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a b s t r a c t

Pipeline isolation plugging robot (PIPR) is an important tool in pipeline maintenance operation. During
the plugging process, the violent vibration will occur by the flow field, which can cause serious damage
to the pipeline and PIPR. In this paper, we propose a dynamic regulating strategy to reduce the plugging-
induced vibration by regulating the spoiler angle and plugging velocity. Firstly, the dynamic plugging
simulation and experiment are performed to study the flow field changes during dynamic plugging. And
the pressure difference is proposed to evaluate the degree of flow field vibration. Secondly, the math-
ematical models of pressure difference with plugging states and spoiler angles are established based on
the extreme learning machine (ELM) optimized by improved sparrow search algorithm (ISSA). Finally, a
modified Q-learning algorithm based on simulated annealing is applied to determine the optimal
strategy for the spoiler angle and plugging velocity in real time. The results show that the proposed
method can reduce the plugging-induced vibration by 19.9% and 32.7% on average, compared with
single-regulating methods. This study can effectively ensure the stability of the plugging process.
© 2023 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This
is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/

4.0/).
1. Introduction

Pipeline transportation plays an important role in oil and gas
transportation. However, due to the long usage time in service,
pipeline leakage, corrosion and wax build-up may occur, which can
cause environmental damage and economic losses (Rai and Kim,
2021). Safe pipeline maintenance and repair technology are vital
for pipeline operation. Pipeline isolation plugging robot (PIPR) is
crucial to pipeline maintenance work. It can plug the pipeline
without stopping the transportation, and avoid opening holes on
the pipe wall (Lie and Muangsuankwan, 2015). At the same time, it
can work in the high-pressure environment, improving work effi-
ciency and the safety of plugging operations.

A considerable amount of researches have been performed on
pipeline isolation plugging techniques over the past few years, and
major contributions are in the field of mechanical design. The me-
chanical structure of PIPR is shown in Fig. 1. Tveit and Aleksandersen
designed a smart PIPR (Tveit and Aleksandersen, 2000), which had
been successfully applied to land and submarine pipelines. The PIPR
y Elsevier B.V. on behalf of KeAi Co
developed by T.D. Williamson (TDW) in American ranks among the
top of the world. It has successfully completed more than 120 times
for high-pressure plugging operations. Yan designed a kind of PIPR
consisted of a robot drive unit, connection unit and blocking unit,
and verified the passing ability and climbing performance by
experimental platform (Yan et al., 2020).

The performance of the PIPR is affected by many factors, such as
the structure, sealing material and motion velocity. Studies on
structural optimization and motion control of PIPR have been car-
ried out. Zhang used the numerical simulation method for
analyzing pressure fluctuation phenomenon during the plugging
process (Zhang et al., 2018). Response surface method was used to
investigate the factors of deceleration time, flow velocity and PIPR's
aspect ratio, which can provide a reference for reducing the pres-
sure fluctuation. Zhao and Hu conducted optimal design using
response surface method for reducing unsteady force effects on the
x and y directions (Zhao and Hu, 2017). And a modified genetic
algorithmwas proposed to optimize the design parameter ratios of
PIPR. Wang proposed the PID synchronous control method for
marine spherical PIPR (Wang et al., 2020), reducing the rotation
error of the plug head. Miao proposed the active disturbance
rejection control method based on the whale optimization algo-
rithm (WOA-ADRC) to control the PIPR's motion velocity when
mmunications Co. Ltd. This is an open access article under the CC BY-NC-ND license
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Fig. 1. The mechanical structure of PIPR.
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passing through girth weld (Miao et al., 2022a). However, there are
few researches on dynamic regulating control during the plugging
process, and no studies have shown the combined regulating
strategy for PIPR.

Reinforcement learning has been widely used in robot control
due to the self-learning ability. Goharimanesh designed a fuzzy
reinforcement learning controller for continuous robot
(Goharimanesh et al., 2020), and the genetic algorithmwas used to
optimize control parameters to improve the robot's stability and
trajectory tracking ability. Ignacio applied the deep reinforcement
learning control strategy to estimate adaptive multi-PID controller
parameters for mobile robots (Ignacio et al., 2020). Miao proposed
an Actor-Critic controller for PIPR to solve the speed excursions
caused by the pipeline large-scale complex deformation (Miao
et al., 2022b), which can adapt to the pipeline deformation
through self-learning. Wu developed an energy-saving control
system for PIPR (Wu et al., 2021a), in which the Q-learning algo-
rithm was used to adjust the opening of the hydraulic pump and
accumulator, the energy-saving efficiency of the plugging process
had been improved. Therefore, reinforcement learning can perform
well in dynamic regulating control for PIPR.

In our previous research (Miao and Zhao, 2022), the PIPR with
active spoiler device was proposed, and the vibration reduction
controller was established. It proved that the flow field vibration
could be reduced by adjusting the spoiler angles. However, the
plugging velocity can also affect the stability of the plugging pro-
cess (Wu and Zhao, 2019). The dynamic regulating strategy
combining spoilers and plugging velocity has not been studied.
Most previous researches conducted the single-regulating
methods, it could not fully reduce the plugging-induced vibration
during the entire plugging process.

In this paper, we propose a dynamic regulating strategy for
spoiler angle and plugging velocity to reduce the plugging-induced
vibration. First of all, the complex structure of the PIPR is simplified,
three foldable spoilers are designed on the pressure head. Nu-
merical simulations and experiments are performed to observe the
flow field vibration of plugging operation. And the influence of
spoiler angle and plugging velocity is studied. On the basis of
pressure difference measured by experiments, the mathematical
model of plugging-induced vibration and plugging states and
spoiler angles is established based on ELM, inwhich the parameters
of model are optimized by ISSA. The modified Q-learning algorithm
is designed based on simulated annealing to determine the optimal
strategy, regulating the spoiler angle and plugging velocity in real
time. Through the visual experiments, the proposed optimal
strategy is verified, which can greatly reduce the flow field
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vibration during the plugging process, compared with single-
regulating methods (only regulating the spoiler angle or plugging
velocity).

2. Simplified PIPR model with active spoiler device

The plugging-induced vibration of the PIPR is a result of multi-
physics. During the plugging operation, the fluid will decrease
rapidly as the plugging process increases. The sudden contraction
of the in-pipe flow field induces intermittent de-flow of the fluid
near the plugging area. It can cause resonance damage and wake
vortex of PIPR, resulting in a large vibration phenomenon. However,
the internal structure of PIPR model is complicated, it is not
convenient to study the changes of external flow field during the
plugging process. Therefore, a simplified model with active spoiler
device is designed, which basically restores the external form of the
traditional model, and the size is reduced based on the geometrical
similarity principle and experimental set-up.

The schematic diagram of the plugging process is shown in
Fig. 2. The simplified PIPR model is developed on the basis of pre-
vious research (Wu et al., 2021b). After the PIPR enters the pipeline,
it is driven by the pressure difference between upstream and
downstream in the pipeline (Mirshamsi and Rafeeyan, 2015). The
extremely low frequency (ELF) signal is sent by remote control
center through the signal modem. When the PIPR reached the
plugging position, the inner pneumatic cylinder drives the actuator
to move. The sliders are pushed by the push tube to slip along the
slide until they contact with the left side of the pressure head to
achieve self-locking. During this process, the sealing ring is
squeezed and expands radially. An interference fit is formed be-
tween the sealing ring and the pipe wall. When the plugging
operation is completed, the actuator releases pressure, and the slips
move to the original position until the sealing ring returns to its
original state. Then, the PIPR moves towards the downstream re-
gion until it reaches the receiving end.

During the process of plugging operation, the water hammer
phenomenon may occur, which can affect the plugging process.
Therefore, the control system of PIPR is important. As shown in
Fig. 3(a), the PIPR simplified model includes push tube, sliders,
sealing ring, and cone tube. The pneumatic control system is
designed for plugging operation and active spoiler device, as shown
in Fig. 3(b) and (c). Compared to hydraulic system, the pneumatic
system can reduce the environmental pollution. The plugging ve-
locity tracking can be achieved by controlling the pneumatic cyl-
inder's motion velocity. The chassis moves to the left under the
action of the inner pneumatic cylinder to compress the spring, then
the spoilers can open outwards to the designated angles.

3. Numerical simulation and experimental study

3.1. Numerical simulation

During the process of plugging operation, the external structure
of the PIPR will change significantly. At the same time, the annular
flow area between the PIPR and the pipeline inner wall will grad-
ually decrease, which can inevitably lead to drastic changes in the
pressure, velocity and other characteristic parameters of the flow
field around the PIPR. Therefore, numerical simulation is performed
for different plugging states using FLUENT software. The flow field
model around the PIPR is shown in Fig. 4. The structure size of PIPR
is shown in Table 1.

According to the simplified PIPR model, the axial stroke of the
plugging process is 25 mm. In order to compare with the experi-
ment, the flow medium was water. The parameters of numerical
simulation are shown in Table 2. The centerline of the PIPRmodel is



Fig. 2. The schematic diagram of the plugging process.

Fig. 3. The schematic diagram of control system: (a) PIPR simplified model; (b) Pneumatic control system; (c) The flow of active spoiler device.

Fig. 4. The flow field model around the PIPR.
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Table 1
The parameters of PIPR's structure.

Parameter Symbol Value, mm Parameter Symbol Value, mm

The length of pipeline L 1000 The diameter of sealing ring d0 37
The length of PIPR l 90 The diameter of push tube d1 33.5
The length of push tube l1 35 The diameter of cone tube d2 37
The length of cone tube l2 20 The width of sealing ring b 10
The diameter of pipeline D 50 The length of slide s0 25

Table 2
The parameters of numerical simulation.

Parameter Symbol Value Unit

Density of medium r 998.2 kg/m3

Dynamic viscosity of medium m 1.01 � 10�3 Pa$s
In-pipe reference pressure P0 5 MPa
Inlet velocity v0 2.68 m/s
Turbulence intensity Ti 3.66 %
Hydraulic diameter Hd 50 mm
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coincided with the centerline of the pipeline. The wall of the
pipeline and the PIPR is defined as the non-slip wall. The direction
of gravity is the negative y-axis. The method of combining struc-
tured grid with unstructured grid is used, and the grid near the pipe
wall and the PIPR is refined.When the number of grids exceeds 106,
the results of the numerical simulation are not affected by the
number of grids.

The velocity distribution of the symmetry plane of the pipeline
(z¼ 0) is shown in Fig. 5. The plugging states of 0%, 40%, and 95% are
selected to observe the flow field. It can be clearly observed that the
flow field near the front and rear faces of the PIPR will form a
stagnation region. When the upstream uniform fluid flows through
the front end face, due to its blocking, the fluid kinetic energy loss is
serious, and the flow velocity is sharply reduced, thus forming a
stagnation flow area on the front end face. With the increase of
plugging state, the in-pipe flow area decreases and the upstream
fluid velocity decreases, leading to the further increase of the area
of the stagnation region. This process will cause impact on the PIPR
and affect the stability of the plugging operation. Under the action
of high pressure difference, the fluid accelerates to pass through the
narrow annular space between the PIPR and the pipe wall. And the
flow velocity rises sharply to the peak, a narrow high-speed flow
region is formed near the downstream pipe wall. The high-speed
flow region merges in the downstream, and causes fluctuation in
the middle part of the pipeline, the flow velocity tends to be stable.
During the plugging process, the peak flow velocity increases
continuously, so pressure pulsation can occur at the pipe wall near
Fig. 5. The velocity distribution of different plugging states: (a) 0%; (b) 40%; (c) 95%.
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the plugging point.
For different plugging states, the flow velocity of downstream

centerline of the PIPR is shown in Fig. 6. It can be clearly observed
that the flow velocity in the downstream local region near the PIPR
is basically negative, which indicates that there is backflow in this
region. Before the plugging process reaches 80%, the length of the
backflow zone and the plugging state are in the direct ratio. With
the increase of the plugging state, the downstream velocity fluc-
tuation becomes more intense.

The total pressure distribution of the symmetry plane of the
pipeline (z ¼ 0) is shown in Fig. 7. Total pressure is the sum of static
pressure and dynamic pressure. Due to the blocking of the PIPR, the
surrounding flow field is divided into three parts: the upstream is
the high-pressure and low-velocity region, the middle is the
plugging jet region, and the downstream is the low-pressure
backflow region. With the increase of plugging state, the area of
high-pressure and low-pressure zones gradually expands, the area
of jet zone decreases. And the pressure gradient in the pipeline
increases, leading to the increasing axial force of the PIPR. There are
many scattered low-pressure centers in the downstream backflow
region, and the location of the low-pressure center is changing with
the plugging operation, and the affected zone is further diffusing. It
indicates that there is alternative formation and separation of
vortices at the tail of the PIPR during the plugging process, which
can cause pressure pulsation.

The drag coefficient can reflect the force state of the PIPR in the
flow field, it can be expressed as Eq. (1). Fig. 8 shows the axial drag
coefficient and radial drag coefficient during the plugging process.
The axial drag coefficient has been increasing since the plugging
operation. It changes steadily in 0%e80% of the plugging process.
However, when the plugging state reaches 80%, the resistance in-
creases by an order of magnitude. Therefore, the PIPR will be sub-
jected to the high axial impact force at the end of the plugging
operation, posing a potential threat to the plugging operation. The
radial drag coefficient fluctuateswith the increase of plugging state,
and the fluctuation amplitude increases in the later plugging
Fig. 6. The flow velocity of downstream centerline.



Fig. 7. The total pressure distribution of different plugging states: (a) 0%; (b) 40%; (c)
95%.
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period. The results show that there is periodic vortex shedding on
the surface of the PIPR, whichwill cause the destructive vibration of
the PIPR.

Cd ¼ Fd
1
2 ru

2A
(1)

where Fd is the resistance of the object; r is the medium density; A
is the cross-sectional area of the object perpendicular to the di-
rection of flow motion; u is the mainstream velocity.
3.2. Dynamic plugging experiment

3.2.1. Experimental set-up
Through the results of numerical simulation, plugging-induced

vibration is gradually intense with the plugging process. In order
to observe the flow field vibration for different spoiler models, an
experiment of dynamic plugging is designed for the simplified PIPR
model with spoiler device, as shown in Fig. 9. During the experi-
ment, the hydraulic pump inputs the medium into the pipe. In-pipe
flow is adjusted by the throttle valve to make it reach the preset
value. In order to facilitate adjustment, stepper motor is used to
control the plugging process. When the medium in the pipe flows
stably, the stepper motor is started to drive the ball screw, thereby
making the PIPR perform the plugging operation. The pulse signal
of the controller is adjusted to change the stepper motor's speed to
adjust the plugging velocity of the PIPR. The pressure head with the
spoilers of the PIPR is changed to repeat the above experimental
steps. In order to observe the flow field conveniently, the trans-
parent pipeline of organic glass is selected. Considering the pres-
sure bearing capacity of the pipeline, the in-pipe reference pressure
is 5 kPa.
Fig. 8. The drag coefficient during the plugging process:
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3.2.2. Experimental results
Three pressure monitoring points are set on the pipe around the

PIPR. Point A is the upstream of the plugging, point B is the plugging
position, and point C is the downstream of the plugging. And the
interval between the monitoring points is 100 mm. Experiments
are carried out on seven different spoiler models with spoiler an-
gles of 0�, 30�, 60�, 90�, 120�, 150�, and 180�, respectively. And the
axial plugging velocity is 2.2 mm/s. In order to observe the fluc-
tuation of the flow field more intuitively, a high-speed camera is
used to record the fluctuation of the PIPR's tail region. The flow field
state of the spoiler model with the spoiler angle of 30� is shown in
Fig. 10. The fluctuationwhich is greater than 2 mm is defined as the
effective fluctuation, and the sum of the effective fluctuations is
used to measure the flow field oscillation. When the plugging
process is 10%, 30%, 50% and 70%, the sum of effective fluid fluc-
tuations is 7.25, 8.65, 11.45 and 15.25 mm respectively. It can be
seen that with the increase of the plugging process, the fluctuation
of the flow field gradually increases. When the plugging operation
is completed with 70%, the flow field has already appeared a rela-
tively large oscillation.

The pressure curves of monitoring points of 0� and 30� spoiler
model are shown in Fig. 11. It can be seen that, during the plugging
process, the upstream pressure continues to increase, while the
downstream pressure gradually decreases, and finally negative
pressure occurs. The midstream region is the concentrated zone of
plugging operation. This region changes from upstream to down-
stream, and the pressure first decreases and then increases. During
the plugging process, the pressure difference between upstream
and downstream increases gradually, causing pressure pulsation
around the PIPR, leading to destructive vibration to the pipeline and
PIPR. And the plugging-induced vibration of different spoiler angles
is different.

Fig. 12 shows the pressure difference between upstream and
downstream (DP¼PA�PC) under different axial plugging velocities.
It can be seen that the variation trend of pressure difference is
basically same. The final value reaches almost the same level.
However, under different plugging velocities, the changing rate of
pressure difference is quite different, which will cause severe
pressure impact in the pipeline.
4. Dynamic plugging regulating strategy

4.1. Regulating strategy based on modified Q-learning algorithm

Through numerical simulation and experiment, flow field vi-
bration is serious during the plugging process. And the spoiler
angle and plugging velocity can affect the flow field. Therefore, we
propose a dynamic plugging regulating strategy based on modified
Q-learning algorithm. The Q-learning algorithm is one of the
commonly used algorithms in reinforcement learning. It introduces
(a) Axial drag coefficient; (b) Radial drag coefficient.



Fig. 9. Experimental set-up of dynamic plugging: (a) Schematic diagram; (b) Prototype of the experimental device.

Fig. 10. The flow field state of the spoiler model with the spoiler angle of 30�: (a) 10%; (b) 30%; (c) 50%; (d) 70%.

Fig. 11. The pressure curves of monitoring points: (a) 0� spoiler model; (b) 30� spoiler model.
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Fig. 12. The pressure difference of different axial plugging velocities.
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the state-action value function to evaluate the current executed
action, and the maximum state-action value function at the next
moment is used as the basis (Rahman et al., 2018). The value
function is constantly updated during the iterative process, and its
form is shown in Eq. (2).

Qðst ; atÞ)Qðst ; atÞ þ aðrtþ1 þg max Qðstþ1; atÞ�Qðst ; atÞÞ
(2)

where Q(st, at) is the state-action value function of the agent per-
forming the action at in the st state; a is the learning rate, which
determines the size of the value function, and it is set to 0.01; g is
the discount factor, which indicates that the value function's
attention degree to the future, it is set to 0.9; rtþ1 is the instanta-
neous reward value at the next time; Q(stþ1, at) is the state-action
value function of the action at the next time.

Traditional Q-learning algorithm is difficult to balance the
exploration and utilization for information. Too much exploration
will reduce the convergence speed, but toomuch utilization cannot
estimate the optimal reward well, and it is easy to fall into local
optimum (Andrea et al., 2020). In order to balance the “exploration-
utilization” process, the simulated annealing algorithm is intro-
duced to improve the Q-learning algorithm. The simulated
annealing algorithm is based on the Metropolis criterion. This
method accepts the optimal solution with a certain probability. At
the same time, it also accepts the non-optimal solution with a
certain probability, which is of great significance for jumping out of
the local optimum. In this study, we used the modified Q-learning
algorithm to regulate the spoiler angle and plugging velocity during
the plugging process, as shown in Fig. 13. The PIPR is used as an
agent, the flow field is set as the algorithm environment. The cur-
rent state and next action are obtained by observing the flow field
Fig. 13. The flowchart of dynamic
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environment, and the decision is made according to the reward,
thereby updating the Q-table. Based on the experimental results in
Section 3.2.2, the spoiler angle can affect the pressure difference
(DP), and the plugging velocity mainly affects the changing rate of
the pressure difference (DP/Dt). Therefore, the DP and DP/Dt are
used as the feedback of flow field state.

4.1.1. State space
In the modified Q-learning algorithm, the plugging state x,

spoiler angle a and plugging velocity v are used as status inputs. The
plugging state x is 0e95%, the spoiler angle a is 0e180�, and the
plugging velocity v is 0.02e2mm/s. The three inputs are discretized
into multiple values, as shown in Eqs. (3)e(5). The plugging state is
selected with the interval of 1%, which is a sequential state.
Considering the safety of experiment, the numerical simulation and
experiment both stop at the 95% of plugging process. The spoiler
angle is set as the same as the experiment. And the plugging ve-
locity is divided into ten values. According to the plugging velocity
and spoiler angle in each plugging process, the state can be
uniquely determined.

x¼f0%;1%;2%;/;94%;95%g (3)

a¼f0�;30�;60�;90�;120�;150�;180�g (4)

v¼f0:02;0:04;0:08;0:12;0:16;0:2;0:4;0:8;1:6;2g (5)

4.1.2. Action space
The action space includes the change of the spoiler angle and

the change of the plugging velocity during the plugging process.
The above variables are continuous quantities, which are dis-
cretized into a series of fixed values. Due to the uneven distribution
of state quantities, they are encoded. The spoiler angle is encoded
as 0e6 to represent the seven angles in Eq. (4). The plugging ve-
locity is encoded as 0e9 to represent the ten velocity values in Eq.
(5). So the action space can be defined as the changing quantities, as
shown in Eq. (6). And the constraint is set to prevent the variables
out of range. Any combination of the changing values corresponds
to an action strategy.

a¼fDa;Dvg (6)

where Da is the change of the spoiler angle, which is the range
of �6~6; Dv is the change of the plugging velocity, which is the
range of �9~9.

4.1.3. Reward function
Reasonable reward function is crucial for the reinforcement

learning algorithm, which can affect the choice of action strategy.
The DP and DP/Dt can show the pressure fluctuation and plugging-
plugging regulating strategy.
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induced vibration of the plugging process. To ensure the astrin-
gency of algorithm, the coefficients are introduced, as shown in Eq.
(7). The agent is trained to obtain the largest accumulated reward,
that is, to minimize the weighted value of DP and DP/Dt.

r¼ �
�
l1DPþ l2

DP
Dt

�
(7)

where l1 and l2 are the coefficients, which are 0.01 and 1.
4.1.4. Modified Q-learning algorithm
Traditional Q-learning algorithm used the e-greedy policy to

make decisions (Konda et al., 2020), as shown in Eq. (8). It can
accept the optimal solution with fixed probability, which can bal-
ance the exploration and utilization with a certain degree. The
simulated annealing algorithm is based on Metropolis criterion
(Huo et al., 2020). It introduces cooling strategy into the algorithm
instead of e-greedy policy. In the initial stage, the temperature value
T is high, and the probability of accepting the non-optimal solution
is very high. As the temperature gradually decreases, the proba-
bility of accepting a better solution becomes higher and higher.
When the temperature approaches 0, it can only accept the optimal
solution. Therefore, the simulated annealing algorithm is likely to
converge to the optimal solution. And it can ensure the conver-
gence of the iteration better than the e-greedy policy. The flowchart
of modified Q-learning algorithm is shown in Table 3.

probðatÞ ¼
�
1� ε if a ¼ argmaxQðst ; atÞ

ε others (8)

where prob is the probability of action; e is the greedy, which is set
to 0.1.

In the simulated annealing algorithm, the cooling strategy has a
great impact on the final results. The cooling strategies commonly
used are: logarithmic cooling strategy, rapid cooling strategy,
straight-line cooling strategy, and isotropic cooling strategy, as
shown in Eqs. (9)e(12).

Tk ¼
l

logð1þ kÞT0 (9)

Tk ¼
l

1þ k
T0 (10)
Table 3
The flowchart of modified Q-learning algorithm.

Modified Q-learning algorithm:

1 Initialize starting temperature T0, current temperature T, strategy p

2 For each episode, do:
3 The initial state is s0, which is set as the current state st of the agent
4 Let T0 ¼ T
5 Execute each step in each cycle:
6 According to the current state st of the agent, randomly select an action ar from th
7 According to the current state st of the agent, select an action ap according to the s
8 Randomly generate a number d uniformly distributed between (0, 1)
9 Calculate p ¼ exp[(Q(s, ar)�Q(s, ap))/T], compare pwith the random number d accor

ar ¼ at; otherwise, keep the current action unchanged
10 The agent performs action at, the state changes from st to stþ1, and the agent recei
11 According to Eq. (8), the current state-action value function Q(s, a) of the agent is
12 Determine whether the state stþ1 is the target state of the agent. If not, end the lea
13 According to the cooling strategy, the temperature T is cooled down, the learning
14 Execute until all desired number of cycles have been learned
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Tk ¼
�
1� k

K

�
� lT0 (11)

Tk ¼ lkT0 (12)

where T0 is the initial temperature value; k is the number of iter-
ations; Tk is the temperature value at the k-th iteration; l is the
cooling parameter, which is the range of 0e1, it is usually set as a
constant value close to 1.
4.2. Pressure difference model based on ISSA-ELM

4.2.1. The structure of ELM model
Based on the previous research (Miao et al., 2022c), the pressure

difference can be used as an index for measuring flow field vibra-
tion. ELM is a feedforward neural network algorithm of single
hidden layer (Huang et al., 2005), the structure is shown in Fig. 14.
Its initial weight w and threshold b are randomly generated, and
only the output matrix H and output weight b are calculated in the
learning process. This method has strong nonlinear decoupling
ability and fewer parameters. And it has faster training speed and
better generalization performance than artificial neural network
(ANN). The mathematical model of ELM is shown in Eq. (13).

ti ¼
XL
i¼1

bigðwi , xi þ biÞ; xi 2Rn;wi 2Rn; bi2Rm (13)

where ti is the output result; bi is theweight of the hidden layer and
the output layer; g is the activation function;wi is theweight vector
between input and output; bi is the bias vector; xi is sample data.

Based on the experimental data, the inputs of the ELMmodel are
e action set A
trategy p, and use it as the current action at, let ap ¼ at

ding to the Metropolis criterion. If p>d, action ar is selected as the current action at,

ves the immediate reward value rt returned by the environment
updated using the reward value rt obtained in the previous step
rning of this step, let t ¼ tþ1, and go to step 5; otherwise, go to the next step
of this cycle is over, let episode ¼ episodeþ1, and step 3 is executed again

Fig. 14. The structure of ELM model.
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the plugging state x and spoiler angle a, and the output is the
pressure difference DP. This model is used to calculate the reward
function and measure the plugging-induced vibration. Due to the
randomness of initial weight w and threshold b, the ELM is difficult
to achieve optimal solution. Therefore, ISSA is used to optimize the
input weight matrix and the hidden layer threshold.

4.2.2. Optimization process of ISSA
SSA is a swarm intelligence optimization algorithm based on the

behavior of sparrows foraging and evading predators (Xue and
Shen, 2020). Spotters with high fitness values are given preferen-
tial access to food and guide the flow of the entire population. The
spotters’ location update formula is as follows:

Xtþ1
i;j ¼

8><
>:

Xt
i;j,exp

� �i
a,Itermax

�
;R2 < ST

Xt
i;j þ Q,L;R2 � ST

(14)

where Xt
i;j is the i-th sparrow in the j dimension under the current

iteration t; a is the random number, a2(0,1]; Itermax is maximum
number of iterations; R2、ST is the alert and safe value, respec-
tively; Q is a random number, subject to standard normal distri-
bution; L is a d-dimensional matrix with one row and all elements
are 1.

The followers’ position is updated as follows:

Xtþ1
i;j ¼

8>>><
>>>:

Q,exp

 
Xt
worst � Xt

i;j

i2

!
; i>

n
2

Xtþ1
p þ

���Xt
i;j � Xtþ1

p

���,Aþ,L; i � n
2

(15)

where Xworst is currently the worst position overall; n is the total
number of sparrows, when i > n/2, the i-th sparrow is very hungry;
Xp is the best place for spotters; A is a one-row d-dimensional
matrix with random elements of 1 or �1, Aþ ¼ AT(AAT)�1.

Considering its own safety and the ability to successfully obtain
food, sparrowswill select 10%e20% individuals from the population
for reconnaissance and alert, and the location update is as follows:

Xtþ1
i;j ¼

8>><
>>:

Xt
best þ b

���Xt
i;j � Xt

best

���; fi > fg

Xt
i;j þ k

 ���Xt
i;j � Xt

worst

���
ðfi � fwÞ þ ε

!
; fi ¼ fg

(16)

where Xbest is currently the best position overall; b is the step
correction factor, subject to standard normal distribution; fi is the
fitness of the sparrow at this time, fw and fg respectively represent
the overall worst fitness and optimal fitness at this time. K is the
random number, k2(0,1); ε is the extremely small constant,
ε ¼ 10�50.

However, SSA algorithm has some problems, such as insufficient
search ability and increased probability of falling into the extreme
value space (Shi et al., 2021). Therefore, the sine-cosine strategy is
introduced to optimize the updating method of spotters’ location,
as shown in Eqs. (17) and (18). A nonlinear weight factor u is used
to adjust the dependence of the individual position update of the
population on the current individual information.

w¼ e
t

Itermax � 1
e� 1

(17)
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Xtþ1
i;j ¼

8<
:

w,Xt
i;j þ r01,sin r2,

���r3,Xbest � Xt
i;j

���;R2 < ST

w,Xt
i;j þ r01,cos r2,

���r3,Xbest � Xt
i;j

���;R2 � ST
(18)

The flowchart of ISSA-ELM model is shown in Fig. 15. Firstly,
input samples are normalized, and the parameters of ELM and ISSA
are initialized. Secondly, the fitness of each sparrow is calculated
and sorted. The optimal fitness value is the optimal position. Then,
the positions of spotters and followers are updated, and the fitness
after updating of each sparrow is calculated. Finally, the input
weight matrix wj and the hidden layer threshold bj are obtained.
And the prediction results are output.
5. Results and discussion

5.1. Results of cooling strategy

The four cooling strategies described in Section 4.1.4 are used to
improve the Q-learning algorithm, respectively. The initial tem-
perature is set to 1000 �C, the cooling parameter l is set to 0.9, and
the number of cycles is 2000. The number of iterations under the
four cooling strategies are shown in Table 4. Through comparison, it
can be seen that the rapid cooling strategy has the fastest calcula-
tion speed. And it has been verified that the algorithm can be
converged through this strategy. The curve of rapid cooling strategy
is shown in Fig. 16.
5.2. Prediction results of pressure difference model

The pressure difference data of different spoiler models under
different plugging states is obtained from dynamic plugging
experiment. A nonlinear model is established based on ISSA-ELM.
90% of the dataset is selected as the training data, and 10% of the
dataset is selected as the testing data. The population size is 30. The
maximum number of iterations is 200, and warning value is 0.6.
The ratios of spotters and followers are 0.7 and 0.3, respectively.
The proportion of the vigilantes of random distribution is 0.2. The
fitness function is the mean squared error (MSE) of testing data.

The fitness value during the iterative process of algorithm is
shown in Fig. 17. It can be seen that the fitness value shows a
downward trend. At the iterations of 124, the fitness value reaches
3 � 10�6, which is converged. This shows that ISSA algorithm has
good convergence.

The prediction value and actual value of testing data are shown
in Fig. 18. It can be seen that the prediction value is very close to the
actual value, the relative error is within 0.24%. In order to evaluate
the prediction accuracy of the model, the mean absolute error
(MAE), the mean relative error (MRE) and the root mean square
error (RMSE) are used as the evaluation indicators, as shown in Eqs.
(19)e(21). The comparison of differentmethods is shown in Table 5.
It can be seen that all the indicators of ISSA-ELM are the smallest. It
indicates that the ISSA-ELM can achieve the accurate prediction for
pressure difference.

LMAE¼
1
N

XN
i¼1

����y∧i � yi

���� (19)

LMRE¼
1
N

XN
i¼1

����y∧i � yi

����
yi

(20)



Fig. 15. The flowchart of ISSA-ELM model.

Table 4
The comparison of four cooling strategies.

Cooling strategies Logarithmic cooling Rapid cooling Straight-line cooling Isotropic cooling

Iterations 16206000 18000 44000 36000

Fig. 16. The curve of rapid cooling strategy.

Fig. 17. The fitness value of ISSA algorithm.

Fig. 18. The prediction result of ISSA-ELM model.

Table 5
The prediction effect of different methods.

Method MAE MRE RMSE

ISSA-ELM 0.016 0.002 0.016
SSA-ELM 0.046 0.003 0.059
ELM 0.072 0.005 0.110
BP 0.422 0.060 0.738
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LRMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1

�
y
∧
i � yi

�2

N

vuuut
(21)
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where ŷi and yi are the predicted and actual values of pressure
difference of the i-th point respectively; N is the number of
samples.

5.3. Regulating strategy and experimental validation

After a series of iterations of the modified Q-learning algorithm,
the optimal regulating strategy is obtained. The spoiler angle
strategy and plugging velocity strategy during the plugging process
are shown in Fig. 19. As described in Section 4.1.1, the dynamic
plugging process is discretized with the interval of 1%. For the
spoiler angle, in the early stage of plugging process, the angle value
is 30�. And in the medium and later stage, the angle value is 0� and
120�, respectively. For the plugging velocity, in the plugging process
of 0e79%, the plugging velocity is 0.8 mm/s. In the plugging state of
80%, the plugging velocity is the largest as 1 mm/s. In the later stage



Fig. 19. The optimal regulating strategy: (a) The spoiler angle strategy; (b) The plugging velocity strategy.

Fig. 20. The pressure difference of the optimal regulating strategy. Fig. 21. The pressure difference of different methods.
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of plugging operation, the plugging-induced vibration becomes
more intense, so the plugging velocity selects the smaller value, and
it reduces to 0.02 mm/s when the plugging is nearly completed.

The optimal regulating strategy obtained from the modified Q-
learning algorithm is validated by the experiment, and it is
compared with the strategy of traditional Q-learning algorithm, as
shown in Fig. 20. It can be seen that in the early stage, the pressure
difference of modified method is larger than traditional method.
But after 20 s, the pressure difference becomes smaller than
traditional method. On the whole, the pressure difference of
modified method is smaller, the average value is reduced by 24.2%
of traditional Q-learning algorithm.

In order to verify the advantage of the optimal regulating strategy,
the proposed method is compared with single-regulating methods:
only regulating the spoiler angle (the plugging velocity is 2 mm/s)
and only regulating the plugging velocity (the spoiler angle is 0�), as
shown in Fig. 21 and Table 6. It can be seen from the experimental
results of the three methods, through regulating the plugging ve-
locity, the changing rate of pressure difference can be reduced. And
through regulating the spoiler angle, the pressure difference can be
reduced. Through comparison, the optimal regulating strategy per-
forms better in reducing the plugging-induced vibration than other
two methods. For the maximum of DP, the three methods have a
small gap. But for the average value of DP, the proposed method has
reduced by 19.9% and 32.7%. For the changing rate of pressure dif-
ference, if the plugging process is a uniform movement, the
maximum and average value are much higher. And the proposed
method is the smallest. Therefore, the dynamic plugging regulating
strategy can reduce the plugging-induced vibration, ensuring the
plugging process more stable and safer.
607
6. Conclusions

This study proposes a dynamic regulating strategy for the
plugging process based on reinforcement learning. Through nu-
merical analysis and experiments, the flow field vibration caused
by plugging operation is gradually serious during the plugging
process. And from the results of the simulations and experiments,
the PIPR's spoiler angle and plugging velocity can affect the pres-
sure difference and its changing rate, which can influence the
plugging-induced vibration. Therefore, a dynamic regulating
strategy based on the modified Q-learning algorithm is developed
to regulate the spoiler angle and plugging velocity in real time.
According to the experimental results, the pressure difference
model based on ISSA-ELM is established to obtain the relationship
between spoiler angle, plugging state and pressure difference. The
prediction results show that the relative error is within 0.24%,
which performs better than other methods. The optimal regulating
strategy is validated by the experiments. The results indicate that
the average pressure difference is reduced by 24.2% compared with
traditional Q-learning algorithm. And the proposed method has
reduced by 19.9% and 32.7% of single-regulating methods, the
changing rate of pressure difference is also greatly reduced. So the
regulating strategy consisted of the spoiler angle and plugging
velocity is better than single-regulating methods. This study pro-
vides a novel approach for reducing the vibration of PIPR, which can
ensure sufficient safety during pipeline plugging operation. In
addition, the proposed method can be used to guide the pipeline
maintenance, which is of great significance for preventing envi-
ronmental pollution caused by pipeline leakage.



Table 6
The changing rate of pressure difference of different methods.

Method Maximum of DP, Pa Average value of DP, Pa Maximum of DP/Dt, Pa/s Average value of DP/Dt, Pa/s

Optimal regulating strategy 33077 11122 796 384
Only regulating the spoiler angle 33073 13877 6892 1331
Only regulating the plugging velocity 33498 16530 886 451
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