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a b s t r a c t

Staggered-grid finite-difference (SGFD) schemes have been widely used in acoustic wave modeling for
geophysical problems. Many improved methods are proposed to enhance the accuracy of numerical
modeling. However, these methods are inevitably limited by the maximum Courant-Friedrichs-Lewy
(CFL) numbers, making them unstable when modeling with large time sampling intervals or small
grid spacings. To solve this problem, we extend a stable SGFD scheme by controlling SGFD dispersion
relations and maximizing the maximum CFL numbers. First, to improve modeling stability, we minimize
the error between the FD dispersion relation and the exact relation in the given wave-number region,
and make the FD dispersion approach a given function outside the given wave-number area, thus
breaking the conventional limits of the maximum CFL number. Second, to obtain high modeling accuracy,
we use the SGFD scheme based on the Remez algorithm to compute the FD coefficients. In addition, the
hybrid absorbing boundary condition is adopted to suppress boundary reflections and we find a suitable
weighting coefficient for the proposed scheme. Theoretical derivation and numerical modeling
demonstrate that the proposed scheme can maintain high accuracy in the modeling process and the
value of the maximum CFL number of the proposed scheme can exceed that of the conventional SGFD
scheme when adopting a small maximum effective wavenumber, indicating that the proposed scheme
improves stability during the modeling.
© 2023 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This

is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Numerical simulation of the seismic wave equation is of great
significance in seismic exploration. The accuracy and efficiency of
imaging (Etgen et al., 2009; Baysal et al., 1983; McMechan, 1983;
Yan and Sava, 2008; Feng and Schuster, 2017) and inversion
(Virieux and Operto, 2009; Tarantola, 1984; Vigh et al., 2014) are
largely determined by the forward numerical modeling algorithms.
Among various numerical algorithms, the finite-difference (FD)
method has gained popularity due to its simplicity and low
computational cost (Alford et al., 1974; Kelly et al., 1976; Virieux,
1984, 1986; Dablain, 1986; Levander, 1988; Liu and Sen, 2011;
Yang et al., 2014; Bansal and Sen, 2008). When applying the FD
method to solve wave equations, it is essential to discretize spatial
and temporal derivatives, leading to temporal and spatial
of Petroleum Resources and
Beijing 102249, China.
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dispersion as well as phase velocity errors (Dablain, 1986; Holberg,
1987; Fornberg, 1988; Tam and Webb, 1993; Liu and Sen, 2009).
Consequently, some false appearances may occur in the profile,
such as out-of-phase axis focus, reduction in resolution, and devi-
ation of the reflection interface from its actual position (Ren et al.,
2021). In addition to the issues mentioned above, the FD method
may suffer from instability during modeling due to the maximum
Courant-Friedrichs-Lewy (CFL) number limit (Robertsson et al.,
1994; Gaffar and Jiao, 2014; Amundsen and Pedersen, 2017). Spe-
cifically, when velocity model and grid spacing are given, the
wavefield cannot be modeled with a large time sampling interval
for a long propagation time. It is feasible to increase grid spacing or
reduce time sampling interval, whereas causes increased numerical
dispersion and computational cost. In summary, it is necessary to
reduce dispersion errors and improve stability when using the FD
method for seismic modeling.

A common method for conveniently and effectively reducing
spatial dispersion is to adjust the spatial FD coefficients. Among all
approaches for computing these coefficients, the Taylor-series
expansion (TE) method (Liu and Sen, 2009, 2013; Liu et al., 2014)
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is widely implemented with high computational efficiency, small
memory footprints and high accuracy. However, the TE method
produces large FD dispersion errors in largewavenumber areas and
requires a longer operator to meet accuracy requirements, leading
to substantial computational cost. Furthermore, as the operator
becomes longer, the accuracy might be limited by the “saturation
effect” (Kosloff et al., 2010). An effectiveway to handle this problem
is to adopt optimization methods to calculate the FD coefficients.
These optimization methods establish an objective function by
adopting either the two-norm (Zhou and Zhang, 2011; Wang et al.,
2016; Liu, 2013) or the maximum norm (Holberg, 1987; Kindelan
et al., 1990; Zhang and Yao, 2013a, 2013b) and minimize the er-
rors of phase (Jing et al., 2017) or group (Holberg, 1987) velocities or
dispersion relations within the designated bandwidth and operator
length. When utilizing the two-norm to establish an objective
function, the least-squares (LS) approximation can be used to solve
for the optimal FD coefficients in both the spatial and temporal
domains by minimizing the relative error within a given range of
wavenumbers (Liu, 2013, 2014; Wang et al., 2016). Compared with
the TE method, the LS method broadens the effective wavenumber
range and improves FD accuracy with moderate computational
costs. Additionally, Jing et al. (2017) adopt the LS method in the
wavenumber domain based on stereo-modeling (SMD) operators to
obtain optimal constant coefficients that approximate high-order
spatial partial derivatives. This method can effectively suppress
numerical dispersion even on extremely coarse grids, and can even
surpass the Nyquist sampling rate limit with small computational
errors. Ma and Yang (2017) employ the SMD operator for spatial
discretization and optimized the coefficients of symplectic parti-
tioned Runge-Kutta methods by minimizing phase errors. This
approach avoids phase drifts after long-term iterations and ensures
modeling stability. However, because of the limitation of the
objective function form and situations where optimal solutions are
not available, the LS method may sometimes be inflexible and
unsuitable (Chen et al., 2016b; Zhang and Yao, 2013a). In contrast,
using the maximum norm to establish an objective function leads
to tighter error limitations and greater flexibility (Zhang and Yao,
2013a; Holberg, 1987). Yang et al. (2017) optimizes spatial
staggered-grid finite difference (SGFD) coefficients through the
Remez exchange algorithm (REA) and achieves high numerical
accuracy over a wide bandwidth range. After two or three itera-
tions, the spatial SGFD coefficients converge to equal-ripple solu-
tions, resulting in the widest bandwidth coverage among the
methods mentioned abovewith high numerical precision (He et al.,
2019). Liu (2020a) and Wang et al. (2021) develop the REA on
variable-length explicit and implicit FD schemes, respectively. They
adopt shorter operators than conventional methods, resulting in
further decreased computational time. Therefore, the REA is an
effective way to obtain a wider wavenumber area and higher
accuracy.

Among all kinds of methods to improve stability of the FD
method, a straightforward approach is to enhance temporal accu-
racy. There are mainly two kinds of methods to increase temporal
accuracy and thus improve stability. The first kind is the Lax-
Wendroff (LW) method (Dablain, 1986; Chen, 2007; Long et al.,
2013). The LW method improves stability and accuracy of
modeling by replacing the high-order terms of temporal derivatives
with spatial derivatives (Long et al., 2013), whereas causing a huge
computational cost. The second kind is the time-space domain FD
scheme. Liu and Sen (2009) propose an FD scheme that approxi-
mates both spatial and temporal derivatives simultaneously,
achieving up to (2 M)th-order accuracy along eight specific prop-
agation directions in the 2D case. To further improve temporal FD
accuracy and modeling stability, Liu and Sen (2013) develop a
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rhombus scheme, which reaches (2 M)th-order arbitrary even-
order accuracy along all directions. Though the rhombus scheme
provides significantly high accuracy, its computational cost in-
creases significantly with longer operators. Wang et al. (2016)
combine the cross scheme and the rhombus scheme to balance
accuracy and efficiency. Later, Liu (2020a) extends this combination
scheme to the SGFD method. Meanwhile, inspired by the rhombus
scheme (Tan and Huang, 2014; Liu and Sen, 2013), Ren and Li (2017)
and Chen et al. (2016a) propose an off-axial rhombus SGFD scheme
modeling elastic wavefield, which obtains high-order temporal and
spatial accuracies, whereas costs expensively owing to adding
many extra off-axial points. To tackle the issue, an effective tem-
poral and spatial high-accuracy elastic SGFD scheme is proposed
and distinguishes itself for its high accuracy and low computational
consumption, which selectively adds off-axial rhombus points to
the original SGFD scheme (Zhou et al., 2021b). To simulate wave
propagation more stably, Zhou et al. (2021a) recombine the tem-
poral and the spatial operators by setting the length of the rhombus
operators to exceed the length of the cross operators, which breaks
the conventional stability limit. Timeespace domain methods can
effectively reduce temporal dispersion and improve simulation
stability. However, during simulations, different FD coefficients
need to be calculated for different CFL numbers, which greatly in-
creases computation time. To address this issue, Chen et al. (2016c)
develop a 3D timeespace domain stereo finite difference method
for wave equation forward modeling. This method propagates both
displacement and displacement gradient simultaneously that pre-
serving more wavefield information, and uses constant FD co-
efficients to adapt to changes in CFL number. Consequently, it
suppresses numerical dispersion effectively and reduces compu-
tation time significantly. Essentially, it is also significantly feasible
and effective to adopt perturbation methods to adjust eigenvalues
and make the modeling stable (Gaffar and Jiao, 2014, 2015; Gao
et al., 2018, 2019). However, this kind of method has difficulty in
processing extremely large 2D models and moderate 3D models,
making it unrealistic to be applied in real data.

Besides the aforementioned methods to improve stability, Liu
(2020b, 2022) exploits a new method that controls dispersion re-
lations and maximizes the CFL number to obtain regular-grid FD
coefficients of the second-order acoustic wave equation. This
method maintains modeling accuracy and breaks up conventional
stability limit. Motivated by this idea, we develop a new SGFD
method to solve the first-order acoustic wave equation. This new
method approximates dispersion relations to the exact relations
inside the givenwavenumber area and approaches a given function
outside the given area, respectively. Compared with the conven-
tional SGFDmethod, the newmethod has better stability, especially
in the situation of adopting a small maximum effective wave-
number. In addition, we use the REA and the time-dispersion
correction strategy (Koene et al., 2018; Liu, 2020a; Finkelstein and
Kastner, 2008) to reduce spatial and temporal dispersions respec-
tively. The hybrid absorbing boundary condition (HABC) (Liu and
Sen, 2010, 2018; Zhao et al., 2019) is adopted to reduce artificially
reflected waves generated from the model boundary. After testing,
we obtain an optimal weighting coefficient for HABC in the new
method. The effectiveness of the newmethod can be demonstrated
by dispersion analysis, stability analysis, and numerical examples.

2. Methodology

In this section, we first introduce how to obtain FD coefficients
through the REA and deduce the stability requirements for the
conventional SGFD scheme. Thenwe elaborate in detail on the new
method.



J.-Y. Xu and Y. Liu Petroleum Science 21 (2024) 182e194
2.1. Conventional SGFD scheme for 2D acoustic wave equation

We express the 2D acoustic wave equation with first-order
spatial derivatives with variable density in homogeneous media
as follows (Liu and Sen, 2011):
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where p ¼ pðx; z; tÞ is the acoustic wavefield, K ¼ rv2 is the bulk
modulus, r and v represent the density and the velocity of the
modeling model, respectively.

The (2M)th-order SGFD scheme and a second-order formula are
applied to solve the first-order spatial derivative and the second-
order temporal derivative, respectively. The derivatives are
expressed as (Liu and Sen, 2011; Ren and Liu, 2015):
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where t and h stand for time step and grid size, respectively. M is
the operator length of the spatial FD scheme, and cm represents the
spatial FD coefficient. pnm;j ¼ pðxþmh; zþjh; tþntÞ is defined as the

plane-wave solution (Liu and Sen, 2009), and

pnm;j ¼ eiðkxðxþmhÞþkzðzþjhÞ�uðtþntÞÞ (5)

where, i means the imaginary unit, kx ¼ k cos q and kz ¼ k sin q are
wavenumbers along x- and z-directions, respectively. k denotes
wavenumbers, q is the angle between the wave propagation di-
rection and the positive direction of the x-direction, and u stands
for the angular frequency.

Substitute Eqs. (2)e(4) into Eq. (1) and derive the following
recursive equation (Liu and Sen, 2011; Ren and Liu, 2015):
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where r ¼ vt=h is the CFL number.
By substituting Eq. (5) into Eq. (6) and expanding the trigono-

metric terms using Taylor series, the conventional TE-based FD
coefficients can be obtained (Liu and Sen, 2009, 2011).

To obtain the dispersion relation equation of the SGFD method,
we can substitute Eq. (5) into Eq. (2) and Eq. (3), and replace bx ¼
kxh and bz ¼ kzh with b, bx; bz2½0;p�, then acquire the following
equations:
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4ðbÞzb (7)

and

4ðbÞ¼2
XM
m¼1

cm sin½ðm�0:5Þb� (8)

where b ranges from 0 to B, and B ¼ 2pfmaxh=v, fmax stands for the
maximum effective frequency.

The process of seeking optimal FD coefficients aims to minimize
the absolute error εabsðbÞ or relative error εrelðbÞ of the spatial
dispersion relation in Eq. (7). These errors can be represented as
follows (Liu, 2013, 2014, 2020a):

εabsðbÞ¼4ðbÞ � b (9)

and

εrelðbÞ¼4ðbÞ=b� 1 (10)

Note that, for acoustic SGFD modeling in the small wavenumber
area, minimizing the relative error of the space-domain dispersion
relation can obtain better accuracy than calculating the absolute
error (Liu, 2013). Therefore, we use the relative error to obtain
optimized finite difference coefficients.

By using the idea of REA (Liu, 2020a; Yang et al., 2016; Wang
et al., 2021), the objective function is defined by applying the
maximum norm. According to Eq. (10), the objective function is
supposed as follows:

j4ðbÞ=b� 1j � h; b2½0;B� (11)

where B is the maximum effective value of b and h stands for a
constant that we set to limit the maximum error. This objective
function will guarantee the accuracy within the given range ½0;B�,
making sure that the relative error will not exceed the limit of the
maximum error h. According to the REA, we define

εrelðbÞ ¼ ð � 1ÞiE; i ¼ 1; 2; :::; M þ 1 (12)

where E is a variable constant to represent the equal-ripple error.
Combining Eqs. (8), (10) and (12), we deduce the following

linear equations (Liu, 2020a):

A½c1; c2; :::; cM; E�T ¼ ½d1; d2; :::; dM; dMþ1� (13)

where,

Ai;j ¼
�
2 sin½ðj� 0:5Þbi �=bi; 1 � j � M

ð � 1Þiþ1; j ¼ M þ 1
(14)

di ¼1;1 � i � M þ 1 (15)

and bi is a series of equally spaced points in the first iteration or
extreme points in another iteration. We can use the Gaussian
elimination method or some other methods to solve this linear Eq.
(13). During the iteration, exchange extreme points and recalculate
Eq. (13) until the FD coefficients meet the requirement of accuracy.
Generally, it will take only two or three iterations to reach the
requirement of accuracy in a given wavenumber region.

Fig. 1a displays variations of 4ðbÞwith b from the TEmethod and
the REA, it can be seen that these two methods provide the same
variations, i.e., 4ðbÞ increases with the increase of b when
0 � b � p. 4ðbÞ almost equals b in the small wavenumber area and
when the value of b is bigger than B, the curve of 4ðbÞ gradually



Fig. 1. Variations of (a) 4 and (b) εrel with b for different values of M from the TE and the REA. h ¼ 1E� 3.

Fig. 2. Variations of rmax with M from the TE method and the REA.
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deviates far away from the curve of b as b increases. We can in-
crease the operator length M to increase B. Fig. 1a also displays the
influence to 4ðbÞ for different values ofM, i.e., asM increases, Bwill
be closer to p in the large wavenumber area. Fig. 1b illustrates the
corresponding variations of the relative error εrelðbÞ. It can be
observed that asM increases, the relative error will become smaller
when b � B, and the REA can acquire higher accuracy results than
the TE method when using the same length of the operators.
However, as b>B, the relative error increases dramatically, which
demonstrates that the modeling becomes unstable. To compare
with the new method, we name the REA as the conventional
method.

2.2. Stability analysis for the conventional SGFD schemes

2D stability condition for the conventional SGFD method can be
expressed as (Liu and Sen, 2011):

r� rmax ¼
 ffiffiffi

2
p XM

m¼1

jcmj
!�1

(16)

which means the modeling will be stable when the CFL number is
smaller than the maximum CFL number rmax.

When M ¼ 1, c1 ¼ 1,

rmax ¼1
. ffiffiffi

2
p

z0:707 (17)

When M approaches infinity and B approaches p,

rmax ¼
ffiffiffi
2

p .
pz0:450 (18)

The variations of rmax with M can also be concluded from Fig. 2.
It can be observed that rmax decreases with the increase of M from
about 0.707 to 0.450, and the stability of the TE method is better
than that of the REA.

2.3. A new method for determining spatial SGFD coefficients by
controlling the dispersion relation

According to Eq. (A-9) in Appendix A, it can be concluded that
rmax depends on the maximumvalue of 4ðbÞ. As we know in Fig. 1a,
4ðbÞ approaches b when 0 � b � B. Though we can change the
method or increase M to increase B, there still exists a situation
when b is larger thanM, 4ðbÞ no longer approaches b and the value
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of 4ðbÞ is not able to be estimated intuitively.
We define a function f ðbÞ and let 4ðbÞ approach the f ðbÞ in the

interval ½Bþ Db;p�. Corresponding to Eq. (26) in Liu (2020b), the
objective function is set as following:

j4ðbÞ =b� f ðbÞj � bh (19)

where, b is a constant, and this given function f ðbÞ is expressed as

f ðbÞ¼B=b (20)

To sum up, we construct a new Eq. (19) and combine it with Eq.
(11), then the objective function of the new method can be written
as:� j4ðbÞ=b� 1j � h; 0 � b � B
j4ðbÞ=b� f ðbÞj � bh; B< b � p

(21)

Solving Eq. (21), we obtain the stable SGFD coefficients of the
spatial first-order derivatives. The corresponding errors of the
objective function are expressed as

εðbÞ ¼
�

4ðbÞ=b� 1; 0 � b � B
4ðbÞ=b� f ðbÞ; B< b � p

(22)
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One thing should be noticed that Eq. (21) is a piecewise function,
which indicates that this functionwill become unsmoothwhen b ¼
B. Therefore, a transition interval ½B;BþDb� is introduced to avoid
the great error caused by the unsmooth point b ¼ B. Then the
region of b is divided into three parts, i.e., ½0; B�, ½B;BþDb� and
½Bþ Db;p�. Consequently, Eq. (21) can be changed as

� j4ðbÞ=b� 1j � h; 0 � b � B
j4ðbÞ=b� f ðbÞj � bh; Bþ Db � b � p

(23)

There exist three maximum values of 4ðbÞ and εðbÞ respectively
in these three intervals. These threemaximumvalues of 4ðbÞ can be
written as

j1 ¼ max
0�b�B

j4ðbÞj (24)

j2 ¼ max
B< b�BþDb

j4ðbÞj (25)

j3 ¼ max
BþDb< b�p

j4ðbÞj (26)

The maximum value of 4ðbÞ over the whole wavenumber region
can be represented as

j¼maxðj1;j2;j3Þ (27)

Correspondingly, three maximum values of the objective func-
tion errors εðbÞ in these three intervals are given by

ε1 ¼ max
0�b�B

jεðbÞj (28)

ε2 ¼ max
B< b�BþDb

jεðbÞj (29)

ε3 ¼ max
BþDb< b�p

jεðbÞj (30)

Considering the high spatial accuracy when using REA for
modeling, we adopt the idea of the REA to solve Eq. (23) and
summarize the detailed process to obtain the new stable SGFD
coefficients as follows.

(1) Set the SGFD operator lengthM and the tentative orderMt ¼
1 for the given B and h.

(2) Set initial values of bi. The exact formulas are expressed in
the following:

bi ¼ iB=Mt ;1 � i � Mt (31)

bi ¼ B2 þ ði�MtÞðp� B2Þ=ðM �MtÞ;
Mt þ 1 � i � M þ 1

(32)

where, B2 ¼ Bþ Db.

(3) Compute the SGFD coefficients by solving Eq. (23). It can be
rewritten in the same format as the linear Eq. (13). The exact
expression is written as follows:

Ai;j ¼
8<
:

2 sin½ðj� 0:5Þbi �=bi; 1 � j � M
ð � 1Þiþ1; j ¼ M þ 1; 1 � i � Mt

ð � 1Þi; j ¼ M þ 1; Mt < i � M
(33)
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di ¼
�

1; 1 � i � Mt
f ðbÞ=b; Mt < i � M

(34)

To conveniently and efficiently obtain a set of SGFD coefficients, the
Gauss elimination method is adopted to solve the linear equations.
(4) Calculate the corresponding approximation error of the
objective function and confirm whether it is under the ac-
curacy error threshold. If the SGFD coefficients can meet the
conditions ε1 � h and ε3 � bh , they satisfy the accuracy
requirements.

(5) Update bi and Mt . If the calculated SGFD coefficients dissat-
isfy the error criterion, set the extreme points of εðbÞ as the
updated bi and go to Step (3). If the total number of extreme
points lacks or exceeds Mþ 1, update Mt and go to Step (2).

From the aforementioned analyses, we introduce two new pa-
rameters Db and b in the newmethod. To figure out the influence of
Db and b on the new method, we draw Figs. 3 and 4.

Fig. 3 displays the variation of 4ðbÞ and εðbÞ with b when fixed
M ¼ 15, B ¼ 1:0 and b ¼ 3:0 for different values of Db. In Fig. 3a, as
Db varying, j2 and j3 will change. Exactly, increasing Db will in-
crease j2, whereas decrease j3. The values of 4ðbÞ show a state of
fluctuation in the interval ½Bþ Db;p�, and the fluctuation range
increases with the increase of b. In Fig. 3b, the increase of Db will
decrease the values of ε1 and ε3 and increase the value of ε2.

Fig. 4 depicts variations of 4ðbÞ and εðbÞ with b for different
values of bwhich setM ¼ 15, B ¼ 1:0 and Db ¼ 0:3. In Fig. 4a, it can
be concluded that j2 and j3 increase with the increase of b. In
Fig. 4b, ε1 decreases with the increase of b, and the variations of ε2
and ε3 are on the contrary.

Generally, we can adjust these two new parameters, Db and b, to
obtain better SGFD coefficients. The specific steps to obtain the
optimal values of Db and b are described as follows:

(1) Let b ¼ 1.
(2) Set Db and carry out the process of computing FD co-

efficients. Iterate over the value of Db until jj3 =j2 � 1j<h.
(3) Estimatewhether the value of ε1 is smaller than h. If satisfied,

end the run; otherwise, add the value of b and go to Step (2).
2.4. Stability analysis for the new method

We introduce an appropriate function f ðbÞ to make the values of
4ðbÞ approach some given values outside the given wavenumber
region. We hope that the values of 4ðbÞ approach b and B in the
wavenumber intervals ½0;B� and ½B;p�, respectively. Therefore, B is
expected to become the maximum value that 4ðbÞ can reach in the
whole interval ½0;p�. Combined with Eq. (A-9) in Appendix A, we
obtain the maximum value of rmax that can be writen as follows:

lim rmax ¼
ffiffiffi
2

p .
B (35)

It can be concluded that the value of lim rmax varies with B.
Therefore, if B<2, lim rmax in the new method will become bigger
than that in the conventional SGFD method.

Fig. 5 illustrates variation of the maximum CFL number rmax

with B for the conventional and the new methods. Under the same
accuracy h and SGFD operator length M, values of rmax in the new
method are significantly bigger than those in the conventional
method, especially when B is smaller than 1.0, indicating that the
stability of the newmethod is better than the conventional method.

For conciseness and clarity, in Table 1, we list the changes of Db,



Fig. 3. Variations of (a) 4ðbÞ and (b) εðbÞ with b for different values of Db. M ¼ 15, B ¼ 1:0, b ¼ 3:0.

Fig. 4. Variations of (a) 4ðbÞ and (b) εðbÞ with b for different values of b. M ¼ 15, B ¼ 1:0, Db ¼ 0:3.

Fig. 5. The maximum CFL number rmax for the conventional and the new methods.
h ¼ 1E� 3. For the conventional method, as M changes from 1 to 15, B ranges from
0.22 to 2.8 and rmax varies from 0.707 to 0.461. For the new method, M ¼ 15, as B
changes from 0.3 to 2.8, B varies from 1.534 to 0.482.
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B and rmax with B when M is 15 and 30 respectively. These pa-
rameters can be used to calculate SGFD coefficients of the new
method through Eq. (23), directly. In addition, it can be observed
from Table 1 that in the case of fixed B, the value of rmax increases
with the increase of M for the smaller wavenumber interval, while
the value of rmax is almost similar whenM is different for the bigger
wavenumber interval.

In Table 2, we list the SGFD coefficients obtained by the new
method when M ¼ 15 and h ¼ 1E� 3, and these SGFD coefficients
can be used for wavefield modeling. In order to model a situation
where the maximum CFL number rmax is larger, the SGFD co-
efficients corresponding to a smaller B can be selected formodeling.

3. Examples

In this section, we employ the newmethod to simulate acoustic
wave propagation and test its adaptation for two different velocity
models, i.e., the homogeneous model and the Marmousi model. In
all numerical modeling examples, we fix the spatial grid spacing
dx ¼ dz ¼ 5 m and vary the maximum CFL number rmax to verify
the effect of the new method.

3.1. Test on the homogeneous model

First, we implement numerical modeling without absorbing
boundary conditions in a 2D homogeneous model whose



Table 1
Variations of Db, b and rmax with B when M ¼ 15 and M ¼ 30. h ¼ 1E� 3.

B M ¼ 15 M ¼ 30

Db b rmax of 2D rmax of 3D Db b rmax of 2D rmax of 3D

0.3 0.38 48.5 1.5335 1.2521 0.21 27.0 1.7545 1.4326
0.4 0.43 50.9 1.3641 1.1138 0.46 27.3 1.4088 1.1502
0.5 0.35 34.1 1.1850 0.9675 0.21 24.3 1.2626 1.0309
0.6 0.33 43.6 1.0514 0.8584 0.16 15.8 1.1190 0.9136
0.7 0.32 38.0 0.9599 0.7837 0.15 13.8 1.0205 0.8332
0.8 0.30 32.4 0.8961 0.7316 0.14 10.7 0.9393 0.7670
0.9 0.29 26.3 0.8507 0.6946 0.14 15.4 0.8738 0.7135
1.0 0.29 27.4 0.7859 0.6417 0.13 10.4 0.8206 0.6700
1.1 0.26 30.1 0.7507 0.6130 0.13 15.6 0.7741 0.6321
1.2 0.27 33.1 0.7172 0.5856 0.12 10.5 0.7420 0.6058
1.3 0.28 26.7 0.6977 0.5696 0.11 9.8 0.7076 0.5777
1.4 0.26 25.9 0.6622 0.5407 0.29 9.4 0.6789 0.5543
1.5 0.24 23.8 0.6330 0.5168 0.29 8.8 0.6497 0.5305
1.6 0.23 26.3 0.6137 0.5011 0.10 8.6 0.6273 0.5122
1.7 0.22 25.2 0.6017 0.4913 0.10 7.9 0.6147 0.5019
1.8 0.23 26.1 0.5928 0.4840 0.10 11.8 0.6019 0.4914
1.9 0.23 27.2 0.5793 0.4730 0.09 7.7 0.5905 0.4822
2.0 0.24 73.3 0.5654 0.4616 0.09 7.7 0.5824 0.4755
2.1 0.20 24.1 0.5704 0.4657 0.09 8.0 0.5790 0.4727
2.2 0.19 28.2 0.5470 0.4466 0.39 13.2 0.5505 0.4495
2.3 0.21 26.7 0.5338 0.4358 0.10 10.3 0.5379 0.4392
2.4 0.20 21.0 0.5207 0.4252 0.32 18.2 0.5241 0.4280
2.5 0.20 86.6 0.5069 0.4139 0.33 22.0 0.5148 0.4204
2.6 0.16 15.0 0.5024 0.4102 0.15 16.7 0.5000 0.4082
2.7 0.15 12.8 0.4922 0.4019 0.31 17.2 0.4921 0.4018
2.8 0.49 100.5 0.4819 0.3934 0.08 19.7 0.4812 0.3929
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horizontal and vertical distances are both 2 km.
The velocity of the model is 3000m/s, and a Ricker wavelet with

the dominant frequency of 25 Hz is excited in the center of the
computational domain.We keep the spatial operator lengthM as 15
for both the conventional and the new methods. Specific modeling
parameters are listed in the caption of Fig. 6. Fig. 6a and c shows
results simulated by the conventional method whose temporal
sampling intervals are t ¼ 0:5 ms and t ¼ 1:0 ms, i.e., r ¼ 0:3 and
0:6 respectively. Fig. 6b, 6deh is snapshots modeled by the new
method, with SGFD coefficients are displayed in Table 2. Among
them, in Fig. 6b, t ¼ 0:5 ms, r ¼ 0:3. In Fig. 6def, t ¼ 1:0 ms, r ¼
0:6. In Fig. 6geh, t ¼ 1:4 ms, r ¼ 0:84. It can be observed that
waveforms are able to propagate normally when t ¼ 0:5 ms in
Fig. 6a. However, when t ¼ 1:0 ms, compared to the waveform
simulated using the new method in Fig. 6d and c cannot produce a
normal waveform, and after propagating for a certain period, the
wavefield value becomes infinite, making it impossible to obtain
seismic records. Therefore, when t � 1:0 ms, we can no longer use
Table 2
SGFD coefficients of the new method when M ¼ 15 and h ¼ 1E� 3.

cm B ¼ 0:3 B ¼ 0:4 B ¼ 0:5

c1 1.9249E-01 2.6625E-01 3.1776E-01
c2 6.8349E-02 7.9604E-02 1.0285E-01
c3 4.3585E-02 6.3015E-02 5.6075E-02
c4 3.2018E-02 2.6825E-02 3.0538E-02
c5 2.2232E-02 2.6077E-02 1.3071E-02
c6 1.4300E-02 4.2355E-04 �1.5772E-04
c7 5.9751E-03 1.0072E-03 �6.8994E-03
c8 7.0683E-04 �1.1136E-02 �9.6259E-03
c9 �4.4519E-03 �6.5999E-03 �6.5533E-03
c10 �4.6592E-03 �6.0364E-03 �4.1703E-03
c11 �7.5650E-03 �2.0937E-03 1.8579E-03
c12 �3.0344E-03 3.0886E-03 �1.2514E-05
c13 �1.9152E-02 �1.3193E-03 2.3697E-02
c14 3.2539E-02 1.5378E-02 �2.0067E-02
c15 �1.0044E-02 �9.5199E-03 3.3798E-03

188
the conventional method to perform stable modeling. By contrast,
it remains stable by the new method when t ¼ 1:0 ms and t ¼ 1:4
ms in Fig. 6e and g, respectively. Furthermore, we plot stable
snapshots at t ¼ 1:0 ms and t ¼ 1:4ms when t ¼ 6000 ms in Fig. 6f
and h, respectively. It can be seen that, for the new method, the
wavefield can still maintain waveform after a long-time propaga-
tion, indicating that the wavefield is stable.

Based on the theory that the energy of wavefield will maintain a
constant when do not consider absorbing boundary conditions, we
compute the root-mean-squared (RMS) amplitude ARMS of the
whole model in different propagation time and observe the varia-
tion of Log10ðARMSÞ for the conventional and the new methods in
Fig. 7a. One can observe that the variation trend of the RMS
amplitude ARMS in the conventional method is exponential, indi-
cating that the modeling is unstable; whereas in the new method,
the RMS amplitude remains in a steady state, manifesting that the
modeling is stable. In Fig. 7b, it can be observed that the RMS
amplitude simulated by the newmethod remains stable over long-
time recording even with a larger CFL number, suggesting that the
new method is available to model with a large time sampling in-
terval and a long-time propagation.

Decreasing B or the dominant frequency, we can model with a
larger maximum CFL number as exhibited in Fig. 8. The modeling
parameters are illustrated in the caption of the figure. Fig. 8a dis-
plays a snapshot at r ¼ 1:50 for the homogeneous model obtained
by the new method. Corresponding spatial SGFD coefficients are
demonstrated in Table 2. In Fig. 8a, the value of rmax for the new
method achieves more than twice as much as the conventional
method. We use the SGFD coefficients listed in Table 3 to obtain
Fig. 8b, showing a snapshot that reaches a much larger maximum
CFL number r ¼ 1:75. All of these figures demonstrate the stability
of the new method.

Notice that, though we can adopt optimal SGFD methods
calculating SGFD coefficients to reduce spatial dispersion, temporal
accuracy is still second order and thus high time dispersion will
generate when modeling with a large time sampling interval. It can
be observed that time dispersion in Fig. 6e and g is more serious
compared with Fig. 6a and b. In Fig. 9, we plot an extracted syn-
thesized seismogram for the homogeneous model whose modeling
parameters are similar to that in Fig. 6g and h, as shown by the blue
curves. Compared with the analytic solutions, the blue curve occurs
manifestly time dispersion problem. Therefore, the time-dispersion
correction is adopted to suppress the time dispersion. We apply the
forward time dispersion transform (FTDT) (Koene et al., 2018; Liu,
2020a) to the Ricker wavelet as the source term and conduct the
wave equation modeling as usual. After obtaining the synthesized
seismogram, adopted the inverse time dispersion transform (ITDT)
B ¼ 0:6 B ¼ 0:7 B ¼ 0:8

3.7908E-01 4.3915E-01 4.9826E-01
1.1711E-01 1.2913E-01 1.3754E-01
5.7496E-02 5.5256E-02 4.9972E-02
2.5220E-02 1.7542E-02 7.8498E-03
4.8179E-03 �4.5091E-03 �1.2003E-02
�7.6170E-03 �1.2528E-02 �1.4330E-02
�1.0904E-02 �1.1482E-02 �7.5482E-03
�8.9410E-03 �3.6290E-03 2.2894E-03
�2.4339E-03 2.1371E-03 6.3181E-03
1.6225E-03 7.2722E-03 6.5627E-03
6.2690E-03 4.2071E-03 1.1774E-04
3.3666E-03 9.3957E-03 �1.3189E-03
1.2617E-02 �2.6046E-02 �1.8734E-02
�2.5169E-02 1.3339E-02 2.0380E-02
9.8871E-03 �1.0551E-03 �5.9119E-03



Fig. 6. Snapshots computed by the conventional and the new methods for the homogeneous model without ABC whose velocity, size, grid intervals and dominant frequency are
3000 m/s, 2000 m � 2000 m, 5 m, and 25 Hz respectively. The spatial SGFD operator length M is 15. h¼ 1E� 3. For the conventional method, (a) t¼ 0:5 ms, t¼ 300 ms. (c) t¼ 1:0
ms, t¼ 65 ms. For the new method, B¼ 0:8, (b) t¼ 0:5 ms, t¼ 300 ms. (d) t¼ 1:0 ms, t¼ 65 ms. (e) t¼ 1:0 ms, t¼ 300 ms. (f) t¼ 1:0 ms, t¼ 6000 ms. (g)e(h) t¼ 1:4 ms, t¼ 300 ms
and 6000 ms respectively. The conventional method is unstable while the new method still maintain stable when t� 1 ms.

Fig. 7. Variations of Log10ðARMSÞ with propagation time for the conventional and new methods. (a) t ¼ 1:0 ms. (b) t ¼ 0:5 ms for the conventional method and t ¼ 0:5 ms, 1:0 ms
and 1:4 ms for the new method.
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(Koene et al., 2018; Liu, 2020a) to it and then the high temporal
accuracy synthesized seismogram will be obtained. It appears that
the synthesized seismogramwith time-dispersion correction in the
red dot almost coincides with the reference solution in Fig. 9,
indicating that the time-dispersion correction has a good perfor-
mance in removing temporal dispersion when applied in our new
method.

Table 4 displays the central processing unit (CPU) times for
generating Fig. 6 using conventional and new methods, with a
maximum recorded wave propagation time of 6 s. One can see that
the CPU time decreases with the increase of the time step.

3.2. Test on the Marmousi model

The second example is a 2D complex model.
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In Fig. 10, part of the velocity profile of the 2D Marmousi model
with the horizontal and vertical sizes of 2500 m and 1750 m,
respectively, is displayed. The source term used here is a 15 Hz
Ricker wavelet, and we place the source at the position of (1250 m,
50m). The locations of the receivers range from 0m to 2500mwith
an interval of 5 m at a depth of 5 m. The velocity varies from
1500 m/s to 4700 m/s and the operator lengthM is 15. According to
Eq. (16), for the conventional method, when set M ¼ 15, rmax ¼
0:461, which means that the modeling will become unstable when
r>0:461. Fig. 11 displays the snapshots and seismograms obtained
by the new method with a reference solution obtained by the
conventional method using a very small time sampling interval
0.01 ms. Table 3 lists the specific SGFD coefficients used in Fig. 11.
One should be noticed that the time interval t in Fig. 11 is 0.8 ms,
and thus the CFL number r varies from 0.240 to 0.752, which is



Fig. 8. Snapshots computed by the new method for the homogeneous model whose size, grid intervals and dominant frequency are 2000 m � 2000 m, 5 m and 6 Hz respectively.
B ¼ 0:3 and h ¼ 1E� 3. (a) v ¼ 3000 m/s, M ¼ 15, t ¼ 2:5 ms, r ¼ 1:5, t ¼ 325 ms. (b) v ¼ 3500 m/s, M ¼ 30, t ¼ 2:5 ms, r ¼ 1:75, t ¼ 325 ms. The new method is able to model
with a much larger CFL number.

Table 3
FD coefficients of the new method when M¼ 15 for B¼ 1:0 and M¼ 30 for B¼ 0:3. h¼ 1E� 3.

cm M¼ 15 M¼ 30 cm M¼ 15 M¼ 30 cm M¼ 30

c1 6.1330E-01 1.9270E-01 c11 �4.9559E-03 �4.9786E-04 c21 2.1498E-03
c2 1.4597E-01 6.1064E-02 c12 �5.1887E-03 �4.3770E-03 c22 4.3858E-04
c3 3.1997E-02 3.8739E-02 c13 1.9162E-02 �1.8088E-03 c23 1.4851E-03
c4 �1.3021E-02 2.3140E-02 c14 �1.3449E-02 �4.2404E-03 c24 �1.4721E-04
c5 �1.9575E-02 1.9584E-02 c15 2.8432E-03 �1.0404E-03 c25 5.2724E-04
c6 �7.6399E-03 1.0647E-02 c16 �2.5606E-03 c26 �4.9842E-04
c7 6.0218E-03 9.9611E-03 c17 6.1330E-04 c27 �3.6209E-04
c8 8.4570E-03 2.9774E-03 c18 �6.6120E-04 c28 9.1779E-04
c9 3.1913E-03 3.4464E-03 c19 1.9015E-03 c29 �8.2010E-03
c10 �5.0091E-03 �2.0364E-03 c20 4.2656E-04 c30 5.8744E-03

Fig. 9. Waveforms at (505 m, 5 m) of the homogeneous model. The black solid line is
the analytical solution. The blue solid line and the red dashed line are the waveforms
without and with ITDT obtained by the new method, respectively. The parameters of
modeling in the new method are the same as those in Fig. 6e and f.

Table 4
Comparison of computational costs for conventional and new methods.

Method Conventional New New New

Time sampling interval, ms 0.5 0.5 1.0 1.4
Courant number 0.3 0.3 0.6 0.84
CPU time, s 647.382 653.422 354.266 261.567

Fig. 10. The velocity profile of the Marmousi model.
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Fig. 11. Snapshots and seismograms for the Marmousi model with and without HABC computed by the new methods. v ¼ 1500e4700 m/s, h ¼ 5 m, t ¼ 0:8 ms, f ¼ 15 Hz, M ¼ 15,
D ¼ 15 and B ¼ 1:0. Thus r ¼ 0:240e0:752. (a) Reference snapshot at t ¼ 0:64 s. (b) The snapshot at t ¼ 0:64 s. (c) Reference snapshot at t ¼ 0:88 s with HABC. (d) The snapshot at
t ¼ 0:88 s with HABC. (e) The snapshot at t ¼ 0:88 s without HABC. (f) Reference seismogram with HABC. (g) The seismogram with HABC. (h) The seismogram without HABC.
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higher than the maximum CFL number achievable by the conven-
tional method. The conventional method cannot be used to model
with these parameters, but the new method yields good results as
shown in Fig. 11geh, where the seismograms display good stability
and are close to the reference solution when r>0:461.

We use an HABC (Liu and Sen, 2010, 2018) that combines one-
way wave equation (OWWE) (Clayton and Engquist, 1977;
Higdon, 1991) and the two-way wave equation (TWWE) in the
boundary to absorb artificial reflections at the model boundary. The
computational area is divided into three parts: the inner area, the
transition area, and the boundary area. The total thickness of the
transition and boundary areas is denoted as D, with the thickness of
the boundary area being one node. We test the linear weighting
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coefficient (Liu and Sen, 2010), the exponential weighting coeffi-
cient (Liu and Sen, 2018) and the parabolic weighting coefficient,
respectively. The modeling results show that the parabolic

weighting coefficient ui ¼
�i�1

D

	2 þ 2
�i�1

D

	
; ð1� i� DÞ has the best

performance in removing the boundary reflection in the new
method. As D increases, the absorption effect of the HABC increases,
but so does the computational cost. To balance the requirements of
absorption effectiveness and computational efficiency, we set D
equal the length of the FD operator M. Alternatively, if D is smaller
thanM, we need to use symmetric boundary conditions to solve the
wave equation (Liu and Sen, 2010; Chang and Liu, 2013). The
comparison between snapshots with and without HABC in
Fig. 11dee indicates that HABC has excellent absorbing capabilities.
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The same conclusion can be drawn from the comparison of seis-
mograms with and without HABC in Fig. 11geh.

Fig. 12 extracts single traces from Fig. 11 to compare waveforms.
Fig. 12a shows the waveforms at (1250 m, 5 m). The blue dashed
line and the red solid line represent the waveforms without and
with ITDT, respectively. It can be seen that after applying ITDT, the
waveform is closer to the reference solution. In addition, in Fig. 12b,
we extract single traces from synthesized seismograms with
different time sampling intervals at (1015 m, 5 m) to make a clearer
comparison. Trace 1 is the waveform obtained by the conventional
method with t ¼ 0:4 ms. Traces 2 and 3 are the waveforms ob-
tained by the new method with time sampling intervals of t ¼ 0:4
ms and 0:8 ms, where the variations of the maximum CFL numbers
are 0.120e0.376 and 0.240e0.752, respectively. When t ¼ 0:8 ms,
the conventional method is no longer able to maintain modeling
stability, while the seismogram waveforms obtained by the new
method can match the reference trace almost perfectly, demon-
strating that the newmethod maintains high accuracy and stability
simultaneously. Furthermore, the value of r can be further
increased by increasing the SGFD operator length and decreasing
the dominant frequency and B. Therefore, in Fig. 12c, we perform
modeling with larger time sampling intervals, and the corre-
sponding single traces extracted from the synthesized seismo-
grams are displayed. In Fig.12c, trace 1 is the waveform obtained by
Fig. 12. Waveforms of the Marmousi model. v ¼ 1500e4700 m/s, h ¼ 5 m. The referenc
Waveforms comparison at (1250 m, 5 m) obtained by the new method without and with
sampling intervals. For (a) and (b), f ¼ 15 Hz, M ¼ 15, D ¼ 15 and B ¼ 1:0. For (c), f ¼ 4 H
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the conventional method with t ¼ 0:4 ms. Traces 2 and 3 have time
sampling intervals of 0.4 ms and 1.8 ms, where the variations of the
maximum CFL numbers are 0.120e0.376 and 0.540e1.692,
respectively. Fig. 12c also shows great modeling effect and has the
same conclusions as Fig. 12b.

4. Discussion

In this section, we discuss the stability and potential applica-
tions of the new method in the 3D case.

For the conventional method, the CFL number in 3D case should
satisfy the following condition (Liu and Sen, 2011):

r� rmax ¼
 ffiffiffi

3
p XM

m¼1

jcmj
!�1

(36)

Therefore, we calculate the variation of rmax with B in the 3D
case, and the results are shown in Table 1. According to Eq. (A-9) in
Appendix A, the maximum value of rmax in 3D case is:

lim rmax ¼2
.� ffiffiffi

3
p

B
�

(37)

During the process of wavefield modeling, the stability of con-
ventional method is affected when the spatial sampling interval is
e solutions are computed by the conventional SGFD method with t ¼ 0:01 ms. (a)
ITDT. (b) and (c) are the waveforms comparison at (1015 m, 5 m) with different time
z, M ¼ 30, D ¼ 30 and B ¼ 0:3.



J.-Y. Xu and Y. Liu Petroleum Science 21 (2024) 182e194
small, the time sampling interval is large, or the velocity is high.
Typically, increasing the spatial sampling interval and reducing the
time sampling interval are done to ensure that the modeling can
proceed normally. However, this will increase the computational
load, especially in 3D case. The newmethod overcomes the limit of
the maximum CFL number of conventional method and can use
larger CFL numbers for modeling while ensuring accuracy. It has
great application prospects in 3D modeling.

In the days to come, wewill develop the idea of the newmethod
into the time-space domain SGFD method. By approximating the
time-space domain dispersion relation, we aim to improve simu-
lation accuracy and break stability limits simultaneously, thereby
avoiding the additional computational cost associated with time-
dispersion correction strategy.

5. Conclusions

We develop a new SGFD scheme to compute the spatial first-
order FD coefficients for the acoustic wave equation. The basic
idea is to rebuild the objective function which lets the spatial SGFD
dispersion approximate the given values over the whole wave-
number area, leading to maximizing the CFL number and
improving the stability of the modeling. Theoretical derivation and
dispersion analysis show the advantages of our scheme. Compared
with the conventional SGFD scheme, our scheme easily breaks up
the limitation of conventional stability, making it capable of
modeling with large CFL numbers, larger time sampling intervals,
or smaller space sampling intervals while maintaining modeling
accuracy. In addition, the HABC can be well combined with the
proposed scheme to absorb the reflection from the boundary when
appropriate weighting coefficients are chosen.
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Appendix A

In this part, we deduce the 2D stability condition for the con-
ventional SGFD method (Liu and Sen, 2011).

Based on the von Neumann stability analysis, we define

q0j;l ¼ p�1
j;l (A-1)

U0
j;l ¼

�
p0j;l; q

0
j;l

�T ¼ W0eiðjbxþlbzÞ (A-2)

where,

Wn ¼
�
e�iuðtþntÞ; e�iuðtþðn�1Þt Þ

�
(A-3)

Substituting Eq. (A-1), Eq. (A-2), and Eq. (A-3) into the recursive
193
Eq. (6), we acquire

W1 ¼GW0 ¼


g �1
1 0

�
W0 (A-4)

where G is a transition matrix,

g¼2� r2
h
42ðbxÞþ42ðbzÞ

i
(A-5)

To make the recursion Eq. (6) stable, the absolute values of
transition matrix eigenvalues should be less than or equal 1 (Liu,
2020b, 2022). Therefore, we set

jgj � 2 (A-6)

Then, the roots of the eigenvalue equation l2 � glþ 1 ¼ 0 will be
less than or equal 1.

Next, substituting Eq. (A-5) into Eq. (A-6), we can obtain the
following inequality:

0�
���r2h42ðbxÞþ42ðbzÞ

i��� � 4 (A-7)

It can be deduced that the FD dispersion relations 4ðbxÞ and
4ðbzÞ play important roles to maintain the stability of modeling.
According to Liu (2020b), we simplify Eq. (A-7) and obtain the exact
relation of the stability. Let

j ¼ max
0�x�p

4ðxÞ (A-8)

Then, Eq. (A-8) can be simplified as:

r� rmax ¼
ffiffiffi
2

p .
j (A-9)

which means the modeling will be stable when the CFL number is
smaller than the maximum CFL number rmax and Eq. (A-9) is also
called the stability condition. It can be concluded that rmax depends
on j, i.e., the maximum value of the spatial FD dispersion.
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