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a b s t r a c t

Accurate prediction of the rate of penetration (ROP) is significant for drilling optimization. While the
intelligent ROP prediction model based on fully connected neural networks (FNN) outperforms tradi-
tional ROP equations and machine learning algorithms, its lack of interpretability undermines its cred-
ibility. This study proposes a novel interpretation and characterization method for the FNN ROP
prediction model using the Rectified Linear Unit (ReLU) activation function. By leveraging the derivative
of the ReLU function, the FNN function calculation process is transformed into vector operations. The
FNN model is linearly characterized through further simplification, enabling its interpretation and
analysis. The proposed method is applied in ROP prediction scenarios using drilling data from three
vertical wells in the Tarim Oilfield. The results demonstrate that the FNN ROP prediction model with
ReLU as the activation function performs exceptionally well. The relative activation frequency curve of
hidden layer neurons aids in analyzing the overfitting of the FNN ROP model and determining drilling
data similarity. In the well sections with similar drilling data, averaging the weight parameters enables
linear characterization of the FNN ROP prediction model, leading to the establishment of a corresponding
linear representation equation. Furthermore, the quantitative analysis of each feature's influence on ROP
facilitates the proposal of drilling parameter optimization schemes for the current well section. The
established linear characterization equation exhibits high precision, strong stability, and adaptability
through the application and validation across multiple well sections.
© 2023 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This
is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/

4.0/).
1. Introduction

Polycrystalline Diamond Compact (PDC) bit has been widely
used in oil and gas drilling because of its high rock-breaking effi-
ciency and strong formation applicability (Xiong et al., 2020). As the
exploration of underground resources gradually advances to deep
and hard formations, low rate of penetration (ROP) and high energy
consumption have become the main factors affecting the drilling
efficiency of PDC bit (Etesami et al., 2021; Mazen et al., 2021). The
fundamental problem of increasing ROP is to crack the principle
and method of efficient rock breaking and discover the influence
ineering, China University of
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law of multi-parameters and ROP (Ersoy and Waller, 1995; Garcia-
Gavito and Azar, 1994).

As early as the 1960s, some scholars researched the drilling
mechanism and established several ROP equations, such as the
Bingham equation (Bingham, 1964), Warren equation (Warren,
1987), and Soares equation (Soares et al., 2020). The most widely
used ROP equation is the modified Young's ROP equation
(Bourgoyne et al., 1986; Young, 1969), which comprehensively
considers the effects of weight on bit (WOB), rotation speed (RS), bit
wear, bottom hole pressure difference, and hydraulic parameters
on the ROP. In recent years, with the rapid development of artificial
intelligence (AI) technology, information technology, data storage
technology, and high-efficiency computing technology, a large
number of scholars began to establish an intelligent prediction
model of ROP based on artificial intelligence algorithm using big
drilling data, to mine the complex nonlinear relationship between
mmunications Co. Ltd. This is an open access article under the CC BY-NC-ND license
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Fig. 1. Schematic diagram of the FNN model.
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multi parameters and ROP (Zhang et al., 2021). Many scholars
widely use themachine learning algorithm because of its simplicity
and strong interpretability (Hazbeh et al., 2021), such as random
forest (Hegde et al., 2015), k-nearest neighbor (KNN) (Gupta et al.,
2020), support vector regression (SVR) (Abdulmalek et al., 2018),
extreme gradient boosting (XGB) (Zhou et al., 2022). Zhou et al.
(2022) established the prediction model of ROP using KNN, SVR
(Pei et al., 2022), and XGB algorithms, respectively, and found that
the intelligent prediction model of ROP based on the XGB algorithm
has the highest accuracy, 85%. Compared to the ROP equation, the
accuracy of intelligent prediction models based on machine
learning algorithms has greatly improved. However, when the
amount of drilling data is particularly large, the machine learning
algorithms are extremely prone to overfitting. Therefore, some
scholars began to try to use deep learning algorithms to establish
the prediction model of ROP, such as fully connected neural
network (FNN) (Amadi et al., 2021; Bardhan et al., 2021; Elmgerbi
et al., 2021; Lawal et al., 2021; Negara and Saad, 2020), recurrent
neural network (RNN) (Li and Samuel, 2019), long short-term
memory neural network (LSTM) (Gers et al., 2000;
Mahmoodzadeh et al., 2022), gated recurrent neural network
(GRU), etc. The deep learning models performs on big data signif-
icantly better than simple machine learning models, further
improving the prediction accuracy of ROP (Pei et al., 2023). How-
ever, artificial neural networks have many hyperparameters, and
how to find the optimal hyperparameters has become a new
challenge. Some scholars attempt to use intelligent optimization
algorithms to optimize the hyperparameters of neural networks to
establish optimal prediction models. Mahmoodzadeh et al. (2022)
and Encinas et al. (2022) established the prediction model of ROP
based on antlion optimized FNN (ALO-FNN), multiple linear sta-
tistical model (MLSM), and multiple non-linear statistical model
(MNLSM) respectively. The results show that ALO-FNN intelligent
prediction model has the best stability and fitting with the highest
prediction accuracy of 84.2%.

The intelligent ROP prediction model aims to capture the com-
plex relationship between multiple parameters and ROP. By
employing the FNN algorithm, the accuracy and stability of the
intelligent ROP prediction model are significantly improved.
However, as the hidden layers increase, the lack of explainability of
the FNN becomes more pronounced. We can only input parameters
into the artificial intelligence model and obtain the calculated re-
sults without fully understanding the calculation process, the
relative importance of each feature, and the correlations between
the parameters and ROP. The intelligent ROP prediction model may
exhibit high accuracy. However, if the prediction results cannot be
mathematically explained, it may lead to skepticism among con-
struction personnel. This lack of explainability poses a key and core
challenge for applying artificial intelligence technology in the pe-
troleum engineering domains.

The term “Explainable AI” was first coined by Van Lent et al.
(2004) to describe the ability of a training system developed for
the US Army to explain its AI-driven decisions. After years of
development, it has been successfully applied in medical treat-
ment, finance, the chemical industry, image recognition, natural
language processing, and other fields. Zhang et al. (2022) intro-
duced Explainable Artificial Intelligence (XAI) technology to
improve the transparency and interpretability of artificial intelli-
gence applications applied to audit tasks. Tsoka et al. (2022) classify
the building energy performance certificate (EPC) tags based on the
artificial neural network algorithm. With the help of XAI, some less
important input features of the FNN classification model can be
removed without seriously affecting the accuracy of the model.
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Brito et al. (2022) established a fault detection and diagnosis
method for rotating machinery based on various machine learning
algorithms. The black box model is interpreted by Shapley additive
explanation method to obtain the importance ranking of features
and perform fault diagnosis.

In oil exploration and development, most scholars focus on
combining artificial intelligence algorithms and industrial sce-
narios and less on the interpretability of models. Nasiri et al. (2021)
successfully illustrate intercorrelations between rock properties
(porosity, point load index, P-wave velocity, and Schmidt hammer
rebound number) and their representative Uniaxial compressive
strength and Young's modulus through the SHAP method. How-
ever, although there are few interpretability studies in the field of
smart drilling, there is no doubt that the interpretability of the
intelligent drilling model plays a vital role in promoting the
application of intelligent drilling.

This paper transforms the fully connected neural network (FNN)
calculation process into a linear representation by analyzing and
deriving the Rectified Linear Unit (ReLU) activation function. The
authors establish an optimal intelligent ROP prediction model
based on field drilling data. Statistical methods are then utilized to
analyze neurons' activation state and weight parameters within the
intelligent ROP prediction model. The FNN ROP prediction model is
represented linearlywithin the data similarity layer. By utilizing the
linear characterization equation, the paper provides an intuitive
display of the contribution of input features to the ROP. Moreover, a
corresponding drilling parameter optimization scheme is proposed
based on these findings.
2. Methodology

2.1. Fully connected neural network

FNN is a kind of artificial neural network, mainly composed of
three parts: input layer, hidden layer, and output layer. The number
of neurons in the input layer and output layer of FNN depends on
the number of input parameters and output parameters. The
structure of the common three-layer neural network is shown in
Fig. 1. Generally, the number of hidden layers of the FNNmodel is at
least 1, and the number of hidden layers can even exceed 10 when
the data is complex. The three-layer neural network calculation
process shown in Fig. 1 is as Eq. (1). The calculation of each neuron
in the hidden layer mainly includes linear combination and acti-
vation calculation. Normally, the output layer does not perform an
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activation calculation.

8>>>>>>>>><
>>>>>>>>>:

yini ¼ xi; i2½1;nin�

y1i ¼ 4active

  Xnin

k¼1
w1

k;i � yink

!
þ b1i

!
; i2½1;nhidden�

yout ¼
 X5

k¼1
wout

k � y1k

!
þ bouti

(1)

In Eq. (1), nin is the number of input parameters, nhidden is the
number of hidden layer neurons. w1

k;i is the weight of the output of

the neuron k of the input layer when neuron i of the hidden layer
performs linear combination, and b1i is the bias. 4active is the acti-
vation function.

The most important function of the activation function is to
convert the linear combination of neurons into nonlinear calcula-
tion so that complex data can be fitted. There are three common
activation functions: ReLU, tanh, and sigmoid. Compared with the
tanh and sigmoid activation functions, the ReLU function has the
characteristics of fast convergence. It is not easy to cause the
problem of gradient disappearance, which has been widely used in
regression problems. The calculation formula of the ReLU is shown
in Eq. (2) (Hansson and Olsson, 2017).

ReLUðxÞ¼maxð0; xÞ (2)
2.2. FNN model interpretation method

When the total number of input data samples is large, to further
simplify Eq. (1), x, w, and b are represented in vector form,
respectively, as shown in Eq. (3).8>>>>><
>>>>>:
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The rewriting vector operation form of Eq. (1) is:

y¼4active

�
xw1 þb1

�
wout þ bout (4)

The derivation of the ReLU function is shown in Eq. (5). When x
is greater than zero, DR(x) is one, andwhen x is less than zero, DR(x)
is zero. When Eq. (5) input is a vector x, the output can be recorded
as a vector DR. And x, ReLU(x), and DR(x) satisfies the relationship
in Eq. (6):

DRðxÞ¼dReLUðxÞ
dx

¼
�
1; x>0
0; x � 0 (5)

ReLUðxÞ¼x
dReLUðxÞ

dx
¼ xDRðxÞ ¼ xDR (6)

According to Eq. (6), the calculation process of ReLU can be
converted from function operation to vector calculation. The vector
DR is composed of numbers zero and one, which respectively
represent neurons in an inactive or activated state. The vector DR is
the activation vector of the neurons in the current hidden layer.
Therefore, when the activation function of the FNN model is ReLU,
Eq. (4) can be rewritten as:
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y¼
�
xw1 þb1

�
DR
�
xw1 þb1

�
wout þ bout (7)

According to the combination law, Eq. (7) can be simplified as:

y¼xw þ b (8)

In Eq. (8), w is w1DRðxw1 þ b1Þwout, and b is b1DRðxw1 þ b1Þ
wout þ bout. After deduction, when the number of hidden layers is n,
the calculation process of the FNN with ReLU as the activate func-
tion can still be simplified to the form of Eq. (8). Where w is
w1DR1w2DR2/wnDRnwout, and b is b1DR1/wnDRnwout þ
b2DR2/wnDRnwout þ /þ bnDRnwout þ bout. Where DRn is the
activation vector of the nth hidden layer, which is DRðyn�1wn þ
bnÞ.

According to Eq. (8), the output result of the FNN model with
ReLU as the activation function after multi-layer neuron calculation
is still the linear combination of input parameters, which conflicts
with the strong nonlinear fitting of the neural network (Hansson
and Olsson, 2017). However, different from the conventional
linear regression, the weight and bias parameters of the linear
combination of the FNN model show nonlinear changes with x.
Thus, the neural network can maintain a high fitting ability in a
huge data set.

Through the analysis of w, b, and DR, we can understand the
weight parameters of neural networks and the activation states of
neurons. The activation state of neurons is active or inactive, cor-
responding to one or zero in the DR. When multiple sets of x are
input, theDR vector of different input data can be obtained, and the
activation state of each neuron on each hidden layer can be coun-
ted. The model neuron's activation state should be stable when the
model converges. When the activation state of different input pa-
rameters is identical, these data can be considered to have some
similarities. The w and b intuitively show the contribution of each
feature to the ROP. When the value range difference of the feature
parameters is small, the larger the weight parameter of the feature,
the more important the feature of the model.

In addition, the rationality and reliability of the FNN ROP pre-
diction model can be analyzed by observing the changing trend of
the weights of different characteristics and comparing it with the
clear engineering mechanism. When the two are inconsistent, it is
necessary to analyze the specific data further to explore the causes
of the contradiction. According to Eq. (8), when the activation state
of the neural network is completely consistent, the weight pa-
rameters of these input parameters are also completely uniform,
which further verifies that the input parameters with the same
activation have some similarities. According to the calculation for-
mula ofw and b in Eq. (8), the weight parameters of each neuron in
the FNN model are fixed after training. The change in weight pa-
rameters of different input parameters is due to the difference in
the activation state. Therefore, we can approximate the FNN model
with ReLU as the activation function as a multiple regression pro-
cess with screening characteristics.

Fortunately, the linear representation of the FNNmodel with the
ReLU function as the activation function can be realized through the
above method, which can realize the interpretation of the intelli-
gent model and greatly simplify the understanding of non-
professionals on the intelligent drilling model. Through the linear
characterization of the FNN model with the ReLU function as the
activation function, on the one hand, we can intuitively understand
the importance of feature parameters and remove the features with
small contributions. On the other hand, the changing trend of the
target parameters with the characteristic parameters can be
analyzed to optimize the drilling parameters.
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3. Data and modeling

3.1. Drilling data analysis

To avoid the low prediction accuracy and poor reliability of the
ROP model caused by the small amount of drilling data, three
vertical wells located in the same block of Tarim Oilfield were
selected as the training data of the ROP prediction model. As shown
in Fig. 2, the Neogene Kangcun Formation (N1-2k) and Neogene
Jidike Formation (N1j) are encountered while drilling these three
vertical wells. The thicknesses of Well 1, Well 2, andWell 3 in N1-2k
are 1788, 1932, and 1656m, respectively; The thicknesses in N1j are
1136, 788, and 716 m, respectively.

During the drilling process, the GT55 series PDC bit of DBS
company and a similar bottom hole assembly (BHA) were used, and
there was no abnormal drilling accident. In addition, the N1-2k
formations of three wells are dominated by the conglomerate, with
high lithological similarity. N1j formation is mainly composed of
mudstone and siltstone.

The drilling data used in this research can be divided into five
categories: geological parameters, trajectory parameters, engi-
neering parameters, drilling fluid parameters, and drilling bit pa-
rameters. However, since this well is straight, the influence of the
trajectory on the ROP is small and can be ignored. The drilling pa-
rameters finally selected for intelligent prediction of ROP based on
drilling mechanism analysis and expert consultation are shown in
Table 1.

Geological parameters mainly include Gamma Ray (GR),
Acoustic (AC), and D index (D). GR is used to divide lithology and
reservoir, calculate formation mud content, and calculate the me-
dian of sandstone particle size. AC can be used for lithology analysis,
porosity calculation, gas reservoir and fracture zone detection, and
rock mechanical property analysis. And D can be used to detect
formation pressure. Engineering parameters include Depth, Rotary
Speed (RP), Weight on Bit (WOB), Torque (Tor), Stand Pipe Pressure
Fig. 2. Geophysical and stratigraph
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(SPP), Inlet Flow (IF), and Hook Load (HL), which are used to
characterize mechanical rock breaking and hydraulic impact during
drilling. Drilling fluid parameters include Density (Den), Viscosity
(Vis), and Plastic Viscosity (PV), which are mainly used to charac-
terize the cuttings transportation capacity of drilling fluid. Drilling
bit parameters include bit size and Bit Footage (BF). Due to the bit
sizes of these three wells, all 333.38 mm, the bit size is not used as
an input feature. The bit wear greatly impacts the ROP during
drilling, and there is no doubt that the BF is closely related to the bit
wear. Therefore, this paper uses the BF to characterize the bit wear.

3.2. Drilling data preprocess

Some drilling parameters are statistically analyzed to under-
stand the drilling data information further. As shown in Table 2, the
mean value, standard deviation (Std), maximum value (Max), and
minimum value (Min) of feature parameters are calculated,
respectively. Themean value of Depth is the largest, 3150.2, and D is
the smallest, 0.83, with a difference of 3795 times. The Std reflects
this parameter's data fluctuation, and the Depth fluctuation is the
strongest. In addition, the maximum and minimum values of
different parameters differ greatly. Therefore, before inputting the
drilling data into the ROP intelligent prediction model, it is neces-
sary to preprocess it.

Since the value ranges of different drilling parameters vary
greatly if the original parameter values are directly used for anal-
ysis, the weight of the parameters with higher values in the
regression calculation will be highlighted, and the role of the pa-
rameters with lower values will be weakened. Therefore, it is
necessary to preprocess the drilling data before establishing the
intelligent model to reduce its training time and improve its pre-
diction accuracy. As shown in Eq. (9), through the normalization
processing method, the drilling parameters can be subject to the
normal distribution with a mean value of zero and a standard de-
viation of one.
ic column map of three wells.



Table 1
Drilling parameters.

Items Parameter

Geological Gamma Ray (GR), Acoustic (AC), D index (D)
Engineering Depth, RS, WOB, Torque (Tor), Stand Pipe Pressure (SPP), Inlet Flow (IF), Hook Load (HL)
Drilling fluid Density (Den), Viscosity (Vis), Plastic Viscosity (PV)
Drilling bit Bit Footage (BF)

Table 2
Statistics of feature parameters.

Features Mean Std Min Max

Depth, m 3150.2 684 2000 4600
WOB, kN 78.17 26.33 15 170.4
RS, RPM 75.74 6.72 40 100
SPP, MPa 22.28 3.34 1.6 31.9
IF, L/s 126.2 318.9 48.33 3384
Tor, kN$m 12.15 3.33 3.27 24.5
HL, kN 1476 210.3 1017 1953
BF, m 173.8 122.7 0.00 574.0
GR (API) 89.02 12.46 44.18 139
AC, ms/m 74.83 8.99 49.91 117.9
D 0.83 0.13 0.5 1.21
Den, g/cm3 1.58 0.09 1.4 1.73
Vis, s 56.79 11.44 42 109
PV, MPa$s 27.08 8.93 13 138.33
ROP, m/h 4.67 3.58 0.4 30

Fig. 3. Scatter diagram of model complexity and MRE with different activation
functions.
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xi
0 ¼ xi � m

s
(9)

In Eq. (9), xi 0 is the normalized x, m is the average value of x, s is
the standard deviation of x.

3.3. Model establishment and evaluation

The evaluation of the FNN model should comprehensively
consider the model complexity and the test set's performance. The
complexity of the model refers to the number of variable parame-
ters in the FNN model. Mean square error (MSE), mean relative
error (MRE), and R2 are used to evaluate the performance of the
FNN model on the test set. In general, under the same model per-
formance conditions, the lower the complexity of the model, the
better the model.

Taking the 14 characteristic parameters shown in Table 1 as
input parameters and the ROP as output parameters, an intelligent
prediction model of ROP can be established based on the FNN al-
gorithm. During the establishment of the model, the hyper-
parameters to be optimized mainly include the number of hidden
layers, the number of neurons in each hidden layer, the activation
function, the learning rate, and the optimizer.

80% of the drilling data of all formations of 3 wells are randomly
selected as a training set and 20% as a test set to train and test FNN
ROP prediction models under different hyperparameters. The
learning rate of all the optimal ROP intelligent prediction models
with different activation functions is 1 � 10�3, and the optimizer is
Adam. The network structure of neural networks can be combined
in various ways. This article introduces the concept of model
complexity to characterize the impact of network structure on
model accuracy. The model complexity refers to the number of
variables involved in the training process of a neural network
model. Fig. 3 shows the change of MRE of the FNN ROP prediction
model with model complexity. With the increase in model
complexity, the MRE of the ROP prediction model with different
activation functions first decreased rapidly and then increased
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slowly. This is because, in the beginning, as the complexity of the
model increases, the fitting ability of the FNN model rises rapidly,
resulting in a rapid reduction ofMRE. All the ROP predictionmodels
with different activation functions fully exploit the hidden infor-
mation of drilling data and achieve the best fitting performance
when the complexity is 10,337. Later, with the increase of
complexity, the model is gradually overfitting, increasing the MRE
of the model.

The five-pointed star in Fig. 3 is the inflection point of the MRE
change trend line of different activation functions. It is also the
optimal model of different activation functions under the
comprehensive consideration of model complexity and MRE con-
ditions. The performance of the optimal ROP prediction model with
different activation functions is shown in Fig. 4. The structure of the
hidden layer of the optimal FNN ROP prediction model under the
three activation functions is [64, 64, 64, 16], and the complexity is
10,337. The MSE, MRE, and R2 of the FNN model with ReLU as the
activation function are 0.38, 8.52%, and 0.97, respectively. The MSE,
MRE, and R2 of the FNN model with tanh as the activation function
are 0.49, 10.22%, and 0.91, respectively. The MSE, MRE, and R2 of the
FNNmodel with sigmoid as the activation function are 0.42, 10.17%,
and 0.94, respectively. According to Figs. 3 and 4(a), the FNN
penetration rate prediction model with ReLU as the activation
function has low complexity, good prediction performance, and
strong stability and is the optimal activation function.

In addition, this paper also established the ROP prediction
model based on the Bourgoyne and Young (B&Y) equation
(Bourgoyne and Young,1974) and the RF algorithm and compared it
with the FNN model. As shown in Fig. 4(b), the performance of the
FNN model is significantly better than other models.



Fig. 4. Comparison of performance of different ROP prediction models. (a) FNN model with different activation functions, (b) different ROP prediction models.

Fig. 6. Error distribution of the FNN model.
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3.4. Model error analysis

The FNN ROP prediction model with ReLU as the activation
function was established using the optimal hyperparameters, and
the drilling data of Well 1 and Well 2 were used as the training set
to predict the ROP ofWell 3. According to Fig. 5, theMRE ofWell 3 is
7.95%, which is lower than that of the three wells. In addition, the
MRE of the Kangcun Formation is 8.63%, and the MRE of the Jidik
Formation is 6.63%. The MRE of the Jidike Formation is lower than
the average level, while the MRE of the Kangcun Formation is
higher than the average of the whole well. Nevertheless, the MREs
of the established ROP predictionmodel of different formations and
different wells are not very different.

Fig. 6 shows the error distribution of the ROP prediction model
in Well 3. The error distribution of ROP prediction in different
formations tends to be normal, and 90% of the error distribution is
in the range of�0.58 to 0.26. The error distribution conforms to the
performance of random error, which is also evidence that the
model has fully mined the hidden information of drilling data,
indicating that the prediction effect of the FNN model is good.

Fig. 7 shows the change of MRE with well depth, and the red
curve is the curve after fast Fourier transform (FFT) smoothing.
Fig. 8 compares the predicted and raw values of ROP. At some well
depths, such as 2268 and 2671m, theMRE of ROP increases sharply,
decreases to the normal level, and fluctuates normally. According to
Figs. 7 and 8, a targeted analysis of the mutation point at 2268 m
shows that the actual value of ROP at the mutation point is 2.61 m/
Fig. 5. MRE distribution of the FNN model.
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h, the predicted value is 3.66 m/h, the error is 1.05, and the relative
error is 47.9%. Although the prediction error of ROP has increased to
some extent comparable to the adjacent well point, the change of
MRE is too big. This is mainly because the actual value of ROP at this
point is small, and under the same error condition, the MRE is
larger, which leads to a sharp mutation of the MRE curve. This can
also explainwhy the MRE of the Kangcun Formation is greater than
that of the Jidik Formation.
4. Model interpretation and characterization

The training process of the FNN model is the process of error
backpropagation. With continuous training, the model's parame-
ters will gradually converge, and the model will slowly transition
from the under-fitting state to the perfect-fitting state. However,
when we improve the tolerance of the FNN model to errors, the
model error and MSE can be further reduced. At this time, the
model is often in a state of over-fitting. To analyze the activation
state of the FNN model in different model performances, the ROP
prediction models with MRE of 5%, 10%, 15%, and 20% were estab-
lished, respectively. The performance of ROP prediction models of
different MREs on Well 3 is shown in Table 4. The maximum dif-
ferences of MSE, MRE, and R2 in different formations under
different performances are 0.14, 3.61%, and 0.28, respectively. Based
on the error analysis in Section 3.4.2, we can conclude that the
prediction effects of ROP in different formations are excellent, and
the performances of the model in different layers are small.



Fig. 7. Change of MRE with well depth. Fig. 8. Comparison between predicted ROP and raw ROP.
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4.1. Neuronal activation interpretation

4.1.1. Neuronal activation of different MREs
Input the drilling data of Well 3 into the FNN ROP prediction

model of different MREs on the whole drilling data, and the acti-
vation status of neurons in the hidden layer corresponding to each
group of drilling data of Well 3 can be obtained. Although we
cannot clearly explain the meaning of each neuron, we can perform
statistical analysis on the activation status of neurons. As shown in
Fig. 9, the activation times of each neuron in the hidden layer are
counted, and the relative activation frequency of each neuron is
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calculated. The activation curve of each hidden layer of the FNN
ROP prediction model for different MREs can be obtained by
ascending the order of relative activation frequency.

According to Fig. 9, with the continuous reduction of the MRE of
the model, the relative activation frequency curve of each hidden
layer gradually approximates the activation curve when the MSE is
10%, and the relative activation frequency curves of each hidden
layer slowly tend to a stable and smooth state. Continue to increase
the MRE of the model, and the activation curves have changed
significantly and violently. And the activation frequency curve
when MRE is 5% is substantially different from that when MRE is



Table 4
FNN ROP prediction model performance of some hyperparameters.

MRE on three wells Well 3 Kangcun Formation of Well 3 Jidik Formation of Well 3

MSE MRE, % R2 MSE MRE, % R2 MSE MRE, % R2

5% 0.21 5.50 0.96 0.20 5.90 0.93 0.21 4.73 0.96
10% 0.38 10.36 0.87 0.33 10.12 0.82 0.47 10.83 0.83
15% 0.59 15.62 0.69 0.58 16.52 0.47 0.61 13.85 0.72
20% 0.83 21.82 0.43 0.81 23.04 0.24 0.85 19.43 0.52

Fig. 9. The relative neuron activation frequency of the four hidden layers. (a) The relative neuron activation frequency of hidden layer 1, (b) the relative neuron activation frequency
of hidden layer 2, (c) the relative neuron activation frequency of hidden layer 3, (d) the relative neuron activation frequency of hidden layer 4.
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10%, 15%, and 20%. In addition, it is also found that when the MRE is
higher than 10%, the relative activation frequency curves of hidden
layers 1, 2, and 3 are linear. However, when the MRE is 5%, the
relative activation frequency curves of hidden layers 1, 2, and 3 are
S-shaped. For hidden layer 4, different MREs' relative activation
frequency curves are all S-shaped.

Fig. 10 shows neurons' relative activation frequency distribution
in each hidden layer when MRE is 5%. For hidden layer 1, the
relative activation frequency of 46% of neurons was greater than
0.7; For hidden layer 2, the relative activation frequency of 89% of
neuronswas less than 0.3; For hidden layer 2, the relative activation
frequency of 82% of neurons was less than 0.35; For hidden layer 3,
the relative activation frequency of 89% of neurons is less than 0.3.

Fig. 11 shows neurons' relative activation frequency distribution
in each hidden layer when MRE is 10%. The distribution of the
relative activation frequency of neurons in hidden layers 1, 2, and 3
is relatively uniform. When the cumulative frequency is 50%, the
relative activation frequency of hidden layers 1, 2, and 3 is 0.48, 0.4,
and 0.4, respectively. However, for hidden layer 4, 73% of neurons,
the relative activation frequency is less than 0.35. The distribution
of neuron relative activation frequency in hidden layer 4 is signif-
icantly different from the other three hidden layers, possibly due to
the small number of neurons in hidden layer four and a certain
statistical error.
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Based on Figs. 10 and 11, the relative activation frequency curve
of S-type represents that the distribution of relative activation
frequency of neurons is centralized, and the relative activation
frequency of most neurons is in a small relative frequency range.
The linear relative activation frequency curve represents that the
distribution of the relative activation frequency of neurons is uni-
form, and the number of neurons with different relative activation
frequencies is equal. The activation of each neuron in the hidden
layer in the FNN ROP model is a process of screening the drilling
data. The neuronwith low relative activation frequency means that
the neuron has only activated a few drilling data, and only a few
drilling data meet the screening conditions of this neuron. On the
contrary, the neuronwith high activation frequency means that the
neuron has activated most of the drilling data, and most of the
drilling data meets the screening conditions of this neuron, which
also means that the neuron is screening a common feature.

Based on the above analysis, combined with the study of the
weight parameters of different MREs in Section 4.2.1, when the
MRE is 5%, the relative activation frequency of most neurons is low,
and the number of neurons used for mining common features is
small. Although the accuracy of the FNN ROP prediction model at
this time is higher, the model is overfitting, and the stability and
mobility of the model are low. When the MRE of the model is 10%,
the number of neurons used to capture different features is evenly



Fig. 10. Relative activation frequency distribution of neurons in each hidden layer when MRE is 5%. (a) Relative activation frequency distribution of neurons in hidden layer 1, (b)
relative activation frequency distribution of neurons in hidden layer 2, (c) relative activation frequency distribution of neurons in hidden layer 3, (d) relative activation frequency
distribution of neurons in hidden layer 4.

Fig. 11. Relative activation frequency distribution of neurons in each hidden layer when MRE is 10%. (a) Relative activation frequency distribution of neurons in hidden layer 1, (b)
relative activation frequency distribution of neurons in hidden layer 2, (c) relative activation frequency distribution of neurons in hidden layer 3, (d) relative activation frequency
distribution of neurons in hidden layer 4.
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distributed, and the screening characteristics of neurons are fully
utilized. At this time, the model is in a convergent state, which can
improve the stability andmobility of themodel under the condition
that the accuracy meets the application requirements.
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4.1.2. Neuronal activation of different formations
According to Fig. 12, when the MRE of the FNN ROP prediction

model is 10%, the relative activation frequency curves of four hid-
den layers are S-shaped, and the distribution of neuron relative
activation frequency is centralized. Compared with Fig. 9, The



Fig. 12. The relative neuron activation frequency in four hidden layers of Kangcun Formation and Jidik Formation. (a) The relative neuron activation frequency of hidden layer 1, (b)
the relative neuron activation frequency of hidden layer 2, (c) the relative neuron activation frequency of hidden layer 3, (d) the relative neuron activation frequency of hidden layer
4.
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distribution of relative neuron activation frequency in hidden
layers 1, 2, and 3 of all formations is uniform, which means that the
same neuron in the hidden layer has an obvious relative activation
frequency difference on the drilling data of different formations.
The FNN ROP prediction model established has good distinction
and fits the drilling data of different formations.
4.1.3. Similar neuronal activation
The relative activation frequency curve of each hidden layer on

the drilling data with well depth from 3255 to 3266 m is shown in
Fig. 13. The neuron activation frequency of some drilling data with similar neuron
activation states.
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Fig. 13. Compared with the S-shape relative activation frequency
curve of Jidik Formation in Fig. 12, this section's relative activation
frequency curve is Z-shape. The activation state of neurons with
relative activation frequency greater than 0 and less than 1 in the
drilling data of this well section is not completely consistent. The
number of neurons with relative activation frequency greater than
0 and less than 1 in each hidden layer is the projection length of the
transition curve of relative activation frequency from 0 to 1 on the
x-axis, which we can call the transition segment length. When the
activation state of neurons in a group of data is completely
consistent, the relative activation curve of each hidden layer is also
Z-shape, and the length of the transition segment is 0. Therefore,
the smaller the length of the transition segment, the smaller the
number of neurons with differences, and the more similar the
activation state of neurons corresponding to this group of data.

Considering the measurement error of drilling data, when the
relative activation frequency of neurons is greater than 0.9 or less
than 0.1, it is assumed that the difference in the activation state of
neurons in this group of drilling data can be ignored, and the length
of transition section is not included. In the well section from 3255
to 3266m, the length of transition segments of hidden layers 1, 2, 3,
and 4 are respectively 12, 13, 13, and 0, accounting for 18.72%,
20.31%, 20.31%, and 0% of the total number of neurons in each
hidden layer. In general, the activation difference of drilling data in
this section is small, and the activation status has a certain
similarity.

The statistics of the drilling data in this section are shown in
Table 5. The distribution of drilling features can be known from the
mean value and standard deviation (Std). This well section's most
volatile drilling feature is Tor, with the mean and variance of 11.81
and 0.86, respectively, and the Std accounting for only 7.3% of the
mean value. In addition, according to cuttings logging records, the
lithology of the formation in this section is brown argillaceous
siltstone, and the lithology also has high similarity. We can also



Table 5
Drilling data with similar activation.

No. Depth, m WOB, kN RP, RPM SPP, MPa IF,
L/s

Tor, kN$m HL, kN BF, m GR, API AC,
ms/m

D Den, g/cm3 Vis, s PV, MPa$s

1 3255 116 74 21.1 49.0 11.9 1436.9 204.7 72.5 73.8 0.8 1.7 69.4 25.9
2 3256 113 74 20.3 49.1 13.2 1435.4 205.7 74.4 79.7 0.8 1.7 69.5 26.0
3 3257 115 74 20.2 49.2 13.4 1437.5 206.7 79.6 80.6 0.8 1.7 69.6 26.0
4 3258 114 74 20.3 49.3 12.2 1436.2 207.7 76.3 84.1 0.8 1.7 69.7 26.0
5 3259 115 74 20.3 49.2 11.0 1435.1 208.7 80.4 89.7 0.8 1.7 69.8 26.0
6 3260 116 74 20.3 49.1 10.8 1436.6 209.7 80.9 86.3 0.8 1.7 69.9 26.0
7 3261 112 74 20.3 49.2 12.3 1439.3 210.7 80.8 84.8 0.8 1.7 70.0 26.0
8 3262 111 74 20.3 49.1 12.1 1440.3 211.7 83.8 81.1 0.8 1.7 69.9 26.0
9 3263 112 74 20.6 49.4 12.0 1438.7 212.7 87.5 82.1 0.8 1.7 69.8 26.0
10 3264 112 74 20.7 49.6 11.6 1436.8 213.7 84.5 78.8 0.8 1.7 69.7 26.0
11 3265 114 74 20.7 49.6 11.2 1437.7 214.7 89.3 84.4 0.8 1.7 69.6 25.9
12 3266 112 74 20.6 49.6 11.2 1440.4 215.7 78.0 82.7 0.8 1.7 69.6 25.9
13 3267 112 74 20.4 49.5 10.6 1440.2 216.7 76.8 75.3 0.9 1.7 69.5 25.9
Mean 3261 113.4 74 20.47 49.3 11.8 1437.8 210.7 80.4 81.8 0.8 1.7 69.7 25.9
Std 3.89 1.71 0 0.26 0.23 0.86 1.84 3.91 4.95 4.35 0.03 0 0.19 0.03
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infer that the similarity of neuron activation state is fundamentally
derived from the resemblance of drilling parameters.

4.2. Weight parameters interpretation

In the process of establishing the FNN ROP prediction, the input
parameters of the model are normalized. Therefore, the weight
parameters of the model need to be modified to obtain the actual
weight of the drilling parameters. The correction method is shown
in Eqs. (10) and (11).

wi ¼
w0

i
si

(10)

b¼ b0 þ
Xn
i¼1

�w0
imi

si
(11)

In Eqs. (10) and (11), w0
i is the weight parameter of the FNN

model, b0 is of the FNNmodel, si is the standard deviation of xi , mi is
the average value of xi, wi is the corrected weight parameter, and b
is the fixed bias.

4.2.1. Weight parameters of different MREs and formations
Fig. 14 shows the change of weight parameters of WOB and RS

with well depth after FFT smoothing. Like the rule of relative acti-
vation frequency, with the reduction of model MRE, the changing
trend of feature weight parameters tends to be smooth and stable
at 10% MRE and continues to reduce MRE, and feature weight pa-
rameters change dramatically.

For WOB, generally speaking, WOB and ROP are positively
correlated. When MRE exceeds 10%, only a few data weight pa-
rameters are less than 0. In comparison, when MRE is 5%, many
drilling data are negatively correlated to ROP, which is inconsistent
with existing physical principles. For RS, the weight parameters of
different MREs are the most distinct in the depth interval of 2700
and 2800 m. However, the RS in this drilling interval has not
changed, so the weight parameters should not be greatly reduced
under normal fluctuation, which is not in line with reality. Based on
the above analysis, we can be sure that the established FNN ROP
predictionmodel achieves a good fitting statewhen theMRE is 10%,
and the model is over-fitting when the MRE is 5%.

Further, analyze the FNN ROP prediction model with MRE of 5%
and 10%, and the statistical information of the correction weight
parameters of the FNN ROP prediction model is shown in Table 6.
The MRE of the model and the classification of the formation have a
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great influence on the weighting parameters of the drilling char-
acteristics. When the MRE of the FNN ROP prediction model is 5%,
on the drilling data of all formations, the input features with the
largest fluctuation of the weight parameters are GF, BF, and AC.
Their mean values are 1.93 � 10�4, 4.25 � 10�3, and 2.95 � 10�4.
The standard deviation is 10.78 � 10�4, 17.55 � 10�3, and
10.34 � 10�4, respectively, and the standard deviation is 5.59, 4.13,
and 3.51 times the mean value. When the MRE of the FNN ROP
prediction model is 10%, on the drilling data of all formations, the
input features with the largest fluctuation of theweight parameters
are GF, BF, and AC. Their mean values are �2.11� 10�4, 0.69� 10�3,
4.13 � 10�4, and the standard deviation is 21.34 � 10�4,
29.29 � 10�3 and 19.54, respectively. The standard deviation is
10.09, 42.35, and 19.54 times the mean value.

When the weight parameters of input features are counted ac-
cording to the classification of formations, the variance of the
weight parameters of most features is reduced, and the variance of
only a few feature parameters is increased. Fig. 15 compares the
mean weight parameters of different MRE FNN ROP prediction
models on different formations. In the Kangcun Formation, the
weight parameters of HL, Den, and Vis are quite different. When the
MRE of the model is 5% and 10%, the correlation between Den and
ROP is negative and positive, and between Vis and ROP is positive
and negative. The correlation between these two parameters of the
model under different MRE and ROP is opposite. In the Jidikd For-
mation, under different MRE conditions, the weight parameters of
IF, Tor, Den, and Vis vary greatly, and the correlation between all
features and ROP is consistent. In Kangcun Formation, the number
of features with a large difference in weight parameters of the ROP
prediction model with 5% and 10% MRE is small, but the correlation
between a few features and ROP has changed. In the Jidik Forma-
tion, the correlation between all features and ROP is consistent.
4.2.2. Weight parameters of similar neuronal activation
When the activation state of neurons in a group of data is

similar, according to Eq. (8), the weight parameters of these data
also have a greater similarity. Table 7 shows the statistical infor-
mation of weighting parameters of drilling data with similar acti-
vation status. The maximum fluctuation of weighting parameters is
BF, and the minimum is SPP. The standard deviation accounts for
77.04% and 10.66% of the mean value, respectively. Most drilling
characteristics' standard deviation accounts for less than 50% of the
average value. The fluctuation of weighting parameters is small,
and the similarity is high.



Fig. 14. The change of weight parameters with well depth after FFT smoothing. (a) WOB weight parameters, (b) RS weight parameters.

Table 6
Statistics of weight parameters of FNN ROP prediction model.

Items 5% MRE 10% MRE

All formations Kangcun Jidik All formations Kangcun Jidik

Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std

Depth ( � 10�4) �7.80 7.57 �3.04 1.04 �17.10 6.03 �8.68 3.99 �7.70 3.16 �10.58 4.70
WOB ( � 10�3) 5.29 14.88 3.21 11.6 9.37 19.13 20.73 25.23 6.87 12.39 47.82 21.71
RP ( � 10�2) 9.85 3.95 8.03 2.27 13.39 4.13 12.73 4.97 11.04 4.29 16.04 4.54
SPP ( � 10�2) �9.97 4.83 �8.73 3.05 �12.38 6.47 �20.90 8.09 �17.88 6.81 �26.81 7.07
IF ( � 10�4) �50.19 17.09 �41.87 13.5 �66.44 10.48 �43.04 11.38 �43.17 12.43 �42.78 8.98
Tor ( � 10�2) 7.06 7.82 9.70 7.55 1.91 5.39 �5.78 12.67 1.76 6.25 �20.52 8.31
HL ( � 10�4) �28.17 11.74 �27.04 9.19 �30.38 15.34 �43.98 17.81 �50.14 16.76 �31.96 13.04
BF ( � 10�4) 4.25 17.55 13.34 11.4 �13.52 13.42 0.69 29.29 13.87 17.22 �25.07 30.87
GR ( � 10�3) 1.93 10.78 6.11 8.28 �6.24 10.42 �2.11 21.34 6.97 17.55 �19.86 16.33
AC ( � 10�3) 2.95 10.34 1.44 7.66 5.91 13.73 4.13 19.54 5.82 17.35 0.81 22.89
D ( � 100) �20.25 10.99 �14.64 3.70 �31.22 12.17 �21.53 13.34 �14.68 6.47 �34.92 13.15
Den ( � 10�1) �10.74 32.13 �21.47 22.9 10.24 36.78 43.56 36.81 35.34 33.59 59.61 37.55
Vis ( � 10�3) 38.20 22.92 25.85 13.3 62.34 17.98 �25.46 46.14 �55.37 17.98 33.01 22.07
PV ( � 10�2) �18.85 5.22 �17.35 5.12 �21.78 4.04 �20.38 6.32 �18.84 6.18 �23.38 5.47
Bias ( � 100) 24.34 11.47 20.40 6.27 32.03 14.92 22.01 10.32 19.11 6.73 27.67 13.33
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Fig. 15. Comparison of mean weight parameters under different MREs. (a) Mean weight parameters of Kangcun Formation, (b) mean weight parameters Jidik Formation.

Table 7
Statistics table of weights of drilling features with similar activation.

Features Mean Std 100 Std/Mean

Depth ( � 10�4) �4.62 1.96 42.51
WOB ( � 10�3) 7.69 1.60 20.76
RP ( � 10�2) 18.69 2.19 11.71
SPP ( � 10�2) �27.02 2.88 10.66
IF ( � 10�4) �39.96 6.90 17.28
Tor ( � 10�2) �7.81 6.17 79.06
HL ( � 10�4) �20.60 7.35 35.71
BF ( � 10�4) 15.74 12.13 77.04
GR ( � 10�3) �2.11 1.27 60.29
AC ( � 10�3) �1.39 1.12 80.91
D ( � 100) �53.92 11.16 20.69
Den ( � 10�1) 15.95 4.84 30.34
Vis ( � 10�3) 34.93 18.43 52.76
PV ( � 10�2) �21.96 2.98 13.59
Bias ( � 100) 41.00 15.28 37.26

Table 8
Comparison of ROP prediction performance of similar neuron activation states
drilling data.

Item MSE MRE, % R2

FNN 0.45 10.53 0.68
Linear characterization 0.24 7.28 0.83

Fig. 17. Comparison of ROP prediction of the verification data.
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4.3. Model characterization

4.3.1. Characterization of similar neuronal activation
According to the mean value of the weight parameters of the

drilling features in Tables 7 and in the drilling data of similar
neuronal activation of the section from 3255 to 3266 m, since the
variance of the weighting parameters of these drilling data is small
and the distribution of weights is relatively stable, the meanweight
value of each characteristic weighting parameter can be used to
measure the impact of the features on the ROP. The ROP calculation
equation based on the FNN ROP prediction model in this section is
established as follows:

ROP¼ �0:0005Depthþ0:0769WOBþ0:1869RS�0:2702SPP
�0:004IF� 0:0781Tor�0:0021HLþ0:0016BF
�0:0211GR�0:0139AC� 53:92D�1:595Den
þ0:035Vis�0:2196PVþ41

(12)
Fig. 16. Comparison of ROP prediction of similar neuron activation states drilling data.
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Equation (12) is this section's linear characterization of the FNN
ROP prediction. Fig. 16 is a comparison diagram of the raw ROP, the
predicted ROP of the FNN model, and the calculating ROP of the
linear characterization equation. Through linear characterization,
the ROP prediction results in this section are still highly consistent
with the raw ROP change trend.

Table 8 shows the performance of the FNN model and linear
characterization equation in this section. Compared with the FNN
model, the MSE and MRE of the linear characterization calculation
equation in this well section decreased by 0.21, 3.25%, and R2

increased by 0.15, which shows that the established linear char-
acterization equation has the characteristics of strong interpret-
ability and high accuracy.

4.3.2. Characterization application and verification
According to the linear characterization equation, the main

influencing factors of ROP can be analyzed according to the weight
parameters of the input features. However, because the value
ranges of different drilling parameters are different, conducting a
comprehensive analysis in combination with the value ranges and
weight parameters of the drilling features is necessary. In this
Table 9
Comparison of ROP prediction performance of the verification data.

Item MSE MRE, % R2

FNN 0.19 7.97 0.86
Linear characterization 0.21 7.86 0.85



Table 10
Comparison of ROP prediction performance of the other six sections.

No. Characterization equation Depth interval Lithology MSE MRE, %

1 Establishment 2020e2029 m Argillaceous siltstones 0.28 12.37
Verification 2030e2039 m 0.56 17.67
ROP increasing equation DROP ¼ � 0:0016DWOBþ 0:0922DRS� 0:1469DSPP� 0:0032DIF

2 Establishment 2320e2329 m Glutenite 0.50 10.76
Verification 2330e2339 m 0.52 12.28
ROP increasing equation DROP ¼ � 0:0019DWOBþ 0:1561DRS� 0:1825DSPP� 0:0052DIF

3 Establishment 2350e2359 m Glutenite 0.14 5.22
Verification 2360e2369 m 0.08 4.92
ROP increasing equation DROP ¼ 0:0197DWOBþ 0:1345DRS� 0:209DSPP� 0:0061DIF

4 Establishment 3033e3042 m Argillaceous siltstones 0.30 8.57
Verification 3053e3062 m 0.39 12.25
ROP increasing equation DROP ¼ 0:05DWOBþ 0:2095DRS� 0:1955DSPP� 0:0044DIF

5 Establishment 3153e3162 m Siltstone 0.32 7.51
Verification 3163e3172 m 0.64 13.73
ROP increasing equation DROP ¼ 0:084DWOBþ 0:1913DRS� 0:2451DSPP� 0:0048DIF

6 Establishment 3273e3282 m Argillaceous siltstones 0.29 11.49
Verification 3283e3292 m 0.03 4.12
ROP increasing equation DROP ¼ 0:0435DWOBþ 0:1228DRS� 0:2596DSPP� 0:0034DIF
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paper, the weight parameter is multiplied by the mean value of the
feature parameter to determine the importance of the feature
parameter. According to Tables 5 and 7, The importance order of
features is RP, Den, Vis, WOB, BF, AC, GR, IF, Tor, Depth, HL, SPP, and
Den.

According to the cuttings logging data, the lithology of the for-
mation with the well depth from 3243 to 3253 m and the lithology
of the formation with the well depth from 3255 to 3266 m are
brown argillaceous siltstones. To further verify the linear charac-
terization equation's performance, taking the formation's drilling
data with the well depth from 3243 to 3253 m as the verification
data, the ROP is calculated using Eq. (12) and compared with the
FNN ROP prediction. Fig. 17 compares the ROP of different models
on the verification data, and Table 9 shows the performance of
different models on the verification data.

On the verification data, the calculation ROP result of the linear
characterization equation is still consistent with the changing trend
of raw ROP. Compared with the FNN model, the MSE of the linear
characterization calculation equation on the verification data
increased by 0.02, and the MRE and R2 decreased by 0.11% and 0.15,
which proves that the established linear characterization equation
has high accuracy, strong stability, and strong mobility.

In the drilling process, the features that can be controlled in real
time are WOB, RS, SPP, and IF. According to Eq. (12), we can also
establish the ROP increasing equation shown in Eq. (13) to provide a
basis for optimizing drilling parameters. According to Eq. (13), in
the process of drilling from 3242 to 3266 m, when the values of
WOB, RS, SPP, and IF increase by 1, the ROP increases by 0.0769,
0.1869, �0.2702, �0.0004. Therefore, we should properly increase
the WOB and RS and reduce the SPP and IF to improve the ROP,
shorten the drilling cycle, and reduce the drilling cost.

DROP¼0:0769DWOBþ 0:1869DRS� 0:2702DSPP� 0:004DIF
(13)

Table 10 shows the results of linear characterization and veri-
fication of the FNN ROP prediction model on the drilling data of the
other six sections. The results show that the linear characterization
method proposed in this paper can realize the interpretation of the
FNN ROP model based on ensuring the performance of ROP pre-
diction, and the established linear characterization equation has
strong stability and mobility.
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5. Conclusions

An interpretation method of the FNN model with ReLU as the
activation function is proposed and applied to the intelligent pre-
diction of ROP.

(1) The FNN ROP prediction model with ReLU as the activation
function performs best.

(2) With the reduction of the MRE of the FNN model, the
neuronal activation states and the weight parameters of
input features gradually stabilize at first and then change
sharply, which is due to the gradual change of the model
from underfitting to overfitting.

(3) When the lithology and drilling data of a well section are
similar, the FNN ROP prediction model also has high simi-
larity in the activation state of neurons and the weight pa-
rameters of features in this section.

(4) In the well section with similar drilling data, the linear
characterization equation of the FNN ROP prediction model
has high prediction accuracy, strong mobility, stability, and
explainability, which can be regarded as an important
reference for drilling parameter optimization.
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