization ability of the MLP model is superior to
the SVM, RF, and XGB models under the 5-fold cross-validation.

It can be seen that although the RF and XGB models had higher
fitting accuracy in Well 1, they did not show the same higher pre-
diction accuracy in Well 2 and Well 3. While the SVM model per-
formed well on the 5-fold cross-validation, it did not perform well
on the prediction results of Well 1, Well 2, and Well 3. Compared
with the SVM model, the MLP model has a better fitting effect on
the training set, but it is not as close to complete fitting as the RF
and XGB models. Therefore, the MLP model has better generaliza-
tion ability. It can be seen from the prediction results of Well 2 that
the predicted value is higher than the actual value at the lower
effective stress as in Well 1. This is because both Wells are in the
same area, and although the pore pressure changes in different
ways, the sound velocity is similar to the effective stress changes in
the area. From the prediction results of Well 3, the predicted results
are closer to the actual value at the lower effective stress, but the
predicted value is lower than the actual value at the higher point.
According to the actual value of pore pressure in Well 3, abnormal
low pressure occurred in the deep formation. As a result, the actual
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Fig. 18. The RMSE comparison results for the four machine learning models: (a) Well 2; (b) Well 3.

value of effective stress is larger than the normal condition,
resulting in the phenomenon that the predicted value is lower than
the actual value.

In this paper, the overburden pressure is subtracted from the
effective stress value predicted by the machine learning model to
obtain the predicted pore pressure. Figs. 14 and 15 show the results
of the comparison of the four machine learning models for the
predicted and actual pore pressure values of Well 2 and Well 3.

Figs. 16 and 17 show the linear fitting results of the four machine
learning models for the predicted and actual pore pressure values
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of Well 2 and Well 3. Compared with the prediction of effective
stress, the R? value of pore pressure prediction is further improved.
The R? values of the MLP model were the highest in the data of Well
2 and Well 3, reaching 0.9949 and 0.9574, which were better than
0.9945 and 0.9488 for the XGB model, 0.9943 and 0.9472 for the RF
model, and 0.9930 and 0.9446 for the SVM model. It can be seen
that the IGWO-MLP model has the best R?> performance of pore
pressure.

In addition to comparing R? results, the RMSE values of the four
models were compared in Well 2 and Well 3. Fig. 18 shows the
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RMSE comparison results for the four machine learning models.
The RMSE value of the MLP model is 1.3967 and 1.5048 MPa, which
is lower than 1.4611 and 1.6496 MPa for the XGB model, 1.4867 and
1.6763 MPa for the RF model and 1.6431 and 1.7161 MPa for the
SVM model. In the RMSE results, the MLP model also achieved the
best performance. It can be seen that the IGWO-MLP hybrid model
in this paper has the best performance in predicting effective stress
not only in Well 1 trained with the 5-fold cross-validation method
but also in the test data in Well 2 and Well 3. After the pore pressure
is obtained by using the effective stress theorem, the machine
learning model shows good generalization ability in the prediction
of pore pressure. Considering the performance of all the hybrid
models, the IGWO-MLP model is found to be the most suitable
hybrid model for the establishment of pore pressure prediction.

5. Conclusion

Based on intelligent optimization and machine learning algo-
rithm, this paper realizes an intelligent prediction method for pore
pressure. The study’s findings can be mainly summarized as
follows:

(1) The three enhanced strategies proposed in this paper can
increase the ability of the IGWO algorithm to determine the
global optimal solution position, the local solution’s accu-
racy, and the algorithm’s convergence speed. On seven
benchmark function tests, compared to the GWO, PSO, SSA,
and BA, the IGWO algorithm performed better.

(2) In this study, an intelligent prediction model of effective stress
was established based on acoustic velocity, shale content, and
porosity. Combined with the effective stress theorem, the
predicted value of pore pressure is obtained. Among multiple
hybrid machine learning optimization algorithms, IGWO-MLP
shows the best performance on the 5-fold cross-validation.
The RMSE result of the MLP model was 0.4246 MPa, which
was lower than 0.4262 MPa for the SVM model, 0.5094 MPa
for the RF model, and 0.5104 MPa for the XGB model.

(3) IGWO-MLP shows the best prediction accuracy in the pre-
diction results of pore pressure in Well 2 and Well 3. The R? of
the MLP model was the highest in the data of Well 2 and Well
3, reaching 0.9949 and 0.9574. This result was better than
0.9945 and 0.9488 for the XGB model, 0.9943 and 0.9472 for
the RF model, and 0.9930 and 0.9446 for the SVM model. In
addition, the RMSE value of the MLP model is 1.3967 and
1.5048 MPa, which is lower than 1.4611 and 1.6496 MPa for
the XGB model, 1.4867 and 1.6763 MPa for the RF model,
1.6431 and 1.7161 MPa for the SVM model.

The input features of the model in this paper are determined
using the acoustic velocity model. When the acoustic velocity is
abnormally high in shallow strata, the prediction accuracy of
effective stress will be decreased. In the future, the machine
learning model can be further optimized to improve the prediction
accuracy when a more suitable multivariable parametric model is
identified for predicting pore pressure. In addition, cross-well
prediction usually finds performance deterioration due to the
non-iid issue. The generalizability of the model could be improved
by domain adaptation if the training and testing wells are very
different in data distribution in the future.
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