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a b s t r a c t

P- and SV-wave dispersion and attenuation have been extensively investigated in saturated poroelastic
media with aligned fractures. However, there are few existing models that incorporate the multiple wave
attenuation mechanisms from the microscopic scale to the macroscopic scale. Hence, in this work, we
developed a unified model to incorporate the wave attenuation mechanisms at different scales, which
includes the microscopic squirt flow between the microcracks and pores, the mesoscopic wave-induced
fluid flow between fractures and background (FB-WIFF), and the macroscopic Biot's global flow and
elastic scattering (ES) from the fractures. Using Tang's modified Biot's theory and the mixed-boundary
conditions, we derived the exact frequency-dependent solutions of the scattering problem for a single
penny-shaped fracture with oblique incident P- and SV- waves. We then developed theoretical models
for a set of aligned fractures and randomly oriented fractures using the Foldy approximation. The results
indicated that microcrack squirt flow considerably influences the dispersion and attenuation of P- and
SV-wave velocities. The coupling effects of microcrack squirt flow with the FB-WIFF and ES of fractures
cause much higher velocity dispersion and attenuation for P waves than for SV waves. Randomly ori-
ented fractures substantially reduce the attenuation caused by the FB-WIFF and ES, particularly for the ES
attenuation of SV waves. Through a comparison with existing models in the limiting cases and previous
experimental measurements, we validated our model.
© 2023 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This
is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/

4.0/).
1. Introduction

A rock fracture is a mechanical break or discontinuity that di-
vides a rock mass into two or more parts (Jiang et al., 2009; Shang
et al., 2018). Loss of continuity or cohesion of a rock mass at the
fracture seriously affects the mechanical and hydraulic properties
of the rock. More specifically, when the applied stress reaches a
certain limit, rock fractures form, which are accompanied by a
number of microcracks (Walsh,1965; Kuster and Toks€oz,1974; Ivars
et al., 2011; Gudmundsson, 2011). These reduce the elasticity of the
rock and provide additional reservoir space and fluid flow conduits
y Laboratory of Geophysical
rsity of Science and Technol-
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for oil and gas, especially for unconventional reservoirs, such as
carbonate and unconventional tight gas, shale gas, and coal reser-
voirs (e.g., Engelder et al., 2009; Liu et al., 2017a; Golsanami et al.,
2019).

Because the resolution of seismic detection is lowwhen imaging
individual fractures, seismic attributes are often used for fracture
detection and characterization (Baird et al., 2013). When a seismic
wave propagates in a saturated cracked porous rock, many atten-
uation phenomena occur (Johnston et al., 1979), such as fluid
compression in the fracture, fluid extrusion from the microcracks
(or soft pores) to stiff pores, and friction loss of the fluid with
respect to the solid in the pore space. Wave-induced fluid flow
(WIFF) between fractures and a porous background (FB-WIFF) often
occurs at low frequencies (Hudson, 1981; Galvin and Gurevich,
2009); microcrack squirt flow is mainly determined by the
compliance crack (or soft pore) aspect ratio (O'Connell and
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Budiansky,1977; Dvorkin et al., 1995; Gurevich et al., 2010; Adelinet
et al., 2011; Tang et al., 2012). In addition to WIFF, wave elastic
scattering (ES) by the fracture surface is notable when the size of
the fracture is comparable to the wavelength (Gurevich et al., 1997;
Galvin and Gurevich, 2007, 2009; Sato et al., 2012; Guo et al.,
2018c), especially for large, macroscale fractures.

Many theories have been developed for studying wave propa-
gation in jointed rock masses. These theories can generally be
divided into two categories. One category involves studying the
effects of fractures on wave propagation. For this purpose, most of
the models have been proposed to discuss the FB-WIFF (Galvin and
Gurevich, 2009; Fu et al., 2018; Guo et al., 2018a, 2018b) and the
coupling effect of the FB-WIFF and ES (Fu et al., 2020; Guo and
Gurevich, 2020a, 2020b). Guo et al. (2022a, 2022b) studied wave-
induced fluid flow between intersecting fractures (FF-WIFF) and
their coupling effects with FB-WIFF and ES. The second category
involves studying the effects of microcracks on wave propagation.
As reported by Dvorkin and Nur (1993), the considerable wave
velocity dispersion and attenuation observed in rock velocity
measurements are not well-described by Biot theory. This is
because of the assumption that the pore space is uniformly
distributed, which ignores the effects of local flow on the elastic
properties of the rock at the pore scale. To overcome this defect,
Berryman and Wang (1995), Pride and Berryman (2003a, 2003b),
and Berryman (2006) developed the theory of dual-pore media. In
dual-porosity media theory, local flow is controlled by the pore
structure and the fluid pressure difference between the two types
of pores. Based on the Biot-Consistent theory (Thomsen, 1985),
Tang et al. (2012) extended the Biot theory to poreemicrocrack
coexisting media and added microcrack density and microcrack
aspect ratio parameters to consider the effects of microcracks. In
their theory, microcracks are randomly oriented, and the squirt
flow effect is dominant, producing large wave velocity dispersion
and attenuation for interpreting observed sonic logging data (Chen
et al., 2014; Markova et al., 2014). However, this mechanism cannot
explain the attenuation observed in seismic frequency bands (Pride
et al., 2004). In addition, according to Ma and Ba (2020), intrinsic
attenuation in tight siltstones is mainly caused by WIFF between
microcracks and intergranular pores. Furthermore, Zhang et al.
(2021, 2022) investigated the WIFF at different scales and partial
saturation in the fractal texture of porous media based on the dif-
ferential effective medium and the Biot-Rayleigh theories. Deng
and Morozov (2019, 2020) construct a general model that ac-
counts for macroscopic local deformation effects through
Lagrangian continuum mechanics.

In this study, we developed a theoretical model to describe the
dispersion and attenuation of oblique incident P and SV waves,
where the rock background contains both stiff pores and
compressible microcracks, and the macroscale fractures are
sparsely distributed in the background. The case with aligned
macroscale fractures was studied, as well as that with random
orientation. We investigated the attenuation mechanisms of FB-
WIFF, ES, microcrack squirt flow, and Biot flow and their coupling
effects. First, we derived generalized solution expressions for the
scattered wavefields in a saturated microcracked porous medium.
Then, the solution coefficients of the scattered wavefields were
obtained according to the mixed-boundary conditions of a single
fracture. Finally, according to the far-field Foldy approximation of
scattered wavefields, the complex effective P and SV wavenumbers
were obtained. To verify our model, we compared our model pre-
dictions with existing models for limiting cases and with the pre-
vious experimental measurements reported by Tillotson et al.
(2014).
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2. Theoretical background

We considered plane, time-harmonic P- and SV-wave propa-
gating in a saturated microcracked porous rock, which contained
aligned penny-shaped fractures (Fig. 1a). It was assumed that
fractures were randomly and sparsely distributed in the medium.
Using Tang's poroelastic equations for poreemicrocrack coexisting
media (Tang et al., 2012), we investigated the scattered wavefields
of oblique incident P- and SV-wave in a fluid-saturated micro-
cracked porous medium.
2.1. Modified wave motion equations in a saturated microcracked
porous medium

Based on the Lagrange equations of a complicated force system,
Biot (1962) established the dynamic elastic wave propagation
equations of a fluid-filled porous medium as follows:

�V,s ¼ u2
�
rus þ rfw

�
; (1)

Vpf ¼ u2
�
rfus þ r

0
w
�
: (2)

where u denotes the angular frequency; s denotes the total stress
tensor and pf denotes the pressure of pore fluid; w ¼ 4ðuf �usÞ is
the fluid displacements relative to the solid; 4 represents the
porosity; uf and us represent the displacements of the solid and
pore fluid, respectively; r ¼ ð1� 4Þrs þ 4rf represents the density
of the overall rock, with rs and rf being the densities of the solid
phase and pore fluid, respectively; r0 ¼ ih=ukðuÞ is called the
effective filtration density; h represents the fluid viscosity;

kðuÞ ¼ k0

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� iuk0a∞rf

24h

q
� iuk0a∞rf

4h

��1

is Johnson et al. (1987) dy-

namic permeability, where k0 is the static Darcy permeability, and
a∞ is the tortuosity.

Biot and Willis (1957) derived the constitutive relationships
between the displacements and average stress tensor as follows:

s¼ ½ðH�2mÞV ,us þCV ,w�I2 þ m½V ,us þusV�; (3)

�p ¼ CV,us þMV,w: (4)

where I2 is the Kronecker tensor; m is the dry shear modulus of the

porous medium; M ¼
h
ða� 4Þ=Ks þ 4=Kf

i�1
is the Biot fluid stor-

agemodulus; a ¼ 1� Kd=Ks is the BioteWillis parameter, where Kd
and Ks are the bulk moduli of the dry porous medium and solid
phase, respectively; Kf is the bulk modulus of pore fluid; H ¼ Kd þ
4m=3þ a2M is the P-wave modulus of saturated porous rock at low
frequency, and modulus C ¼ aM.

To describe the wave-induced fluid flow of microscale cracks,
Tang et al. (2012) considered the wave-induced squirt flow be-
tween microcracks (or soft pores) and pore space. The constitutive
equations were rewritten as:

sij ¼ 2meij þ
h
ðKd � 2m=3Þe� apf

i
dij; (5)

�pf ¼ bCV,us þ bMV,w; (6)

where eij is the Cauchy strain tensor and e ¼ V,us; dij is the Kro-
necker delta; Kd is the dry bulk modulus of microcracked



Fig. 1. (a) Saturated isotropic rock matrix containing a set of randomly oriented cymbal-shaped pore-microcrack structures (microscopic scale) and aligned penny-shaped fractures
(macroscopic scale); (b) P- or SV- wave oblique incidence into a penny-shaped fracture center plane, where n refers to the fracture normal, d refers to the fracture diameter, and h
refers to the fracture thickness. The wave incident on the x-z plane with 40 ¼ 0, and q refers to the wave incidence angle relative to the z-axis.
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background; and bC ¼ a bM , where bM ¼ ½M�1 þ SðuÞ��1, with the
squirting function S(u) given by:

SðuÞ¼
8εmicð1� n0Þð1þlÞ3Nð1=K0�1=KsÞ

.
½3m0ð1=Kd�1=K0Þ �

1� 3iuhð1þ2lÞ
2Kflg2

mic

"
1þ 4ð1�n0ÞKf ð1þlÞ3

3pm0gmicð1þ2lÞ N

# :

(7)

where N ¼ 1þ l3 4�5n0
ð14�10n0Þð1þlÞ3 þ l5 9

ð14�10n0Þð1þlÞ5; l ¼
�

34
4pεmic

�1=3
is

the pore-to-microcrack size ratio; εmic is the microcrack density;
gmic is the microcrack aspect ratio; m0, K0, and n0 are the shear
modulus, bulk modulus, and Poisson's ratio of the microcracked
rock background (frame) without considering the squirt flow,
respectively.

When the microcrack density and (or) microcrack aspect ratio
changes, the modulus Kd, m0, K0 and Poisson's ratio n0 in Eq. (7) will
also change. According to the Biot-Consistent theory (Thomsen,
1985), these parameters can be obtained as a function of micro-
crack density and rock porosity (the details are given in Appendix
A):

Kd ¼ Kdðεmic;4Þ;m0 ¼ m0ðεmic;4Þ;K0 ¼ K0ðεmic;4Þ;
v0 ¼ v0ðεmic;4Þ;

(8)

Hence, the saturated bulk and frame shear moduli of a micro-
cracked porous medium can be derived using the procedure re-
ported by Tang et al. (2012), as follows:

K ¼ Kd þ a2 bM; (9)

m¼
h
4
�
K�1 � K�1

0

�.
15þ m�1

0

i�1
: (10)

More specifically, first, the modulus Kd and m0 can be obtained
from Eq. (8) through the Biot-Consistent condition (Thomsen,
1985). And then, the modulus K0 is calculated from Eq. (9) by

setting the squirt function S(u) ¼ 0 in the modulus bM [Eq. (A14)].
The Poisson's ratio n0 can be determined from the relationship with
K0 and m0 [Eq. (A15)].

Note that the squirting function S(u) does not approach zero at
the low-frequency limit. Thus, the saturated bulk modulus
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calculated using Eq. (9) does not satisfy the Gassmann limit (Yao
et al., 2015; Zhang et al., 2019). Therefore, we modified the satu-
rated bulk modulus Km as follows (Wang and Tang, 2021):

Km ¼ Kd þ a2M þ ½K � Kð0Þ �: (11)

where K(0) is the bulk modulus calculated using Eq. (9), with a
squirting function at zero frequency. Replacing Kwith Km in Eq. (10)
yields the modified frame shear modulus.

From Eq. (5), we rewrote the average stress tensor constitutive
equation in its equivalent form, as follows:

s ¼ ðKd � 2m=3ÞV,usI2 þ m½V,us þ usV� � apf I2; (12)

Then, substituting Eq. (6) into (12) and simplifying to a form
similar to Eq. (3) as:

s¼ ½ðbH �2mÞV ,us þ bCV ,w�I2 þ m½V ,us þusV�: (13)

where bH ¼ Km þ 4m=3 is the P-wave modulus of the saturated
microcracked porous medium.
2.2. Oblique incident P and SV waves

In this work, the cymbal-shaped pore-microcrack structures are
at the microscopic scale, while the aligned fractures considered are
at the macroscopic scale. As each individual fracture is rotationally
symmetric about its normal, as shown in Fig. 1b, we have estab-
lished a cylindrical coordinate system (r, 40, z). The center of the
system coincides with the center of the fracture, and the P- or SV-
wave is incident on the x-z plane (40 ¼ 0). When the P- or SV-wave
is obliquely incident, the incident wave displacement (omit time
harmonic factor e�iut) can be expressed as:8<:uin

p ¼ u0ðsin q; cos qÞeik1x sin qþik1z cos q

uin
sv ¼ u0ðcos q;�sin qÞeik3x sin qþik3z cos q

: (14)

where u0 is the displacement amplitude, q is the wave incidence
angle relative to the fracture normal n (along the z-axis), and k1 and
k3 represent the complex fast P- and SV- wavenumbers,
respectively.
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2.3. Solutions for single fracture scattered wavefields

Using the elastic wave propagation equations (Eqs. (1) and (2))
and the constitutive equations (Eqs. (6) and (13)) in a microcracked
porous medium, we obtained the general solutions for the scat-
tered wavefields from a single fracture similar to those proposed by
Song (2017). The difference is that we replaced the moduli in the
constitutive equations given by Biot theory (Eqs. (3) and (4)) with
the effectivemoduli, taking into account themicrocrack squirt-flow
effects (Eqs. (6) and (13)). For simplicity, the general solutions are
given in Appendix B. Since the form of the constitutive equations
remains unchanged, the general solutions have identical forms.

2.4. Boundary conditions of a single fracture

As discussed by Song (2017) and Guo and Gurevich (2020b), the
problem of wave obliquely incident fracture surface can be
decomposed into two parts: the normal fracture discontinuity
problem and the shear fracture discontinuity problem. The
boundary conditions of both problems have been provided by Guo
and Gurevich (2020a, 2020b), which we briefly introduce in the
next section; a specific derivation can be found in Guo and Gurevich
(2020a, 2020b).

2.4.1. Boundary conditions of the normal fracture discontinuity
problem

Due to the symmetric discontinuity characteristics of the normal
fracture discontinuity on the fracture center plane (z ¼ 0), we
studied the normal fracture discontinuity problem in the upper half
space (z > 0). According to the upper half-space fracture surface
boundary, we considered the boundary conditions of the scattered
wavefields (a scattered wavefield is the difference between the
total and incident wavefields) in the z-, r-, and 40-axis directions
(Guo and Gurevich, 2020a):

smzr±s
m
z4 ¼ 0; z ¼ 0; 0 � r<∞; (15)

smzz þ pmf ¼ �
�
sm;in
zz þ pm;in

f

�
; z ¼ 0; 0 � r � d

�
2; (16)

8>><>>:
umz þwm

z ¼ �pmf h
2Kf

; z ¼ 0; 0 � r � d=2

umz þwm
z ¼ 0; z ¼ 0; d=2 � r � ∞;

(17)

umz ¼ 0; z ¼ 0; d
�
2 � r � ∞: (18)

where the superscript "in" refers to the effects of incident waves;
smzr and smz4 represent the mth component of the scattered wave-
fields' radial shear stress and torsion stress, respectively; umz and
wm

z are themth component of the scattered solid displacement and
relative fluid displacement in the z-axis direction, respectively; smzz
and pmf represent the mth component of the scattered wavefields'

normal stress and fluid pressure, respectively; and sm;in
zz and pm;in

f
are those caused by incident waves, respectively.

2.4.2. Boundary conditions of the shear fracture discontinuity
problem

For shear discontinuity on a fracture surface, the shear
displacement on the positive z-axis is opposite to that on the
negative z-axis. Hence, the boundary conditions of the shear frac-
ture discontinuity problem were provided by Guo and Gurevich
(2020b):
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smzr±s
m
z4 ¼ �

�
sm;in
zr ±sm;in

z4

�
; z ¼ 0; 0 � r<d

�
2; (19)

umr ±u
m
4 ¼ 0; z ¼ 0; d

�
2 � r<∞; (20)

smzz ¼ pmf ¼ 0; z ¼ 0; 0 � r<∞: (21)

where sm;in
zr and sm;in

z4 represent the mth component of the radial
shear stress and torsion stress induced by the incident wave,
respectively; umr and um4 refer to the solid displacements of themth
component of the scattering wave fields in the r- and 40-axis di-
rections, respectively.

2.5. Solution of scattered wavefields coefficients by Fredholm
integration

The next step involved obtaining the undetermined coefficients
within the general solutions of the scattered wavefields that were
consistent with the boundary conditions in Section 2.4. We used
the above complex boundary conditions for the normal and shear
fracture discontinuity problems to derive the coefficients.

2.5.1. Solutions for the normal fracture discontinuity problem
First, the general solutions Eqs. (B2eB4) are substituted into the

boundary conditions in Eqs. (17) and (15), respectively, to obtain
the relationship between the undetermined coefficients, which are
expressed as follows:

Cm
n ðu; kÞ ¼ 2

�
Am
n ðu; kÞQ1 þ Bmn ðu; kÞQ2

	
2k2 � k23

; 0 � r<∞; (22)

Bmn ðu; kÞ ¼ �G1

G2
Am
n ðu; kÞ; 0 � r � d

�
2; (23)

Bmn ðu;kÞ¼�2k2ðc3�c1Þþk23ð1þc1Þ
2k2ðc3�c2Þþk23ð1þc2Þ

Q1

Q2
Am
n ðu;kÞ; d

�
2<r<∞;

(24)

where

Gi¼2QiKf

h
2k2ðc3�ciÞþk23ð1þciÞ

i
þhk2i ðbCþ bMciÞ

�
2k2�k23

�o
;

i¼1;2:

(25)

where the subscript "n" represents the case of normal fracture
discontinuity. Subsequently, substituting the general solutions of
Eqs. (B5), (B6) and (B2) into the boundary conditions in Eqs. (16)
and (18) and using the relationships in Eqs. (22)e(24), the dual
integrals for Am

n ðu; kÞ can be obtained as follows:8>>>>>>>><>>>>>>>>:

ð∞
0

Q1kA
m
n ðu;kÞ

2k2ðc3�c2Þþk23ð1þc2Þ
JmðkrÞdk¼0; d=2<r<∞

ð∞
0

�
Fn;1ðu;kÞ�Fn;2ðu;kÞ

	
Am
n ðu;kÞJmðkrÞkdk¼�fnðu;rÞ; 0�r�d=2;

(26)
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where

Fn;iðu;kÞ¼
(
2mk2�½bH�bCþciðbC� bMÞ�k2i �

4mk2Q3Qi

2k2�k23

)
,



G1

G2

�i�1
;

i¼1;2;

(27)

where fnðu; rÞ can be determined by substituting Eq. (14) into the
Eqs. (6) and (13) respectively.

Then, using the decomposition formula
eikix ¼ P∞

m¼0ymi
mJmðkirÞcos4; ði ¼ 1; 3Þ and the relationship

w ¼ cius; ði ¼ 1; 3Þ, the function fnðu; rÞ in Eq. (26) for P- and
SV-wave can be expressed as follows:

f pn ðu;rÞ¼ymimþ1u0k1
hbH� bCþc1ðbC� bMÞ�2msin2 q

i
Jmðk1r sinqÞ;

(28)

f svn ðu; rÞ ¼ �ymimþ1u0mk3 sin 2qJmðk3r sin qÞ: (29)

where the superscripts P and SV denote the incidence of P- and SV-
wave, respectively; ym denotes the Neumann factor, which is ym ¼ 1
for m ¼ 0 and ym ¼ 2 for m > 0.

As discussed by Song et al. (2017), Eq. (26) can be rewritten in
the form introduced by Noble (1963) as follows:

8>>>>>><>>>>>>:

ð∞
0

Unðu; kÞJmðkrÞdk ¼ 0; d=2< r<∞

ð∞
0

½1þ Hnðu; kÞ �Unðu; kÞJmðkrÞkdk ¼ �fnðu; qÞ; 0 � r � d=2;

(30)

where

Unðu; kÞ¼ EnðuÞQ1kAm
n ðu; kÞ

2k2ðc3 � c2Þ þ k23ð1þ c2Þ
; (31)

Hnðu; kÞ ¼ E�1
n ðuÞ½Fn1ðu; kÞ � Fn2ðu; kÞ�h

2k2ðc3 � c2Þ þ k23ð1þ c2Þ
i
Q�1
1 k�1 � 1

; (32)

where En(u) is required to ensure that lim
k/∞

Hnðu; kÞ ¼ 0 follows

Noble's solution method (Noble, 1963), which can be expressed as:

EnðuÞ¼2
X2
j¼1

ð�1Þj
�
c3 �c2 �c1 þcj

�hbH � bC þcjðbC � bMÞ
i
k2j :

(33)

Finally, the Fredholm integral of the second kind for solving
coefficients Am

n ðu; kÞ can be expressed as:

Fnðu; tÞ þ
ðd=2
0

Wnðu; t; ~tÞ,Fnðu; ~tÞd~t ¼ Fnðu; tÞ; 0 � t � d
�
2;

(34)

where
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Wnðu; t; ~tÞ ¼
ffiffiffiffiffiffiffiffi
t,~t

p ð∞
0

Hnðu; kÞJ0:5þmðktÞJ0:5þmðk~tÞkdk; (35)

Fnðu; tÞ ¼ � 1
tm

ðt
0

fnðu; rÞrmþ1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 � r2

p dr; (36)

and

Unðu; kÞ ¼
ffiffiffiffiffiffi
2k
p

r ðd=2
0

ffiffiffi
~t

p
Fnðu; ~tÞJ0:5þmðk~tÞd~t: (37)

The function Fnðu; ~tÞ can be solved numerically, and the
detailed numerical solutionmethod of the second type of Fredholm
integral is shown in Appendix D. Then, substituting the results into
Eq. (37) and compared with Eq. (31), we can derive the solution for
the scattered wavefield coefficient, Am

n ðu;kÞ. Finally, the coefficient
Cm
n ðu; kÞ can then be obtained using Eqs. (22) and (24) for the

normal fractureediscontinuity problem.

2.5.2. Solutions for the shear fracture discontinuity problem
The derivations of the shear scattering wavefield coefficients

Am
s ðu; kÞ and Cm

s ðu; kÞ are similar to those for the normal fracture
discontinuity problem. The boundary conditions of the shear frac-
ture discontinuity problem have been described by Guo and
Gurevich (2020b). Finally, the problem reduces to solving the
Fredholm integral of the second kind. The solution method is
similar to that of Guo and Gurevich (2020b). The difference is that
we add the influence of the microcrack-to-pore squirt flow through
the constitutive Eqs. (6) and (13). For simplicity, we provide the
specific solutions for the shear fracture discontinuity problem in
Appendix C.

2.6. P- and SV-wave velocity and attenuation

According to Galvin and Gurevich (2009), the P-wave velocity
and attenuation are controlled by the far-field scattering amplitude
f1ðu; qÞ of the fracture, which can be expressed as (Guo and
Gurevich, 2020b):

f1ðu; qÞ¼
k21
u0

X∞
m¼0

ð�iÞmcos q�Am
n ðu; k1 sin qÞþAm

s ðu; k1 sin qÞ	;
(38)

Similarly, for the SV-wave, the far-field scattering amplitude can
be written as follows (Guo et al., 2022b):

f3ðu; qÞ¼
ruq

u0eik3r
¼ k33
u0

X∞
m¼0

ið�iÞmsin 2q
2

Cmðu; k3 sin qÞ: (39)

where the coefficient Cmðu; k3 sin qÞ is the linear superposition of
the normal fracture discontinuity coefficient Cm

n ðu; k3 sin qÞ and the
shear fracture discontinuity coefficient Cm

s ðu;k3 sin qÞ.
Through the Foldy approximation (Foldy, 1945), the complex

effective P- and SV-wavenumber of a microcracked porous rock
containing aligned penny-shaped fractures can be written as:

kiðu; qÞ ¼ ki

"
1þ 4pn0

k2i
fiðu; qÞ

#1=2
; i ¼ 1; 3; (40)
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where n0 ¼ ε=a3 represents the fracture number density, a ¼ d/2
represents the radius of the fracture center plane, and ε denotes the
fracture density.

When a P- or SV-wave is incident along the z-axis (Fig. 2), the
complex effective P- or SV-wavenumber of randomly oriented
penny-shaped fractures (isotropic distribution) can be expressed as
(Zhang and Gross, 1993):

k
3D random
i ðuÞ ¼ ki

"
1þ 2pn0

k2i

ðp
0

fiðu; qÞsin qdq

#1=2
; i ¼ 1; 3;

(41)

Finally, the P- and SV-wave velocity and attenuation can be
calculated by the complex effective wavenumbers, as follows:

8>>><>>>:
ViðuÞ ¼

u

ReðkiÞ

Q�1
att;iðuÞ ¼

2ImðkiÞ
ReðkiÞ

; i ¼ 1; 3: (42)

where Reð*Þ and Imð*Þ refer taking the real and imaginary part
operators, respectively.
3. Results

3.1. Modeling parameters

To investigate the influence of the microcrack squirt flow and its
coupling effects with the FB-WIFF and ES of fractures, we simulated
the velocity and attenuation of the plane P- and SV-wave propa-
gating in a saturated microcracked porous sandstone containing
aligned penny-shaped fractures. Unless otherwise specified, the
modeling parameters that we used for the rock background,
microcracks, and fractures were presented in Table 1.
3.2. Influence of wave incidence angle

Fig. 3a and 3b portray the variations in the P-wave velocity and
attenuation with frequency under wave incidence angles of 0�, 30�,
Fig. 2. Saturated isotropic microcracked porous rock matrix containing randomly
oriented 3D penny-shaped fractures, and incidence of P- or SV-wave along the z-axis.
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45�, 60� and 90�. We also calculated the corresponding cases
without fractures (WFs, shown as dashed lines). We observed that
in the FB-WIFF regime, the velocity and attenuation decreases with
the increase in incidence angle. Notably, the FB-WIFF attenuation
mechanism at waves parallel to the fracture plane nearly vanishes
but is not zero because of Poisson effect; meanwhile, the ES
attenuation of fractures also disappears, and the high frequency
band is controlled by the microcrack squirt flow. In the ES-
controlled frequency band, the P-wave velocity first slightly de-
creases, for which the ratio of wavelength to fracture diameter is
about p, which means that Rayleigh scattering occurs. Then, the
velocity increases with frequency, and the ratio of wavelength to
fracture diameter is approximately 1.13, producing stochastic/Mie
scattering (Mavko et al., 2020). When the fracture thickness tends
to zero, the ES attenuation mechanism disappears, and the fluid
within the fracture is incompressible. The velocity and attenuation
are mainly influenced by microcrack squirt flow and the FB-WIFF of
fractures.

Fig. 4a and 4b portray the variations in SV-wave velocity and
attenuation with frequency under incidence angles of 0�, 30�, 45�,
60� and 90�. The corresponding cases of WF are shown by dashed
lines. In the FB-WIFF-controlled regime, the velocity dispersion and
attenuation of the SV-wave velocity both vanish when the incident
angle is 0� and 90� due to the zero effective normal stress. The
maximum velocity dispersion and attenuation caused by the FB-
WIFF of fractures occur when the incident angle is close to 45�.
This is because the normal stress at this angle is the largest. Similar
results were also reported by Guo et al. (2018b) and Song et al.
(2020). In the ES effects region, the maximum attenuation occurs
at an incidence angle of 0� due to the maximum shear stress. We
also observed that the SV-wave velocity dispersion and attenuation
caused by the ES of fractures' surface become the weakest due to
the minimum shear stress at the 45� incidence angle. Similar to
those of the P-wave, when the fracture thickness closes to zero at
an incident angle of 45�, the SV-wave velocity dispersion and
attenuation caused by the ES vanish. For the control region of
microcrack squirt flow, velocity becomes minimally dependent on
the incident angle because the poreemicrocrack structure is
randomly oriented in the background, and the slight angle
dependence is from the coupling effect with the ES of the fractures.

For randomly oriented fractures, the FB-WIFF and ES attenua-
tion caused by the fractures does not change with the P- and SV-
wave incident angles. This means that the intensities of the FB-
WIFF and ES are averaged owing to the random orientation of
fractures, especially for the ES attenuation of SV waves. The
randomly oriented fractures do not affect the microcrack squirt
Table 1
Parameters used for modeling calculations.

Symbol Definition Unit Value

Porous background properties
Ks Bulk modulus of solid GPa 37.9
ms Shear modulus of solid GPa 32.6
rs Solid density kg/m3 2650
4 Porosity % 8.00
k0 Static Darcy permeability m2 10�15

Kf Fluid bulk modulus GPa 2.25
rf Fluid density kg/m3 1000
h Fluid viscosity Pa$s 10�3

Microcrack properties
εmic Microcrack density / 0.100
gmic Microcrack aspect ratio / 0.004
Fracture properties
d Fracture diameter m 1.000
h Fracture thickness m 0.010
ε Fracture density / 0.050



Fig. 3. Variations in P-wave velocity (a) and attenuation (b) with frequency under incidence angles of 0� , 30� , 45� , 60� and 90� in saturated microcracked porous rock with fractures.
Note: WF (dashed lines) indicates results without fractures.

Fig. 4. Variations in SV-wave velocity (a) and attenuation (b) with frequency under incidence angles of 0� , 30� , 45� , 60� and 90� in saturated microcracked porous rock with
fractures. Note: WF (dashed lines) indicates results without fractures.
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flow mechanism because in the modified constitutive Eq. (6),
microcracks are randomly distributed in the background medium
as a part of the pore structure. Therefore, the P- and SV-wave ve-
locities and attenuation of randomly oriented fractures and aligned
fractures coincide in the high-frequency microcrack squirt flow
region.
3.3. Influence of microcrack density and aspect ratio

Figs. 5 and 6 illustrate the variation in P- and SV- wave velocity
dispersion and attenuation at different microcrack densities. We
also calculated thewave incident normal to the fracture surface and
the corresponding WF cases. In general, the P- and SV- wave ve-
locities decreasewith an increase inmicrocrack density. This occurs
because microcracks affect the elastic properties of the rock back-
ground, and an increase in microcrack density reduces the effective
stiffness of the background medium. From the perspective of wave
attenuation, the increase in microcrack density not only increases
the attenuation of the microcrack squirt flow but also slightly
moves the characteristic frequency to a lower frequency. Compared
with microcrack squirt flow, the FB-WIFF and ES attenuation
mechanisms of fractures are independent of the microcrack den-
sity. When the microcrack density approaches zero, the microcrack
squirt flow attenuation mechanism disappears, and the wave
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velocity and attenuation of the fractured rock are mainly controlled
by the FB-WIFF and ES of fractures, and Biot flow mechanisms.

Figs. 7 and 8 show the variations in the P- and SV- wave velocity
dispersion and attenuation at different microcrack aspect ratios
ranging from 0.0001 to 0.008. The wave incidence angle is 0�, and
the corresponding cases of the WF are shown as dashed lines. The
microcrack squirt flow moves to a higher frequency with an in-
crease in themicrocrack aspect ratio. This is because themicrocrack
squirt flow characteristic frequency is proportional to the cubic
aspect ratio of the microcrack (O'Connell and Budiansky, 1977;
Gurevich et al., 2010). For P waves, the coupling of the microcrack
squirt flowwith the FB-WIFF and ES of the fractures strongly affects
the velocity and attenuation. However, for SV waves, the coupling
effects of the microcrack squirt flowwith the ES of the fractures are
negligible. This is because the attenuation of the SV wave caused by
microcracks is much smaller than that caused by fractures. This
means that the ES can be the main attenuation mechanism for SV
waves when the wave incidence is normal to the fracture surface.
3.4. Influence of fluid viscosity and background static permeability

According to the numerical simulation results provided in Sec-
tion 3.2, we found that the maximum FB-WIFF of the P- and SV-
wave appears at incident angles of 0� and 45�, respectively.



Fig. 5. Variations in P-wave velocity (a) and attenuation (b) with frequency under different microcrack densities at normal incidence in saturated microcracked porous rock with
aligned fractures. Note: WF (dashed lines) indicates corresponding results without fractures.

Fig. 6. Variations in SV-wave velocity (a) and attenuation (b) with frequency under different microcrack densities at normal incidence in saturated microcracked porous rock with
aligned fractures. Note: WF (dashed lines) indicates corresponding results without fractures.

Fig. 7. Variations in P-wave velocity (a) and attenuation (b) with frequency under microcrack aspect ratios of 0.0001e0.008 at normal incidence in saturated microcracked porous
rock with aligned fractures. Note: WF (dashed lines) indicates corresponding results without fractures.
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Therefore, we investigated the effects of fluid viscosity and back-
ground static permeability on the velocity and attenuation of P- and
SV-wave at these two angles.

Figs. 9 and 10 show the influence of fluid viscosity on the P- and
150
SV-wave velocity and attenuation at incident angles of 0� and 45�,
respectively. We also calculated the corresponding WF cases using
dashed lines. The results showed that the ES attenuation mecha-
nism of fractures is almost independent of the fluid viscosity. This is



Fig. 8. Variations in SV-wave velocity (a) and attenuation (b) with frequency under microcrack aspect ratios of 0.0001e0.008 at normal incidence in saturated microcracked porous
rock with aligned fractures. Note: WF (dashed lines) indicates corresponding results without fractures.
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due to the ES characteristic frequency not being affect by the fluid
viscosity (Guo et al., 2018c; Guo and Gurevich, 2020a). However,
the increase in fluid viscosity causes the FB-WIFF of fractures, and
the microcrack squirt flow shifts toward a lower frequency. This
occurs because the increase in fluid viscosity increases the time
required for the fluid in the fractures and microcracks to flow into
the pore space. Regarding the influence of the background static
permeability (Figs. 11 and 12), the FB-WIFF characteristic attenua-
tion frequency shifts to a higher frequency with an increase in the
background static permeability. However, the microcrack squirt
flow is almost unaffected because the FB-WIFF characteristic fre-
quency is controlled by both the background static permeability
and fluid viscosity (Galvin and Gurevich, 2009), however, the
characteristic frequency of microcrack squirt flow is independent of
the background static permeability (Gurevich et al., 2010). For both
P- and SV- wave, between the frequencies of 103 Hz and 104 Hz, the
WF curves with a background static permeability of 10�12 m2 have
an inverse attenuation peak relative to the microcrack squirt flow
attenuation peak. This is because the frequency shift in the Biot
flow toward a lower frequency with the increase in static perme-
ability. Compared with the P-wave attenuation, we observed that
the SV-wave attenuation peak caused by the Biot flow frequency
shift. This occurs because the Biot flow in P-wave is smaller than the
microcrack squirt flow and has a stronger influence on the SV
Fig. 9. Variations in P-wave velocity (a) and attenuation (b) with frequency under fluid visc
saturated microcracked porous rock with aligned fractures. Note: WF (dashed lines) indica

151
waves at high frequencies.
When the characteristic frequency of microcrack squirt flow

occurs in the frequency range of 102e105 Hz (Figs. 9 and 10), the
microcrack squirt flow and ES attenuation mechanism of the frac-
tures are coupled. The results showed that the Rayleigh scattering
phenomenon is weakened, especially for P waves. At lower fre-
quencies, the coupling effect of the FB-WIFF and microcrack squirt
flow is controlled by the relative intensity between the two
attenuation mechanisms for both P and SV waves.
3.5. Influence of fluid bulk modulus

Figs. 13 and 14 show the influence of fluid bulk modulus on the
P- and SV-wave velocity and attenuation at incident angles of
0� and 45�, respectively. The corresponding WF cases are shown as
dashed lines. For both P and SV waves, the wave velocity increases
with the increase in the fluid bulk modulus because an increase in
the fluid bulk modulus decreases the compliance of the rock. The
attenuation of the FB-WIFF of fractures and microcrack squirt flow
decrease with a decrease in the fluid bulk modulus. This occurs
because the decrease in the fluid bulk modulus results in smaller
fluid pressure differences between the fractures or microcracks and
the background pores. Conversely, a decrease in the fluid bulk
modulus increases the ES attenuation because the fluid bulk
osities of 10�4 Pa s, 10�3 Pa s, 10�2 Pa s, 10�1 Pa s and 10� Pa s at normal incidence in
tes corresponding results without fractures.



Fig. 10. Variations in SV-wave velocity (a) and attenuation (b) with frequency under fluid viscosities of 10�4 Pa s, 10�3 Pa s, 10�2 Pa s, 10�1 Pa s and 10� Pa s at incident angle of 45� in
saturated microcracked porous rock with aligned fractures. Note: WF (dashed lines) indicates corresponding results without fractures.

Fig. 11. Variations in P-wave velocity (a) and attenuation (b) with frequency under background static permeabilities of 10�12 m2, 10�13 m2, 10�14 m2, 10�15 m2 and 10�16 m2 at
normal incidence in saturated microcracked porous rock with aligned fractures. Note: WF (dashed lines) indicates corresponding results without fractures.

Fig. 12. Variations in SV-wave velocity (a) and attenuation (b) with frequency under background static permeabilities of 10�12 m2, 10�13 m2, 10�14 m2, 10�15 m2 and 10�16 m2 at
incident angle of 45� in saturated microcracked porous rock with aligned fractures. Note: WF (dashed lines) indicates corresponding results without fractures.
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modulus is negatively correlated with the scattered solid and the
relative fluid displacements in the fracture normal discontinuity
boundary condition in Eq. (17). Similarly, the fracture thickness is
positively correlated with that in Eq. (17). Therefore, the ES
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attenuation decreases with a decrease in the fracture thickness. For
simplicity, we did not calculate the simulation results of fracture
thickness in this study; meanwhile, similar results of P waves can
also be found in Guo and Gurevich (2020a) and Song et al. (2021).



Fig. 13. Variations in P-wave velocity (a) and attenuation (b) with frequency under fluid bulk moduli of 3 GPa, 2.25 GPa, 1 GPa, 0.5 GPa and 0.1 GPa at normal incidence in saturated
microcracked porous rock with aligned fractures. Note: WF (dashed lines) indicates corresponding results without fractures.

Fig. 14. Variations in SV-wave velocity (a) and attenuation (b) with frequency under fluid bulk moduli of 3 GPa, 2.25 GPa, 1 GPa, 0.5 GPa and 0.1 GPa at an incident angle of 45� in
saturated microcracked porous rock with aligned fractures. Note: WF (dashed lines) indicates corresponding results without fractures.

S.-Q. Li, W.-H. Wang, Y.-D. Su et al. Petroleum Science 21 (2024) 143e161
The influence of the fracture thickness can be neglected (Song et al.,
2021).
4. Comparison with existing models

In order to verify the accuracy of our model, we compared our P-
and SV-wave models with that of Guo and Gurevich (2020a) (G-G
model) and the interpolation approach model (I-A model, Guo
et al., 2018b) at the model limit where the microcrack density
close to zero. Fig. 15a and b shows the variations in the P-wave
velocity and attenuation at incidence angle of 0�. We calculated the
results at a fracture thickness of 0.01 m and a fracture thickness
approaching zero for comparison. The results of both cases were in
good agreement with those produced by the G-G model. The pro-
posed P-wave model can be degenerated into the P-wave model
proposed by Guo and Gurevich (2020a) when the microcrack
density tends to zero at normal incidence.

Fig. 16a and b compares the results obtained with the proposed
model for SV waves with those obtained by the I-A model at inci-
dence angle of 45�. Similar to P waves, we calculated the SV-wave
model results when the fracture thickness is 0.01 m and the
thickness approaches zero. The results showed that the velocity
and attenuation of SV waves caused by the FB-WIFF of fractures
calculated by our model are in agreement with those calculated by
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the I-A model. The difference in the low-frequency range
(10�3~10�1 Hz) may be explained by the approximation in the I-A
model, where the influence of SV-wave relaxation frequency
changes is not considered.
5. Comparison with previous experimental data

To validate our model, we compared the theoretical P- and SV-
wave predictions with the ultrasonic laboratory measurements
on a synthetic-fluid-saturated rock sample permeated by aligned
penny-shaped fractures reported by Tillotson et al. (2014). The
samples were made of sand silica-gel and kaolinite mixture by
continuous layered stacking. The aluminum discs with a certain
thickness were randomly distributed on the surface of each layer.
After baking at high temperature, solid silica cement is produced
around the sand grains. Then, the aluminium discs are melted with
acid, leaving penny-shaped cavities which represent the cracks. For
the saturated sample, the porosity, density and permeability are
0.33, 2065 kg/m3 and 21 � 10�15 m2, respectively. The fluid bulk
modulus, fluid viscosity and fluid density are 2.16 GPa,10�3 Pa s and
1000 kg/m3, respectively. For the fracture properties, the fracture
density is 0.03, the fracture diameter and fracture thickness are
5.82 mm and 0.2497 mm, respectively. And the solid grain bulk and
shear modulus are 37 GPa and 21 GPa respectively. The other



Fig. 15. Variations in P-wave velocity (a) and attenuation (b) with frequency at normal incidence. Note: We calculated the solid lines and scattered points using our model and the
G-G model (Guo and Gurevich, 2020a), respectively. WF (dashed lines) indicates corresponding results without fractures.

Fig. 16. Variations in SV-wave velocity (a) and attenuation (b) with frequency at incidence angle of 45� . Note: We calculated the solid lines and scattered points using our model and
the I-A model (Guo et al., 2018b), respectively. WF (dashed lines) indicates corresponding results without fractures.
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saturated sample parameters can also be found in Tillotson et al.
(2014) and Guo and Gurevich (2020b). The central frequency for
the transducers is 500 kHz. The measurement error for P- and SV-
wave velocities was ±0.6%, whereas that for attenuation was
approximately ±20%. A similar comparison was performed by Guo
and Gurevich (2020b). However, they used this set of laboratory
data to verify the oblique incidence model of P waves in a porous
background medium that contained a set of aligned fractures. In
their study, they subtracted the measured attenuation by the value
at incidence angle of 90� to reduce the influence of attenuation
mechanisms other than FB-WIFF and ES, such as squirt flow at the
grain contacts. Notably, they found that the theoretical predictions
were consistent with the measured results at approximately
150 kHz due to the largely attenuated wave energy at the central
frequency of the transducer (500 kHz). In this study, we considered
microcrack squirt flow, which we used to simulate the squirt flow
between grains. We compared the original experimental data,
without subtracting the parallel incidence attenuation, with the
model predictions to illustrate the effectiveness of the proposed
model. We set the microcrack density and aspect ratio to 0.015 and
0.0073, respectively, which are the best values for fitting the
measured results.

Fig. 17 compares the P-wave laboratory datawith the theoretical
predictions at 150 kHz. The dashed lines represent the theoretical
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model predictions reported by Guo and Gurevich (2020b). The
theoretical predictions of P-wave velocities agree with the labora-
tory data and are lower than the predictions reported by Guo and
Gurevich (2020b). This is owing to the influence of microcracks.
In the comparison with laboratory P-wave attenuation data, the
theoretical predictions more strongly agree with the laboratory
attenuation data than the predictions of Guo and Gurevich (2020b).
Fig. 18 compares the SV-wave laboratory data with the theoretical
predictions at 150 kHz. The dashed lines indicate the predictions of
Guo et al. (2022b) for the limiting case where the fractures are
parallel to each other. The solid lines represent the theoretical
predictions produced by our model considering the influence of
microcracks. Notably, our theoretical predictions of SV-wave ve-
locities agree well with the laboratory data. However, the theo-
retical predictions of SV-wave attenuation are much lower than the
laboratory data. The difference between the laboratory SV-wave
attenuation data and the theoretical prediction may be owing to
multishaped grain contacts. As the shapes of grain contacts in the
rock differ, only considering a single microcrack aspect ratio for
predicting the squirt flow attenuation may result in a large error.
Similar prediction errors of the SV-wave attenuation were also
shown by the model limits of Guo et al. (2022b), which are indi-
cated by the dashed line.

The comparisons of P and SV waves with the laboratory data of



Fig. 17. Model-predicted P-wave velocity (a) and attenuation (b) versus laboratory data (Tillotson et al., 2014) for different incident angles. Red dashed lines represent model-
predicted results of Guo and Gurevich (2020b). Black solid lines indicate results predicted by our model.

Fig. 18. Model-predicted SV-wave velocity (a) and attenuation (b) versus laboratory data (Tillotson et al., 2014) for different incident angles. Red dashed lines represent model limit
prediction results of Guo et al. (2022b). Black solid lines indicate results predicted by our model.
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Tillotson et al. (2014) illustrated that our model results are nearly
consistent with the laboratory measurements. This indicated that,
in addition to the FB-WIFF and ES, the microcrack squirt flow can
also strongly contribute to the seismic dispersion and attenuation.
Our model can model all these mechanisms’ effects and improves
the prediction accuracy of measured data.
6. Discussions

6.1. Extension to multiset fractures model with different
orientations

In this study, we investigated the single-set fracture model with
identically oriented and randomly oriented fractures. However, in
unconventional reservoir exploration, sweet-spot areas often
contain multiple sets of fractures with different orientations
(Nelson, 2001). Therefore, dynamic wave models must be extended
to rocks containing multioriented fracture sets. Similar to Eq. (41),
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following the Foldy (1945) approximation, the complex effective P-
and SV-wavenumbers formultioriented fracture sets can bewritten
as

k
mulit�set
i ðuÞ ¼ ki

241þ 4p
k2i

XNf
j¼1

njfj
�
u; qj; dj; hj

 351=2

; i ¼ 1; 3;

j ¼ 1; 2; :::; Nf ;

(43)

where Nf represents the total number of fracture sets in the rock;
fjðu; qj; dj;hjÞ represents the effective far-field scattering amplitude
for the jth-oriented fracture set with the jth fracture diameter and
fracture thickness; qj corresponds to the dip angle of the jth fracture
set with respect to the x-y plane and the wave (P- or SV-wave)
incident along the z-axis.

For actual fractured tight reservoirs, the background micro-
cracks may also contain different microcrack densities and aspect
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ratios. Under this condition, the microcrack squirting function can
be extended as (Wang and Tang, 2021)

Smulit�setðuÞ ¼
XNm
j¼1

SjðuÞ; j ¼ 1; 2; :::; Nm: (44)

where Nm is the total number of microcracks in the rock; SjðuÞ
denotes the squirting function of the jth microcrack set, and its
expression is the same as that in Eq. (7).
6.2. Advantages and application of our model

A critical assumption of our model is the cymbal-shaped pore-
microcrack structure in the rock background (Fig. 1a). Such struc-
tures result in the squirt flow between the pores and microcracks.
Hence, to apply our model in the fractured reservoir characteriza-
tions, it is essential to compare the pore-microcrack structure
assumed in our model with that in the real rocks. In Fig. 19, we
provide the thin section of a fractured sandstone from the Bozhong
area of China. It can be found that the pore-microcrack structure
observed in the thin section is approximately cymbal-shaped, which
is consistent with the assumption of our model. In addition to this
thin section, other studies also found a similar pore-microcrack
structure (Liu et al., 2017b). Therefore, the cymbal-shaped pore-
microcrack structure assumed in our model is reasonable.

In the previous models, only one or two attenuation mecha-
nisms were considered. In contrary, our model considers multiple
attenuation mechanisms at different scales, which includes the
squirt flow at the microscopic scale, the WIFF at the mesoscopic
scale, and the Biot's global flow and elastic scattering at the
macroscopic scale. Hence, our model connects the data measured
at different frequencies from the laboratory measurements (~MHz)
to the sonic logging (~KHz) and seismic exploration (~Hz). This
facilitates the integration of different measurement data for the
exploration of the fractured reservoirs. In addition, in the cases
where the characteristic frequencies of different mechanisms are
close, the coupling effects between different mechanisms may give
rise to a complicated attenuation behavior for the propagating
waves. Under this condition, our model provides more accurate
descriptions of thewave attenuation and thus is more suitable to be
applied in such reservoirs.
Fig. 19. Micrograph of orthogonally polarized feldspathic quartz sandstone, the
observation scale is 500 mm. The microcracks indicate unfilled microcracks, and the
pore-microcrack structure indicates the combination of equant spherical pores and
microcracks.
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To observe the multiple attenuation mechanisms and apply our
model in the real fractured reservoirs, several steps can be taken.
First, we can take several core samples from different areas of the
reservoir, for which only the microcracks exist. We can perform the
ultrasonic and low-frequency measurements on the samples to
observe the wave dispersion and attenuation. Combined with other
measurements, we can use themeasured velocities and attenuation
to invert the microcrack properties through our model. These
inverted microcrack properties can be compared to other pre-
dictions or observations (such as nano-CT scans) to validate their
accuracies. By using the averaged microcrack properties of these
core samples as those properties for the reservoir, we can further
estimate the fracture properties by our model. This can be done by
using the wave velocities, attenuation, and frequency-dependent
anisotropy obtained from the seismic exploration and sonic log-
ging. Similarly, to validate the estimated fracture properties, we can
compare the results with other measurements, such as resistivity
imaging logging. The detailed procedure for using our model to
invert the properties of the microcracks and fractures will be
studied in details in the near future.

7. Conclusions

In this study, we proposed a unified model to investigate P- and
SV-wave propagation and attenuation in a saturated fractured rock
with a microcracked porous background medium. We considered
multiple attenuation mechanisms, including the microscopic squirt
flow, the mesoscopic FB-WIFF, and the macroscopic Biot's global
flow and ES. We constructed theoretical models of aligned and
randomly oriented fractures. The numerical results indicate that
the microcrack squirt flow in the fractured rock background sub-
stantially affects the P and SV waves. The coupling effects of the
microcrack squirt flow with the FB-WIFF and ES of the fractures
were considerable for the P and SV waves. The maximum FB-WIFF
of the P and SV waves occurs at incident angles of 0� and 45�,
respectively. The influence of rock background static permeability
on the attenuation of the P waves caused by ES and microcrack
squirt flow can be neglected, but it more strongly influences the SV
waves. Compared with aligned fracture cases, the FB-WIFF and ES
attenuation intensities of the P and SV waves of randomly oriented
fractures are notably averaged, especially the attenuation of the SV-
wave induced by the ES.
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Appendix A. The detailed calculation procedure of the Biot-
Consistent theory

For pore-microcrack coexisting rock, the total pores can be
divided into two parts of equant spherical pores and microcracks.
To describe the elastic properties of this medium, O'Connell and
Budiansky (1974) (OB theory) used the Self-Consistent approxi-
mation (Hill, 1965; Wu, 1966) to calculate the elastic properties of
porous rocks with randomly distributed microcracks. On this basis,
Thomsen (1985) proposed the Biot-Consistent theory to make the
OB theory compatible with the Biot theory.

For any specific microcrack density εmic and microcrack aspect
ratio gmic, the porosity of penny-shaped microcracks is expressed
as follows:

4mic ¼
4pεmicgmic

3
: (A1)

Assuming that Poisson's ratio satisfies the Biot-Consistent con-
ditions of dry microcracked porous background is n*B, to find n*B, we
set the initial value of n*B as n*1 (0< n*1 <0.5). Then, the dry micro-
cracked porous background shear and bulk modulus can be written
as follows:
~KB ¼ Ks

�
1�



1� Kf

Ks

�

4p

1� aB
þ ABεmic

��
,

�
1þ Kf

KB



aB

1� aB

4p

4
þ ABεmic

4

���1

; (A11)
m*d ¼ ms



1� 4p

1� bB
� BBεmic

�
; (A2)

K*
d ¼ 2m*d

�
1þ n*1


3
�
1� 2n*1

 ; (A3)

where

bB ¼ 2
�
4� 5n*1


15

�
1� n*1

 ; (A4)

BB ¼ 32
�
1� n*1

�
5� n*1


45

�
2� n*1

 ; (A5)

where 4p represents the porosity of the equant spherical pores; and
the total porosity 4 ¼ 4p þ 4mic.

Then, the fluid pressure increment of Biot theory can be
expressed as (Thomsen, 1985):

pf
~pf

¼ aBKf

K*
d



4þ Kf

K*
d
ðaB � 4þ 4aBÞ

� ; (A6)

where the Biot coefficient aB is expressed as:

aB ¼ 1� K*
d
�
Ks; (A7)

Now, the saturated bulk modulus of microcracked porous rock
background is obtained as (Budiansky and O'Connell, 1980):
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~K ¼ Ks

"
1þ 4

�
Ks

.
Kf � 1

�
,pf

�
~pf

#�1

; (A8)

Through the low frequency Biot-Guassmann theory (Gassmann,
1951), the classic saturated bulk modulus of Biot medium can be
expressed as:

KB ¼ K*
d

0B@1� aB
pf
~pf

1CA
�1

; (A9)

Because the dry and saturated shear modulus of microcracked
porous background are equal at low frequencies, combined Eq. (A9)
with Eq. (A2), the Poisson's rate of saturated microcracked porous
background can be written as:

nnew ¼
1� 2m*d

.
3KB

2þ 2m*d
.
3KB

; (A10)

The saturated bulk modulus of microcracked porous back-
ground can be yields (Budiansky and O'Connell, 1980):
where

aB ¼ 1þ nnew
3ð1� nnewÞ ; (A12)

AB ¼ 16
�
1� n2new


9ð1� 2nnewÞ : (A13)

Repeat the above steps to compare the bulk modulus calculated
in Eqs. (A8) and (A11). When the two moduli are consistent with a
certain accuracy, the Biot-Consistent condition is met, and the
Poisson's ratio n*B of dry microcracked porous background is output.

Finally, the shear modulus of the microcracked porous rock
background m0 ¼ m0ðεmic;4Þ in the absence of squirt flow (low
frequency) can be calculated by Eq. (A2) with Poisson's rate n*B. The
dry bulk modulus Kd ¼ Kdðεmic;4Þ is obtained from Eq. (A3).

Hence, the saturated bulk modulus K0 ¼ K0ðεmic;4Þ and the
Poisson's rate v0 ¼ v0ðεmic;4Þ can be expressed as:

K0 ¼ K0ðεmic;4Þ ¼ Kd þ


1� Kd

Ks

�2
"
1� Kd=Ks � 4

Ks
þ 4

Kf

#�1

;

(A14)

v0 ¼ v0ðεmic;4Þ ¼
3K0 � 2m0
2ð3K0 þ m0Þ

: (A15)
Appendix B. General solutions of scattered wavefields from
single fracture in saturated microcracked porous medium

Based on the wave propagation theory of microcracked porous
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media (Tang et al., 2012), the general solutions of scattered wave-
fields can be obtained using Hankel transformation. Following
Song's (2017) derivation, the general scattered wavefield solutions
of fractured porous elastic equations can be expressed as follows:
umr ±u
m
4 ¼ H

ð∞
0

h
Amðu; kÞe�Q1z þ Bmðu; kÞe�Q2z

i
k2Jm±1ðkrÞdk±

ð∞
0

Cmðu; kÞe�Q3zQ3k
2Jm±1ðkrÞdk; (B1)

umz ¼ �
ð∞
0

h
Amðu; kÞQ1e

�Q1z þ Bmðu; kÞQ2e
�Q2z � Cmðu; kÞk2e�Q3z

i
kJmðkrÞdk; (B2)

wm
z ¼ �

ð∞
0

�
c1A

mðu; kÞQ1e
�Q1z þ c2B

mðu; kÞQ2e
�Q2z

�c3C
mðu; kÞk2e�Q3z

�
kJmðkrÞdk; (B3)

smzr±s
m
z4 ¼ ±2m

ð∞
0

h
Amðu; kÞe�Q1zQ1 þ Bmðu; kÞe�Q2zQ2

i
k2Jm±1ðkrÞdkHm

ð∞
0

Cmðu; kÞe�Q3z
�
2k2 � k23

�
k2Jm±1ðkrÞdk; (B4)

smzz ¼
ð∞
0

h
2mk2 � ðbH þ bCc1Þk21 iAmðu; kÞe�Q1zkJmðkrÞdkþ

ð∞
0

h
2mk2 � ðbH þ bCc2Þk22 iBmðu; kÞe�Q2zkJmðkrÞdk

�
ð∞
0

2mk2Q3C
mðu; kÞe�Q3zkJmðkrÞdk; (B5)

pmf ¼
ð∞
0

h
k21ðbC þ bMc1ÞAmðu; kÞe�Q1z þ k22ðbC þ bMc2ÞBmðu; kÞe�Q2z

i
kJmðkrÞdk: (B6)
where the superscript m represents the mth component; Jm(*) re-
fers to the first class ofm-order Bessel functions; Am, Bm, and Cm are
the undetermined coefficients; kiði ¼ 1;2;3Þ, respectively, are the
complex fast P, slow P, and S wavenumbers in a saturated fractured
porous rock, which can be calculated using the Biot theory formulas
(Tang and Cheng, 2004; Tang et al., 2012); and parameters
ci ði¼ 1;2;3Þ are given as follows:

c1;2 ¼ �
bHs21;2 � rbCs21;2 � rf

; (B7)

c3 ¼ �rf

.
r

0
; (B8)

where si ði¼ 1;2;3Þ represent the fast P, slow P, and S waves,
respectively, which can be calculated as follows:

si ¼ ki=u ði ¼ 1; 2; 3Þ: (B9)

To satisfy the radiation condition, the uniformizing parameters
Qi ði¼ 1;3Þ are expressed as:
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Qi ¼

8><>:
�i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2i � k2

q
½ReðkiÞ> k�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2 � k2i

q
½ReðkiÞ< k�

; (B10)
and Q2 has the following form:

Q2 ¼ � i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k22 � k2

q
: (B11)
Appendix C. Fredholm integral satisfied by shear fracture
discontinuity problem

Similar to solving the normal fracture discontinuity problem in
Section 2.5.1, the first step involves deducing the characteristic
relationships between the scattered wavefield coefficients.
Substituting the general solution of Eqs. (B5) and (B6) into the
boundary conditions in Eq. (19) yields:

Cm
s ðu; kÞ ¼

8>>>>><>>>>>:
1� k21ðbC þ bMc1Þ

k22ðbC þ bMc2Þ
� k21ðbH þ bCc1Þ

2mk2

þk21ðbH þ bCc1ÞðbC þ bMc1Þ
2mk2ðbC þ bMc2Þ

9>>>>>>=>>>>>>;
Am
s ðu; kÞ
Q3

;

(C1)
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Bms ðu; kÞ ¼ �k21ðbC þ bMc1ÞAm
s ðu; kÞ

k22ðbC þ bMc2Þ
; (C2)

where the subscript "s" represents the shear-fracture discontinuity
problem. Substitute the general solution of Eqs. (B1) and (B4) into
the boundary conditions in Eqs. (20) and (19), respectively. Then,
perform some mathematical transformations, and the dual in-
tegrals for the shear fracture discontinuity can be expressed as
follows:

8>>>>>><>>>>>>:

ð∞
0

Usðu; kÞJmðkrÞdk ¼ 0; d=2< r<∞

ð∞
0

½1þ Hsðu; kÞ �Usðu; kÞJmðkrÞkdk ¼ �fsðu; rÞ; 0 � r � d=2

;

(C3)

where

Usðu; kÞ ¼ k�1EsðuÞAm
n ðu; kÞ; (C4)

Hsðu; kÞ ¼ E�1
s ðuÞk�1�L1ðu; kÞ � Fs;2ðu; kÞ

	� 1; (C5)

with:

Fs;2ðu; kÞ ¼
k21ðbC þ bMc1Þ
k22ðbC þ bMc2Þ

L2; (C6)

Liðu; kÞ ¼ 2Qi �
2k2 � k23

Q3
þ
k2i
�
2k2 � k23

�
ðbH þ bCciÞ

2mk2Q3
; i ¼ 1; 2;

(C7)

where fsðu; rÞ can be obtained using Eq. (14) into the constitutive
Eqs. (6) and (13), respectively.

Using the decomposition formula
eikix ¼ P∞

m¼0ymi
mJmðkirÞcos 4; ði ¼ 1; 3Þ and relationship w ¼

cius; ði ¼ 1; 3Þ, the function fsðu; rÞ in Eq. (C3) for P and SV waves,
respectively, can be written as follows:

f ps ðu; rÞ ¼ �ymim2u0 cos qJmðk1r sin qÞ; (C8)

f svs ðu; rÞ ¼ �ymimu0
cos 2q
sin q

Jmðk3r sin qÞ; (C9)

where the superscripts P and SV denote the incidence of P- and SV-
wave, respectively; and Es(u) can be expressed as:

EsðuÞ ¼
hbC2 � ðbH � mÞ bM i

ðc1 � c2Þk21
.
½mðbC þ bMc2Þ �: (C10)

Subsequently, convert Eq. (C3) to the Fredholm integral of the
second kind, as follows:

Fsðu; tÞ þ
ðd=2
0

Wsðu; t; ~tÞ,Fsðu; ~tÞd~t ¼ Fsðu; tÞ; 0 � t � d=2;

(C11)

where
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Wsðu; t; ~tÞ ¼
ffiffiffiffiffiffiffiffi
t,~t

p ð∞
0

Hsðu; kÞJ0:5þmðktÞJ0:5þmðk~tÞkdk; (C12)

Fsðu; tÞ ¼ � 1
tm

ðt
0

fsðu; rÞrmþ1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 � r2

p dr; (C13)

and

Usðu; kÞ ¼
ffiffiffiffiffiffi
2k
p

r ðd=2
0

ffiffiffi
~t

p
Fsðu; ~tÞJ0:5þmðk~tÞd~t: (C14)

Finally, the coefficients can be derived numerically in the same
way as for the case of the normal fracture discontinuity.
Appendix D. Numerical solution of the Fredholm integral
equation of the second kind

For both normal and shear fracture discontinuity problems, the
method followed by Guo and Gurevich (2020b) is used to numer-
ically solve the coefficients (Sherief and El-Maghraby, 2003). As
mentioned in Section 2.5.1 and Appendix C, the key to solving the
coefficients is to solve Fn;sðu; ~tÞ in the Fredholm integrals of the
second kind. First, we rewrite the integral equations as follows:

Fn;sðu;tÞþ
ðd=2
0

Wn;sðu;t;~tÞ,Fn;sðu;~tÞd~t¼ Fn;sðu;tÞ; 0� t�d
�
2;

(D1)

where

Wn;sðu; t; ~tÞ ¼
ffiffiffiffiffiffiffiffi
t,~t

p ð∞
0

Hn;sðu; kÞJ0:5þmðktÞJ0:5þmðk~tÞkdk; (D2)

Fn;sðu; tÞ ¼ � 1
tm

ðt
0

fn;sðu; rÞrmþ1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 � r2

p dr; (D3)

Un;sðu; kÞ ¼
ffiffiffiffiffiffi
2k
p

r ðd=2
0

ffiffiffi
~t

p
Fn;sðu; ~tÞJ0:5þmðk~tÞd~t; (D4)

where the subscripts "n" and "s" represent the corresponding
functions for normal and shear fracture discontinuity problems,
respectively. Discretize Eq. (D1) within the fracture radius range (0,
d/2); assuming that the number of discrete points is N, then, Eq.
(D1) can be expressed as:8<:XN

j¼1

�
Wn;s



u;

d,i
2N

;
d,j
2N

�
,
d
2N

þ dij

�9=;,Fn;s



u;

d,j
2N

�

¼ Fn;s



u;

d,i
2N

�
i ¼ 1; 2; :::; N: (D5)

The linear solution is Fn;s

�
u; d,j2N

�
; substituting it into Eq. (D4)

and drive the numerical solution of Un;sðu; kÞ. Subsequently,
compared with Eqs. (31) and (C4), the coefficients Am

n ðu; kÞ and
Am
s ðu; kÞ can be obtained.
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