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a b s t r a c t

High-precision and real-time diagnosis of sucker rod pumping system (SRPS) is important for quickly
mastering oil well operations. Deep learning-based method for classifying the dynamometer card (DC) of
oil wells is an efficient diagnosis method. However, the input of the DC as a two-dimensional image into
the deep learning framework suffers from low feature utilization and high computational effort. Addi-
tionally, different SRPSs in an oil field have various system parameters, and the same SRPS generates
different DCs at different moments. Thus, there is heterogeneity in field data, which can dramatically
impair the diagnostic accuracy. To solve the above problems, a working condition recognition method
based on 4-segment time-frequency signature matrix (4S-TFSM) and deep learning is presented in this
paper. First, the 4-segment time-frequency signature (4S-TFS) method that can reduce the computing
power requirements is proposed for feature extraction of DC data. Subsequently, the 4S-TFSM is con-
structed by relative normalization and matrix calculation to synthesize the features of multiple data and
solve the problem of data heterogeneity. Finally, a convolutional neural network (CNN), one of the deep
learning frameworks, is used to determine the functioning conditions based on the 4S-TFSM. Experi-
ments on field data verify that the proposed diagnostic method based on 4S-TFSM and CNN (4S-TFSM-
CNN) can significantly improve the accuracy of working condition recognition with lower computational
cost. To the best of our knowledge, this is the first work to discuss the effect of data heterogeneity on the
working condition recognition performance of SRPS.
© 2023 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This
is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/

4.0/).
1. Introduction

Sucker rod pumping (SRP) is one of the most widespread and
reliable artificial-lift methods that is dominant in oil-recovery en-
gineering. In production practice, due to harsh working environ-
ment, the sucker rod pumping system (SRPS) is prone to failure
during operation, which not only affects the normal exploration of
oil fields, reduces well production rate but also increases the cost of
oil recovery (Li et al., 2018; Zhang et al., 2022). The shape of the
), zp@sia.cn (P. Zeng).

y Elsevier B.V. on behalf of KeAi Co
dynamometer card (DC) can reflect the downhole circumstances of
the SRP. Therefore, the analysis and diagnosis of SRPS are mostly
based on DC (Han et al., 2022; Lv et al., 2021b; Zheng et al., 2020).

Recently, intelligent recognition technologies such as self-
organizing competitive networks (Xu et al., 2007), radial basis
function (RBF) neural networks (Zhou et al., 2019), spectral clus-
tering (Li et al., 2015), designated component analysis theory (Han
et al., 2019; Li et al., 2013b), hidden Markov models (Zheng et al.,
2019a), and support vector machines (SVMs) (Cheng et al., 2020;
Liu et al., 2021) have been rapidly developed, particularly the deep
learning-based well condition recognition method (Abdalla et al.,
2020; Sun et al., 2022; Tian et al., 2021). These approaches have
significantly improved the accuracy of well condition recognition.
Li et al. (2013a) used the moment-curve approach to obtain the DC
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characteristics and subsequently performed working condition
identification using a modified SVM. Zheng and Gao (2017)
extracted seven geometric features using curvature and bar-
ycentric decomposition methods and used a continuous hidden
Markov model as a classifier for diagnosing well operating condi-
tions. Zhou et al. (2019) proposed an approximate polygon-based
Fourier descriptor and adopted an improved RBF neural network
to build a diagnostic model. Wang et al. (2021) suggested an
intelligent recognition model based on convolutional neural
network (CNN), which implicitly extracts features of images
through convolution and pooling operations and accomplishes well
fault diagnosis. Zhou et al. (2018) extracted 12 DC features and 7
electrical power signal features based on mechanistic analysis,
expert knowledge and priori information, used SVM for multi-view
co-training and Hessian regularization to achieve pumping well
working state identification. Pan et al. (2021) suggested a decision
fusion method based on online Bayesian techniques and Bayesian
probability formulations for the unsupervised fault detection of oil-
pumping units. The above research focuses on improving the
characterization capability of features and the classification per-
formance of models to improve diagnostic results.

However, two challenges are encountered in actual sucker rod
pumping systems. (i), deep learning-based well condition recog-
nition methods usually use the DC as an image for feature extrac-
tion and classification (Song et al., 2023; Yin et al., 2023; Zhao et al.,
2017). Different from a normal image containing complex infor-
mation, the dynamometer card consists of a closed curve with only
load and displacement data. The DC is input to the deep neural
network as an image for model training, which further increases
the computational effort. (ii), different SRPSs in the oil field have
different system parameters, and the same SRPS generates different
DCs at different moments, so the data have a certain degree of
heterogeneity, which may affect the accuracy of diagnosis to some
extent. The current working condition recognition of SRPS based on
DCs either relies on extracting features from the DCs and then using
classifiers to automatically classify the features (Lv et al., 2021c; Ye
et al., 2020; Zhou et al., 2019), or inputting the DCs as an image into
a deep neural network for working condition diagnosis (Song et al.,
2023; Yin et al., 2023; Zhao et al., 2017). Additionally, methods such
as dictionary-based transfer learning (Zhang and Gao, 2019), meta
learning (He et al., 2023a), and meta-transfer learning (Zhang et al.,
2022) have been used to solve the problem that different SRPSs in
the oilfield have different system parameters resulting in training
data that do not have similar distributions, and have achieved good
results in working condition recognition. However, all the above
methods use individual DC data for analysis, while the DC shape of
oil wells changes slowly with time, and the heterogeneity of well
data is usually ignored. At present, little research has been
mentioned on the heterogeneity of oil well data.

Therefore, efficient feature extraction to reduce the input
dimensionality of the depth model and suppress the heterogeneity
of well data are worthy of investigation. Based on the above anal-
ysis, a fault diagnostic approach based on 4S-TFSM-CNN is pro-
posed in this paper. 4S-TFSM-CNN includes two steps: feature
extraction and working condition detection. In this method, a 4S-
TFS feature is proposed to extract the graphical features of the DC,
which can significantly reduce the computing power requirements
compared with the image method. However, the issue of hetero-
geneity of well data is still ignored. A new data fusion method, 4S-
TFSM, is introduced to solve the data heterogeneity problem. Spe-
cifically, the data heterogeneity is suppressed by enhancing the
feature differences between different types of samples by subject-
ing multiple 4S-TFS to relative normalization and matrix compu-
tation. Finally, a specifically designed CNN is introduced to extract
key features from 4S-TFSM for oil well working condition detection.
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In summary, the following contributions are made in this paper.

1) To address the issue of high computational complexity due to
the input of the DC as an image to the neural network, a 4-
segment time-frequency signature (4S-TFS) extraction tech-
nique is suggested to perform feature extraction while com-
pressing the data.

2) Considering the heterogeneity problem of the well data, a 4S-
TFSM method is proposed to enhance the feature differences
between different types of samples by relative normalization
and matrix computation.

3) For the selection of features, the features that are sensitive to the
working condition categories are automatically selected by deep
learning algorithms.

The remainder of this work is arranged in the following manner.
The studies related to our research are reviewed in Section 2. The
suggested working condition identification methods are intro-
duced in Section 3. The experimental comparisons are reported in
detail in Section 4. Section 5 summarizes the conclusions and
future research of the paper.

2. Related works

The working condition recognition of SRPS is a typical classifi-
cation problem, and there are many methods of working condition
recognition of pumping machines. Feature extraction and the
classifier selection are the major dependencies of the pumping
machine working condition identification method. Liu et al. (2021)
used improved Fourier descriptors for feature extraction and SVMs
for pumping well fault diagnosis. Chen et al. (2021a) extracted 16
features by combining the working mechanism of the sucker rod
pump and identified the operating state of the sucker rod pump
using the XGBoost algorithm with high generalization capability.
Han et al. (2022) extracted five feature vectors with Freeman chain
codes, and employed an optimized density peak clustering (DPC)
method and an improved brainstorm optimization (BSO) algorithm
to achieve online diagnosis.

The feature-extraction step is critical in the defect diagnosis
procedure. High-quality features can ensure efficient and accurate
working condition identification. Although Fourier descriptors
(Zhou et al., 2019), curvilinear moments (Li et al., 2013a), wavelet
transforms (Tagirova et al., 2021), statistical features (Zheng et al.,
2019b), and other techniques have been used to extract DC fea-
tures, these approaches still suffer from computational complexity,
sensitivity to noise, and high feature dimensionality. Therefore,
powerful feature-extraction methods with high computational ef-
ficiency and low feature dimensionality need to be investigated
(Han et al., 2022).

In recent years, deep learning-based fault diagnosis methods
represented by CNNs have been proposed for the identification of
working conditions in SRPSs. Compared with methods such as
random forest (RF), k-nearest neighbors (k-NN), spectral clustering
(Li et al., 2015), and density peak clustering (DPC) (Wang et al.,
2019), deep learning techniques show extremely strong pattern
mining ability in environments with a large number of features,
low sensitivity and complex data types, and are widely used in
object detection (Yang et al., 2022), image recognition (He et al.,
2023b), behavior prediction (He et al., 2022a), 3D reconstruction
(Lee et al., 2021), visual relocalization (Chen et al., 2021b), and other
fields. In addition, deep learning-based methods can also use deep
neural networks to automatically extract image features from DCs.
Zhao et al. (2017) developed image-based CNN and data-based-
CNN approaches, and experiments revealed that recognition ac-
curacy of CNN-based methods is higher than that of machine



Fig. 1. The theoretical static load dynamometer card.
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learning algorithm represented by RF and k-NN. Song et al. (2023)
improved a GoogLeNet framework for oil well condition recogni-
tion and compared the performance with nine models such as
VGG-16, ResNet-18, DarkNet-19, and DenseNet-201, showing that
deeper neural network layers do not always correspond to higher
accuracy. Studies such as (He et al., 2022b; Sharaf, 2018; Tian et al.,
2021; Yin et al., 2023) also validated the effectiveness of image-
based CNN for well fault classification.

However, different SRPSs in the oil field have different system
parameters, and the same SRPS generates different DCs at different
moments, so the data have a certain degree of heterogeneity, which
may affect the accuracy of diagnosis to some extent. For the prob-
lem of heterogeneous data among oil wells, Lv et al. (2021a) pro-
posed an adaptive diagnostic method that uses simulated
schematic power cards generated near the target operating point as
training data and uses additional DC location features to improve
the DC features by increasing the distance between different
specimens. Zhang and Gao (2019) used dictionary-based transfer
subspace learning to build transformation matrices, allowing the
training and target data to be moved to a shared low-dimensional
subspace. Lv et al. (2021c) proposed the static apparent stiffness
features algorithm to preserve the fault information of DCs, and an
incremental algorithm and generated DCs to improve the gener-
alization capability of the support vector machine diagnostic
model. He et al. (2023a) and Zhang et al. (2022) employed a meta
learning framework using existingwell data to solve the problem of
few-shot samples of new oil well conditions. Although the above
methods address the problem that data from different wells do not
have similar distributions, they all use individual dynamometer
card data for analysis. While the shapes of DCs for a well change
slowly with time, the heterogeneity of data from the same well is
usually ignored. At present, little research has been mentioned on
the heterogeneity of oil well data. Additionally, although CNN has
powerful feature extraction and classification capabilities, the DC
directly input to the deep neural network as an image for model
training, which further increases the computational effort. There-
fore, a more accurate and efficient method for automatic well
working condition identification would be a major advancement
for promoting the construction of smart oil fields.

3. Methodology

3.1. 4S-TFS feature extraction

The theoretical DC is drawn under certain ideal conditions. The
goal is to use the theoretical DC and the actual DC for comparison,
from the differences in the graph can be determined for the
downhole pump at the working condition of the judgment. The
variation law of the static load at the suspension point is shown in
Fig. 1, and the graph is a parallelogram abcd, which is also known as
the theoretical static load DC. In this figure, the abc process is the
line of static load change in the upstroke, where ab is the loading
line. The traveling valve (TV) is closed during the loading operation,
but the standing valve (SV) is not yet open, so the pumping pump
does not pump oil. Only when the upward displacement of the
suspension point reaches point b does the SV open and begin to
suck oil. Therefore, bc is the pump suction process. The cda process
is the downstroke static load change line, where cd is the unloading
line. Again, in this process, although the suspension point moves
downward, at this time, the SV and the TV are in the closed state.
Until the end of unloading at point d, there is a relative displace-
ment between the plunger and the pump barrel, the TV is opened,
and the pump begins to delivery.

As shown in Fig. 1, the initial DC data of the well is a two-
dimensional closed curve chart formed by the load-displacement.
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Usually, two-dimensional images have more information than
one-dimensional signals, but in the parameter learning process, the
calculation quantity is too large. The Lanczos Algorithm (Cheng
et al., 2020; He et al., 2022b) is a common method for compress-
ing images. However, due to the specificity of the dynamometer
card data, the data needs to be preparatory converted and extracted
to obtain comprehensive DC information. As a result, this work
proposes a 4S-TFS feature-extraction approach with time- and
frequency-domain features. The major purpose of the 4S-TFS aims
to increase the feature-extraction capabilities by gaining a wealth
of knowledge about the working circumstances involved in various
features retrieved from each domainwhile minimizing the feature-
extraction computational cost.

Fig. 2 depicts the 4S-TFS feature-extraction flowchart. (a) shows
four points identified according to the theoretical analysis of the
dynamometer card: a;b; c and d; i.e., the load-displacement curve
is split into four segments (S1; S2; S3 and S4). Accurately extracting
the opening and closing points of the pump valve is one of the key
steps to extract the 4S-TFS features. According to the physical
meaning of the opening and closing points, the opening and closing
points of the pump valve are identified by analyzing the variation
pattern of the load slope and time relationship curve (Zhang et al.,
2021). The equation for the load slope KL is

KL ¼
DLt
Dt

¼ Ltðt þ 1Þ � LtðtÞ
Dt

(1)

where LtðtÞ is the load point of the DC at time t and Dt is the time
interval between two adjacent points of the DC. Since the relative
time intervals at the time of acquisition are equal, Dt can be set to 1
(Zhang et al., 2021). Specifically, point b is located in the region of
p1 � u1 and point d is located in the region of p2 � u2. Points p1 and
p2 are the intersection points of median load and DC curve, and
points u1 and u2 are the intersection points of median displacement
and DC curve. According to Eq. (1), the maximum point of load
slope change is obtained in each region, and the points b and d can
be determined. At this time, the loads and displacements (Lat ;D

a
t ),

(Lbt ;D
b
t ), (L

c
t ;D

c
t ), (L

d
t ;D

d
t ) are acquired for the four points a;b; c and d,

respectively. Here, Lt and Dt denote the original load and
displacement obtained by sampling with time.

After that, the upstroke load and downstroke load are sampled
using the one-dimensional nearest neighbor interpolation tech-
nique to generate a new load-displacement curve, as shown in
Fig. 2(b). Here, with displacement D as the independent variable
and load LD as the dependent variable, a new load-displacement
curve independent of time is obtained by one-dimensional near-
est neighbor interpolation. It can be expressed as follows.



Fig. 2. Flowchart of 4S-TFS feature extraction.
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LupD ¼ interp1d
�
Lupt ;Dup

t ;Dup� (2)

Ldown
D ¼ interp 1d

�
Ldown
t ;Ddown

t ;Ddown
�

(3)

Dup ¼ ½da;da þ0:01;da þ0:02;/; dc� (4)

Ddown ¼ ½dc; dc �0:01;dc �0:02;/; da� (5)

da ¼ round
�
Da
t ;2

�
(6)

dc ¼ round
�
Dc
t ;2

�
(7)

where LupD and Ldown
D denote the load after interpolation during the

upstroke and downstroke, respectively, interp 1d denotes the one-
dimensional nearest neighbor interpolation, round ðDa

t ;2Þ denotes
the retention of 2 decimal places at the displacement point Da

t , L
up
t

and Dup
t denote the original load and displacement of the up-

stroke, respectively, and Dup denotes the interpolated displace-
ment point of the upstroke process. According to the
characteristics of the actual DC displacement data, the interpo-
lation interval of displacement Dup and Ddown are set to 0:01. At
this time, the new load data LD ¼ ½LupD ; Ldown

D �, D ¼
½da; da þ0:01; da þ0:02;/;2ðdc �da þ0:01Þþ0:01� for the variation
in load LD with displacement D is acquired.

Finally, the frequency-domain features FF and time-domain
features TF of the load data that vary with displacement are cho-
sen to constitute the feature set F , where Si is the ith segment TF

and FF, f ji is the jth element of the ith feature, and J is the number of
time-frequency features of the feature set (He et al., 2023a), as
shown in Eq. (8) and Fig. 2(c).

F ¼

2
664
S1
S2
S3
S4

3
775¼

2
66666664

f 11 f 21 / f J1

f 12 f 22 / f J2

f 13 f 23 / f J3

f 14 f 24 / f J4

3
7777777775

(8)

J denotes the 23 time- and frequency-domain features selected in
this article. To obtain comprehensive information of the DC while
taking into account the non-negativity of the load data that vary
with displacement, 9 frequency-domain statistical features FF1 �
FF9 transformed by fast Fourier transform (FFT) (Cooley and Tukey,
1965) and 14 time-domain statistical features TF1 � TF14 are
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extracted from 4 segments of each curve. The FFT is based on the
radix-2 butterfly block and the fast Fourier transform yðkÞ of the
load LDðnÞ is

yðkÞ¼
XN
n¼1

LDðnÞ,Wk,n
N (9)

WN ¼ e�j 2p
N (10)

whereWN is theNth twiddle factor,N is the number of points in the
FFT, and j is the imaginary unit (Ferreira et al., 2021; He et al.,
2023a).

TF1 � TF8, TF15, TF16 are referenced as the dimensional statistics,
while TF9 � TF14 are referenced as the dimensionless statistics, as
indicated in Table 1. Table 1 shows the series LDðnÞ;n ¼ 1;2;3;…;N,
where N is the number of points after load interpolation. Consid-
ering the nonnegativity of the load-displacement data after inter-
polation, i.e., LDðnÞ>0, the first 14 time-domain features are chosen
in this paper.

In Table 2, the frequency-domain expressions of the character-
istics are displayed. The feature FF1 indicates the amplitude of vi-
bration energy in the frequency domain, the features FF2 � FF5, FF9,
FF11 � FF13 indicate the spectrum dispersion, and the feature
FF6 � FF8, FF10 indicates the major frequency band position shift.
The FFT spectrum of the load data LDðnÞ is provided by yðkÞ; k ¼ 1;
2;/;K in Table 2, where K is the number of spectrum lines and fk is
the frequency value of the kth spectrum line (He et al., 2023a; Yu
et al., 2021). The first 9 frequency-domain features are considered
in this paper, as some FF/0 or ∞.
3.2. 4S-TFSM construction

Once the 4S-TFS features of a single DC have been extracted, the
4S-TFSM of the oil well DC data can be constructed. The sensors
collect data at a certain time, and it is a common practice to
generate lDCs of these data according to the production cycle of the
pumping pump, as shown in Fig. 3(a). Themethodwe use is to form
a 4S-TFSMwith l DCs. As shown in Fig. 3(d), the signature matrixMi
of the ith segment F is generated with l DCs, in particular, by the
inner product between the l feature vector pairs of F. It can be
expressed as

Mi ¼ S1i
T
,S2i ,S

3
i
T
,/,Sli (11)

l¼2;4;6;8;/ (12)

The dimension of Mi is J� J, which is 23� 23 in this paper.
Clearly, the TFSM of each segmentMi is symmetric about the major



Table 1
Time-domain feature expression.

Feature expression

TF1 ¼ 1
N

XN

n¼1
LDðnÞ

TF5 ¼ maxðLDðnÞÞ TF9 ¼ TF2
TF15 TF13 ¼

1
N

XN

n¼1
ðLDðnÞ � TF1Þ3

ðTF8Þ3

TF2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN

n¼1
ðLDðnÞÞ2

r
TF6 ¼ minðLDðnÞÞ TF10 ¼ TF16

TF2 TF14 ¼
1
N

XN

n�1
ðLDðnÞ � TF1Þ4

ðTF4Þ2

TF3 ¼
�1
N

XN

n¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jLDðnÞj

p !2 TF7 ¼ TF5 � TF6 TF11 ¼ TF16
TF15

TF15 ¼ 1
N

XN

n¼1
jLDðnÞj

TF4 ¼ 1
N

XN

n¼1
ðLDðnÞ � TF1Þ2 TF8 ¼ ffiffiffiffiffiffiffiffi

TF4
p

TF12 ¼ TF16
TF3

TF16 ¼ maxjLDðnÞj
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diagonal of the matrix. The number of l is set to an integer multiple
of 2 in this work.

Next, just as the three red-green-blue (RGB) channels are used
to form an image, we sequentially form the four matrices M1, M2,
M3, and M4 into a 4S-TFSM which can be denoted as M ¼ ½M1;M2;

M3;M4� to represent the DC of wells, as shown in Fig. 3(e).
In particular, to prevent large differences in the values of

different features in the time-frequency feature vector, we applied
standard deviation normalization (Z-score normalization) in the
4S-TFS feature extraction and TFSM construction process, and the
Table 2
Frequency-domain feature expression.

Feature expression

FF1 ¼
PK

k¼1 yðkÞ
K FF5 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPK
k¼1 ½ðfk � FF10Þ2yðkÞ�

K

s

FF2 ¼
PK

k¼1 ½yðkÞ � FF1�2
K � 1 FF6 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPK
k¼1 ðf 2kyðkÞÞPK

k¼1 yðkÞ

vuut

FF3 ¼
PK

k¼1 ½yðkÞ � FF1�3
Kð ffiffiffiffiffiffiffiffi

FF2
p Þ3 FF7 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPK
k¼1 ðf 4kyðkÞÞPK
k¼1 ðf 2kyðkÞÞ

vuut

FF4 ¼
PK

k¼1 ½yðkÞ � FF1�4
KðFF2Þ2 FF8 ¼ FF6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPK
k¼1 ðf 2kyðkÞÞPK
k¼1 ðf 4kyðkÞÞ

vuut

Fig. 3. Flowchart of 4S-
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transformation function is

x* ¼ x� m

s
(13)

where m and s are the mean and standard deviation of the input
data x, respectively, and x can be considered as the feature set F or
the feature matrix M. In this way, the processed data conform to a
conventional normal distribution with a mean of 0 and a standard
deviation of 1, which can speed up the convergence of the training
network and improve the accuracy.
FF9 ¼
PK

k¼1 ½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jfk � FF10j

p
yðkÞ�

K
ffiffiffiffiffiffiffiffi
FF5

p FF13 ¼
PK

k¼1 ½ðfk � FF10Þ4yðkÞ�
KðFF5Þ4

FF10 ¼
PK

k¼1 ðfkyðkÞÞPK
k¼1 yðkÞ

-

TF11 ¼ TF5
TF10

-

FF12 ¼
PK

k¼1 ½ðfk � FF10Þ3yðkÞ�
KðFF5Þ3

-

TFSM construction.
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Similar to the construction of 4S-TFS and 4S-TFSM, the dyna-
mometer card curves in Fig. 3(a) and (b) can also be split into 1, 2
and 8 segments to create the 1S-TFS, 2S-TFS, and 8S-TFS in Fig. 3(c),
which in turn form the 1S-TFSM, 2S-TFSM and 8S-TFSM in Fig. 3(e),
respectively. Section 4.2 of the experimental section contains the
related experimental results.
3.3. Working condition recognition framework of SRPS

With the extraction of 4S-TFSM features, CNNs can be used for
working condition identification of SRPS. The framework of the 4S-
TFSM-CNN method proposed in this paper is shown in Fig. 4, and
the general steps are summarized as follows.

1) Data collection. The data aremeasured by dynamometer sensors
attached to the pumping rods and sent to the data center via
wireless networks. The displacement data are obtained through
the acceleration sensor by quadratic integration. Based on the
collected displacement and load data, the DC can be generated.
The dynamometer card reflects the running process of the
sucker rod.

2) 4S-TFS feature extraction. The proposed 4S-TFS feature extrac-
tion method is employed to extract the time-frequency-domain
features of each dynamometer card, and the data compression is
performed at the same time as feature extraction, which effec-
tively reduces the dimensionality of the data and solve the issue
of high computational complexity caused by the DC as a two-
dimensional image input to the neural network.

3) 4S-TFSM construction. The collected 4S-TFS data generated from
multiple DCs are used to construct 4S-TFSM by relative
normalization and matrix calculation, which can enhance the
feature differences between different working conditions and
solve the heterogeneity problem of training samples.

4) Working condition recognition. The optimal selection of fea-
tures is accomplished by a specifically designed CNN model to
automatically select 4S-TFSM features that are sensitive to the
category of working conditions. Specifically, the dataset is
Fig. 4. Framework of 4S-TFSM-CNN metho
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divided into a training set and a test set according to a certain
ratio. The CNN model is used to obtain optimal parameters
sensitive to task variation by the training set, and the test set is
used for working conditions recognition.

4. Experimental evaluation

In this part, Section 4.1 describes the data collection and pro-
cessing process. Section 4.2 presents the hyperparameter selection
and performance evaluation of the 4S-TFSM-CNNmethod proposed
in this paper. Section 4.3 compares the proposed 4S-TFSM-CNN and
4S-TFS-CNN with the traditional method image-CNN in four as-
pects of classification accuracy, model parametric number, algo-
rithm complexity and training time to verify the effectiveness of the
innovation points presented in this paper. Section 4.4 discusses the
negative impact of the heterogeneity of training samples on the
actual working condition recognition, and explains the rationality
of the innovation point by comparing 4S-TFSM-CNN with some
traditional machine learning and deep learning methods.

4.1. Data collection and processing

To demonstrate the effectiveness and performance of the pro-
posed diagnostic method, more than 100,000 DCs were collected
from an oilfield in northern China. The load and displacement data
for each dynamometer card is composed of 200 point pairs.
Generally, it is difficult to obtain multiple working conditions in a
single well. Therefore, we gathered data from nearly 1300 wells
over a period of more than 90 days. These data containedmore than
ten types of failures. To maximize the generality of the data, we
screened 8 common types of working conditions from the sensor
data of multiple wells, which are the insufficient liquid supply (ILS),
traveling valve leakage (TVL), standing valve leakage (SVL), normal
operation condition (NOC), gas interference (GIF), continuous
pumping and spraying (CPS), oil pipe leakage (OPL) and upstroke
pump bumping (UPB); the corresponding DCs are shown in Fig. 5.
For each working condition, 3500 samples were selected from
d for working condition recognition.



Fig. 5. Shapes of the dynamometer cards for 8 different working conditions. The vertical axis is the load and the horizontal axis is the displacement.
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multiple wells for the experiment. Then, the data were divided into
training and test datasets according to 6:1, i.e., 3000 training
samples and 500 test samples for each type of working condition.

Since the DCs from different wells have different load and
displacement ranges, the collected data were processed using the
Min-Max normalization method (Zhang and Gao, 2019).

D*
t ðiÞ¼

DtðiÞ �minðDtÞ
maxðDtÞ �minðDtÞ (14)

L*t ðiÞ¼
LtðiÞ �minðLtÞ

maxðLtÞ �minðLtÞ (15)

i¼1;2;3;/;200 (16)

where D*
t ðiÞ and L*t ðiÞ are the normalized displacement and load
Fig. 6. Shapes of the dynamometer cards for a well at different times. The figure shows t
displacement and the vertical axis indicating the normalized load. It is clearly seen that th
erogeneity of the data may degrade the performance of the working condition identificatio
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data, i is the point sampled with time, minðDtÞ, maxðDtÞ, minðLtÞ
and maxðLtÞ are the minimum displacement, maximum displace-
ment, minimum load and maximum load, respectively (Cheng
et al., 2020).

Fig. 6 shows the shape of the dynamometer card for awell in the
same coordinate interval at different times. It can be seen that the
shapes of the dynamometer cards are different for the same well at
different times under the same working condition. The heteroge-
neity of the data will undoubtedly reduce the accuracy of working
condition recognition.

All experiments were obtained on a desktop workstation with
Intel Core i7-10700K 3.8 GHz CPU, 64-GB RAM, GeForce RTX 3090
GPU and Ubuntu 18.04 operating system.
wo common working conditions, with the horizontal axis indicating the normalized
e DCs collected from the same well at different moments are different, and the het-
n.
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4.2. 4S-TFSM-based CNN

Neural networks solve multiclass classification problems in
machine learning. In particular, CNNs allow weight sharing and
downsampling at several stages of the network, reducing the
number of parameters and resulting in an effective architecture for
large-scale classification.

The structure and parameters of the 4S-TFSM-CNN network are
given in Table 3. During the training process, stochastic gradient
descent is used to minimize the loss according to the cross-entropy
loss function. The rectified linear unit (ReLU) activation function is
employed in the implicit layer, and softmax is applied in the output
layer to obtain a probability sum of 1 for each category and to use
the predicted category as the category with the highest probability.

The training set was used to generate 320,000 training subtasks
in the model training process, with the batch size set to 32, the
training step size set to 10,000, and the learning rate set to 0.001. To
prevent chance and specificity, 300 task data were selected in the
test set and the average test precision and standard deviation of all
tasks were obtained.

The accuracy of the oil well working condition recognition using
different numbers of DCs constituting the 4S-TFSM is shown in
Table 4. It can be seen that after feature extraction of the DC data by
4S-TFS, the highest recognition accuracy of 98.48% and the lowest
standard deviation of 0.72% were achieved with the composition of
4 DCs. The training and test processes of 10,000 times for this
scenario are shown in Fig. 7.

As shown in Fig. 7, only approximately 3000 training epochs are
needed to achieve an accuracy of nearly 98% for working condition
recognition on the test dataset, and the loss value drops to a low
level and then stabilizes around that value, which indicates that the
trained CNN has good stability and also shows that it is feasible to
train the CNN model with 3000 samples.

As described in Section 3.2, based on the 4S-TFSM with 4 DCs,
we also used 4 DCs to form the 1S-TFSM, 2S-TFSM and 8S-TFSM.
Table 5 shows the accuracy of the working condition identification
using 4 DCs under different TFSMs.

It is evident that the 1S-TFSM constructed with all interpolated
load-displacement data cannot extract enough feature information,
thus reducing the recognition accuracy. Similarly, the recognition
accuracy of splitting the dynamometer curve into 8 segments to
form the 8S-TFSM is relatively low due to the dynamometer curve
consists of only 200 points with simple features, and the sample
points are too small to extract effective time-frequency features,
which reduces the recognition accuracy of the 8S-TFSM. It is worth
mentioning that the 2S-TFSM and 4S-TFSM achieve nearly the same
result, which is due to the simple curve composition of S1 and S3 in
Fig. 3, and the two parts also belong to the upstroke load and
downstroke load, respectively, which causes the difference in the
extracted time-frequency features to not be obvious.
Table 3
The architecture of 4S-TFSM-CNN.

Layer Type Feature maps Filter size Dropout

0 Input 23 � 23 � 4 e e

1 Conv 1 23 � 23 � 32 3 � 3 e

2 Conv 2 23 � 23 � 64 3 � 3 e

3 Pool 1 12 � 12 � 64 2 � 2 e

4 Conv 3 12 � 12 � 128 3 � 3 e

5 Conv 4 12 � 12 � 128 3 � 3 e

6 Pool 2 6 � 6 � 128 2 � 2 e

7 FC 1 1 � 1 � 1024 e 0.1
8 FC 2 1 � 1 � 512 e 0.1
9 FC 3 1 � 1 � 8 e 0.1
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4.3. Performance comparison

Themethod of classifying the dynamometer cards as images has
been successfully applied to the working condition recognition of
SRPS. Inspired by this result, we conducted a comparative study of
image-CNN and the 4S-TFMS-CNN proposed in this paper. We first
draw the DC based on the sensor data and generate a 640� 480
image. Subsequently, the binarization process is performed. Finally,
the binarized image is compressed to 64� 64 and used as the input
of the image-CNN.

Different from 4S-TFSM-CNN, the input size of image-CNN is
64� 64� 1, so we added 1 maximum pooling layer between the
first and second convolutional layers. In addition, we also tried to
input load-displacement data into the neural network to generate
the data-based-CNN, and to input 4S-TFS features extracted from a
single DC into the neural network to generate the 4S-TFS-CNN. The
structure and parameters of the three neural networks are depicted
in Table 6.

The accuracies of the four methods for working condition
recognition are shown in Table 7. It is evident that the recognition
accuracy of 4S-TFS-CNN is 97.53%, which are significantly higher
than the accuracies of 96.83% and 97.39% of image-CNN and data-
based-CNN methods. Meanwhile, the standard deviation of 4S-
TFS-CNN is 0.91%, which is also lower than 1.08% and 0.99% of
image-CNN and data-based-CNN, which indicates that the 4S-TFS
feature-extraction method for a single DC can extract effective
features for CNN classification. In addition, among the four
methods, 4S-TFSM-CNN has the highest recognition accuracy of
98.48% and the lowest standard deviation of 0.72%, which dem-
onstrates that the construction of 4S-TFSM by combining multiple
DCs can solve the heterogeneity problem and improve the work
condition recognition accuracy.

Fig. 8 shows the working condition recognition accuracies of
image-CNN, data-based-CNN, and 4S-TFSM-CNN with different
training steps. Fig. 8(a) demonstrates that throughout the training
phase, the 4S-TFSM-CNN achieves similar accuracy and loss as the
image-CNN and data-based-CNN. On the test set in Fig. 8(b), the
accuracy of 4S-TFS-CNN is higher than that of the image-CNN and
data-based-CNN overall, which is consistent with the findings in
Table 7. This also illustrates that sufficient feature information can
be extracted from multiple DCs for CNN working condition recog-
nition by a 4S-TFSM, which confirms the effectiveness of the 4S-
TFSM-CNN.

In addition, Table 8 demonstrates the effects of the fourmethods
on CNN performance. It is evident that the proposed 4S-TFS-CNN
method has the least algorithmic complexity, time complexity and
training time, and the recognition accuracy is higher than that of
Image-CNN and Data-based-CNN. Comparedwith data-based-CNN,
the proposed 4S-TFSM-CNN method increases in algorithm
complexity, time complexity and training time, but the recognition
accuracy is the highest. The analysis of Tables 7 and 8 verifies that
the proposed 4S-TFSM can reduce the model complexity and
computational cost, and improve recognition accuracy.

4.4. Discussion

We used classical machine learning methods such as RF, k-NN
and SVM for prediction on the same dataset, and the results are
given in Table 9. It can be seen that image-RF (image as input
feature and RF algorithm as classifier) has the lowest expected ac-
curacy of 92.59% and 4S-TFSM-CNN obtains the highest accuracy of
98.48%. Compared with other deep learning-based methods, such
as RNN, LSTM and GRU, image-RNN has the lowest accuracy of
87.40%, while LSTM and GRU-based methods have better perfor-
mance than RNN, but the accuracy is also lower than the proposed



Table 4
Working condition recognition accuracies of the 4S-TFSM-CNN with different numbers of DCs.

Number of DCs l ¼ 2 l ¼ 4 l ¼ 6 l ¼ 8 l ¼ 10

Accuracy 98.12% ± 0.81% 98.48% ± 0.72% 97.71% ± 0.89% 98.07% ± 0.78% 97.83% ± 0.91%

Fig. 7. Training and test accuracies of the 4S-TFSM-CNN with 4 DCs.

Table 5
The accuracy of working condition recognition for different TFSMs with 4 DCs.

Method 1S-TFSM-CNN 2S-TFSM-CNN 4S-TFSM-CNN 8S-TFSM-CNN

Accuracy 95.65% ± 1.29% 98.39% ± 0.76% 98.48% ± 0.72% 97.01% ± 1.04%
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4S-TFSM-CNN method. Moreover, the classification accuracies of
RF, SVM, RNN, LSTM, GRU and CNN using 4S-TFS as input data
Table 6
The architectures for image-CNN, data-based-CNN and 4S-TFS-CNN.

Image-CNN

Layer Type Dropout Feature maps Filter size

0 Input e 64 � 64 � 1 e

1 Conv 1 e 64 � 64 � 32 3 � 3
2 Pool 1 e 32 � 32 � 32 2 � 2
3 Conv 2 e 32 � 32 � 64 3 � 3
4 Pool 2 e 16 � 16 � 64 2 � 2
5 Conv 3 e 16 � 16 � 128 3 � 3
6 Pool 3 e e e

7 Conv 4 e 16 � 16 � 128 3 � 3
8 Pool 4 e 8 � 8 � 128 2 � 2
9 FC 1 0.1 1 � 1 � 1024 e

10 FC 2 0.1 1 � 1 � 512 e

11 FC 3 0.1 1 � 1 � 8 e

Fig. 8. Training and test accuracies of image-CNN, data-base
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outperformed those of image- and data-based classification results,
which illustrates that the 4S-TFS feature extraction for a single DC
contributes to the performance improvement of working condition
recognition. In addition, the classification results of 4S-TFSM as
input data when using SVM, RNN, LSTM and CNN as classifiers also
outperformed those of the other three data as input, indicating that
feature fusion of multiple DCs can reduce data heterogeneity and
improve the working condition recognition accuracy of oil wells.
Data-based-CNN 4S-TFS-CNN

Feature maps Filter size Feature maps Filter size

2 � 200 � 1 e 4 � 23 � 1 e

2 � 200 � 32 1 � 3 4 � 23 � 32 1 � 3
2 � 100 � 32 1 � 2 e e

2 � 100 � 64 1 � 3 4 � 23 � 64 1 � 3
2 � 50 � 64 1 � 2 4 � 12 � 64 1 � 2
2 � 50 � 128 1 � 3 4 � 12 � 128 1 � 3
2 � 25 � 128 1 � 2 e e

2 � 25 � 128 1 � 3 4 � 12 � 128 1 � 3
2 � 13 � 128 1 � 2 4 � 6 � 128 1 � 2
1 � 1 � 1024 e 1 � 1 � 1024 e

1 � 1 � 512 e 1 � 1 � 512 e

1 � 1 � 8 e 1 � 1 � 8 e

d-CNN and 4S-TFSM-CNN with different training steps.



Table 7
Working condition recognition accuracies based on different methods.

Method Image-CNN Data-based-CNN 4S-TFS-CNN 4S-TFSM-CNN

Accuracy 96.83% ± 1.08% 97.39% ± 0.99% 97.53% ± 0.91% 98.48% ± 0.72%

Table 8
CNN algorithm indicators.

Method Image-CNN Data-based-CNN 4S-TFS-CNN 4S-TFSM-CNN

Feature map size 64 � 64 � 1 2 � 200 � 1 4 � 23 � 1 23 � 23 � 4
Param, MB 10.21 4.12 3.78 6.03
FLOPs, GB 43.97 5.21 4.00 24.35
Training time, min 162.15 21.83 7.32 99.02

Table 9
Overall prediction accuracy of the methods.

Classifier

RF k-NN SVM RNN LSTM GRU CNN

Feature Image 92:59% 96:89% 93:79% 87:40% 95:17% 94:59% 96:83%
Data-based 96:02% 96:99% 97:70% 93:31% 96:67% 96:69% 97:39%
4S-TFS 97:94% 96:99% 97:74% 96:89% 97:87% 98:07% 97:53%
4S-TFSM 96:57% 96:02% 97:90% 97:27% 98:00% 97:57% 98:48%

Y.-P. He, H.-B. Cheng, P. Zeng et al. Petroleum Science 21 (2024) 641e653
What exactly is the reason for the difference in recognition ac-
curacy? Which types of working conditions are more difficult to
distinguish? We visualize the dataset to better understand the data
structure. The t-distributed stochastic neighbor embedding (t-SNE)
methodology is a recently developed dimensionality reduction
method that is frequently used to visualize data. t-SNE can inte-
grate high-dimensional data in two- or three-dimensional space,
allowing related objects in the high-dimensional space to approach
each other in the low-dimensional space (Zhao et al., 2017). Fig. 9
shows the scatter plot of the sample data after it has been
embedded in two-dimensional space.

The data in categories 1 (SVL), 2 (NOC), and 6 (TVL) are depicted
as reasonably independent clusters in Fig. 9, which means that
these categories may be relatively easy to identify and classify.
Other types of samples, become entangled and mixed together,
making it impossible to distinguish between them. For example,
category 0 (ILS) and category 3 (GIF) are almost indistinguishable in
Fig. 9. t-SNE embedding in 2D space.
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the plot because their corresponding DCs are highly similar, while
category 5 (UPB) is scattered throughout the plot.

Fig. 10 shows the confusion matrix derived on the test dataset
using the four data processing approaches, image-CNN, data-
based-CNN, 4S-TFS-CNN, and 4S-TFSM-CNN. We can clearly
observe that the vast majority of samples lie on the diagonal. It is
straightforward to observe from the diagonal of the four confusion
matrices that category 0 (ILS), category 3 (GIF), category 4 (OPL),
and category 5 (UPB) are the four most difficult categories to
distinguish from each other, as these four working conditions have
the lowest classification accuracies. This is consistent with the re-
sults of the t-SNE visualization discussed in Fig. 9. The recognition
accuracy of 4S-TFSM-CNN is also higher than the remaining three
schemes in the four most difficult to distinguish categories, indi-
cating that the 4S-TFSM feature-extraction approach can weaken
the heterogeneity of the data and significantly affect the diagnosis
performance.

The heterogeneity induced by the varied distributions of data
between distinct classes, as illustrated in Fig. 10, is an important
factor limiting the recognition accuracy of our model. Here, instead
of using individual datasets as direct inputs, we use a simple syn-
thetic feature-extraction method, i.e., a feature-extraction tech-
nique that synthesizes multiple datasets.

The idea is to “synthesize” training samples from real samples
that are more suitable for deep learning to complete the classifi-
cation task by extracting time-frequency features from the feature
space of original dataset for normalization and matrix operations.
In addition, despite the high accuracy of 98.48%, we evaluate the
incorrectly classified samples from a probabilistic perspective to
assess the performance of the 4S-TFSM-CNN. We infer that some
misclassifications, such as category 5 (UPB) in Fig. 10, are attribut-
able to label ambiguity. For these samples, it may be difficult to
identify clear fault types, even for human experts, or the samples
might contain multiple fault types at the same time, thus intro-
ducing some label noise throughout the dataset.

In terms of training efficiency, CNNs may require more training
time than typical machine learning methods (e.g., RF, k-NN and
SVM) due to their processes of learning features. However, tradi-
tional machine learning methods are not friendly in the case of



Fig. 10. The confusion matrix for the prediction under different methods. The numbers on the diagonal line represent the probability of correctly categorized samples, while the
numbers on the nondiagonal line represent the probability of incorrectly classified samples. For clarity, we retain three decimal places, and the misclassification probabilities below
0.005 are not shown on the confusion matrix.
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large quantities of data. Fortunately, once trained, the network can
be recovered and utilized for model prediction multiple times, and
the training time of our proposed 4S-TFSM-CNN technique is sub-
stantially faster than that of image-CNN. Therefore, the 4S-TFSM-
CNN-based approach is efficient and feasible in real-world oil well
working condition recognition.

5. Conclusions

In this paper, a 4S-TFSM-based feature-extraction technique for
oil well DCs is proposed, and a specifically designed CNN is
employed to achieve oil well working condition recognition. The
technique uses 4S-TFS to extract DC features, which can effectively
improve the recognition accuracy of oil well conditions while
reducing the computational cost. Subsequently, 4S-TFSM is con-
structed by relative normalization and matrix calculation to
enhance the feature differences between various types of working
conditions and suppress the data heterogeneity problem. Finally, a
special CNN is designed to automatically select 4S-TFSM features
that are sensitive to working condition categories to achieve high-
accuracy identification of oil well working conditions. Experi-
mental results with a large amount of real oil well data in a field
demonstrate the effectiveness of the proposed method.

Considering the computational complexity of neural networks, a
4-layer CNN is used in this paper, although the accuracy of working
condition recognition may be higher as the number of neural
network layers increases. The DC data are generated with time
series, and in future work, we will also consider temporal con-
volutional networks (TCNs), which can use convolutional features
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while considering temporal information.
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A. Appendix

1.1. Parameter setting of RF

We mainly consider the effects of n_estimators,
min_samples_split, max_depth, max features, and
min samples leaf on the performance of RF classification, and use
GridSearchCV to automate the search for the above parameters. The
parameters are set as shown in Table A1.



Table A1
Parameter setting of RF.

Input n estimators min samples split max depth max features min samples leaf

Image 190 2 90 41 1
Data-based 190 2 50 21 1
4S-TFS 190 2 70 21 1
4S-TFSM 180 2 40 31 1
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1.2. Parameter setting of k-NN

Wemainly focus on the effects of n neighbors, weights, and p on
k-NN classification performance and use GridSearchCV to automate
the search for the above parameters. Interestingly, the four inputs
have the best classification accuracy when all three parameters are
equal to 1.
1.3. Parameter setting of SVM

For SVM, wemainly consider the effects of kernel, C, gamma and
degree on the classification performance and use GridSearchCV to
automate the search for the above parameters. The parameters are
set as given in Table A2.
Table A2
Parameter setting of SVM.

Input Kernel C Gamma Degree

Image Linear 0.001 0.0005 3
Data-based RBF 50 0.5 3
4S-TFS RBF 100 0.5 3
4S-TFSM RBF 50 0.005 3
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