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a b s t r a c t

In regard to unconventional oil reservoirs, the transient dual-porosity and triple-porosity models have
been adopted to describe the fluid flow in the complex fracture network. It has been proven to cause
inaccurate production evaluations because of the absence of matrixemacrofracture communication. In
addition, most of the existing models are solved analytically based on Laplace transform and numerical
inversion. Hence, an approximate analytical solution is derived directly in real-time space considering
variable matrix blocks and simultaneous matrix depletion.

To simplify the derivation, the simultaneous matrix depletion is divided into two parts: one part
feeding the macrofractures and the other part feeding the microfractures. Then, a series of partial dif-
ferential equations (PDEs) describing the transient flow and boundary conditions are constructed and
solved analytically by integration. Finally, a relationship between oil rate and production time in real-
time space is obtained.

The new model is verified against classical analytical models. When the microfracture system and
matrixemacrofracture communication is neglected, the result of the new model agrees with those ob-
tained with the dual-porosity and triple-porosity model, respectively. Certainly, the new model also has
an excellent agreement with the numerical model. The model is then applied to two actual tight oil wells
completed in western Canada sedimentary basin. After identifying the flow regime, the solution suitably
matches the field production data, and the model parameters are determined. Through these output
parameters, we can accurately forecast the production and even estimate the petrophysical properties.
© 2023 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This
is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/

4.0/).
1. Introduction

In the last decades, multifractured horizontal wells (MFHWs)
have beenwidely used to efficiently develop unconventional oil/gas
reservoirs. The ultralow permeability matrix block can be broken
into smaller pieces and thus the contact area between matrix and
fractures could be enhanced to achieve economic production rate.
However, it remains challenging to study the fluid flow and carry
Wei), lg1987cup@126.com
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out production prediction in such complex reservoirs (Wang and
Ayala, 2020; Wu et al., 2021).

Generally, an analytical model began with paper from
Barenblatt et al. (1960) has laid the foundation for flow analysis in a
dual-porosity system. Subsequently, many analytical models
(Warren and Root, 1963; Kazemi, 1969; De Swaan, 1976) have been
proposed to analyze the fluid flows from the low-permeability
matrix into a high-permeability fracture network based on the
assumption of pseudosteady-state and transient state. With the
development of unconventional reservoirs, the half-slope line on a
log-log plot representing the transient linear behavior can be
observed to last for a longer period. El-Banbi (1998) extended the
previous basic dual-porosity models to develop a series of
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Nomenclature

ct Total compressibility, psi�1

JF Productivity index, STB/d/psi
Pf Pressure in microfracture, psi
PF Pressure in macrofracture, psi
Pm1 Ppressure in submatrix m1, psi
Pm2 Pressure in submatrix m2, psi
qFi Initial rate from the macrofractures, Mscf/d
qfi Initial rate from the microfractures, Mscf/d
qm1i Initial rate from submatrix m1, Mscf/d
qm2i Initial rate from submatrix m2, Mscf/d
qm1_Ma The interporosity-flow between submatrix m1 and

macrofractures, STB/d

qm2_Mi The interporosity-flow between submatrix m2 and
microfractures, STB/d

TFf Transmissibility between macrofractures and
microfractures, STB/d/psi

TFm1 Transmissibility between submatrix m1 and
macrofractures, STB/d/psi

Tfm2 Transmissibility between submatrix m2 and
microfractures, STB/d/psi

m Fluid viscosity, cP
f Porosity
tf Constant time in microfractures, day
tF Constant time in macrofractures, day
tm1 Constant time in submatrix m1, day
tm2 Constant time in submatrix m1, day
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analytical solutions considering transient linear flow in tight res-
ervoirs. Bello (2009) established asymptotic analysis equations for
different flow regimes. Later, many researchers realized improve-
ments to the dual-porosity transient linear flow model (Brown
et al., 2011; Stalgorova and Mattar, 2012, 2013; Behmanesh et al.,
2017; Wu et al., 2019; Qiu, 2023). Considering that complex frac-
ture network containing multiple types of fractures emerge after
hydraulic fracturing, the dual-porosity models may not be appli-
cable in reality.

The more comprehensive triple-porosity models encompassing
either two fracture networks and one matrix or two types of
matrices and one fracture network were developed recently.
Abdassah and Ershaghi (1986) proposed a dual-matrix triple-
porosity model for pressure transient analysis. In most cases, nat-
ural fracture or microfracture is considered as the third type of
media. Al-Ghamdi and Ershaghi (1996) proposed a dual-fracture
triple-porosity model consisting of pseudosteady-state linear flow
behavior. Dreier (2004) improved the triple-porosity model by
considering transient flow conditions between micro- and macro-
fractures. Then, Ahmadi (2010) and Samandarli (2012) formulated
asymptotic equations for different flow regions based on the triple-
porositymodel, which are more beneficial for history matching and
production prediction in unconventional reservoirs. Based on pre-
vious works, more innovative models for triple-porosity system
have been studied (Dehghanpour and Shirdel, 2011; Tivayanonda,
2012; Lu et al., 2021; Ali et al., 2013; Wei et al., 2019; Wu et al.,
2023).

The existing transient dual-porosity and triple-porosity models
for unconventional fractured horizontal wells were derived based
on the assumption of sequential depletion. Namely, the most
common flow hierarchy is defined as: matrix to fractures to well-
bore (dual-porosity model) or matrix to microfractures to macro-
fractures then to wellbore (triple-porosity model) sequentially.
Because the communication between thematrix andmacrofracture
is neglected in previous studies, the properties of fractures will be
estimated unreasonably especially for the situation where the
matrixemacrofractures communication is significant. Therefore, a
quadrilinear flowmodel (Ezulike and Dehghanpour, 2014) has been
proposed to extend the sequential-depletion assumption to
simultaneous matrix depletion. However, all of these analytical
solutions were derived by Laplace transformation, which is rela-
tively complicated due to the dimensionless transform, Laplace-
transform and numerical inversion operation.

In this work, we derive an approximate analytical solution in
real-time space based on simultaneous matrix-fracture flow
bypassing the Laplace transformation and numerical inversion.
Firstly, the mathematical model representing three interacting
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media are constructed based on the defined physical model and
model assumptions. Secondly, the constructed mathematical
model is solved analytically and then is verified against numerical
model and two classical analytical solutions. Finally, the proposed
model is used for production prediction purposes.
2. Methodology

2.1. Model description

To produce oil/gas from unconventional reservoirs economi-
cally, multi-stage fractured horizontal well technology has been
applied commonly in petroleum industry. In the massive fracturing
process, the tight matrix in production formations is broken into
smaller blocks and a large amount of microfractures are created
around hydraulic fractures which serve as major flow path con-
necting the matrix and hydraulic fractures. Generally, the gener-
ated matrix blocks must be non-uniform and have different size. To
describe the flow process in such fractured reservoir, the hetero-
geneity of matrix cannot be ignored in mathematical models.
Furthermore, the size of matrix blocks is varied with the distance
from the hydraulic fractures. The closer the distance from the hy-
draulic fractures, the smaller the size and thus the easier the fluid
flow. On the contrary, the further the distance from the hydraulic
fractures, the larger the size and thus the harder the fluid flow. An
ideal physical model in fractured unconventional reservoir is
shown in Fig. 1.

Obviously, the maximum density of microfractures is created
close to the macrofractures, interpretated as the large amount of
minimal matrix block with high matrixefracture contact area,
which also represents the real reservoir condition. For the fluid flow
in unconventional reservoir, the well performance depends on the
transfer of fluids from tight matrix block to the fracture networks.
Because of the ultra-tight permeability, the main flow pattern is
considered to be the transient linear flow from matrix block to
fractures. In addition, the transient linear flow is affected by the
matrix block distribution and matrixemacrofracture communica-
tion, which is analyzed in the following section.
2.2. Matrix block distribution

For the continuous distribution of matrix block, the probability
density function can be adopted to define the distribution (Al-
Rbeawi, 2018).



Fig. 1. Conceptual model of multi-stage fractured horizontal well in tight reservoirs with variable matrix block sizes.
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ðLmax

Lmin

f ðLÞdL ¼ 1: (1)

In regard of the distance-independency matrix block distribu-
tion, a simplest matrix block distribution has been represented
mathematically by linear functions (Segall, 1981). The probability
density function for linear and exponential distribution can be
written in dimensionless form. Among them, two parameters m
and b represent the slope and intercept, respectively, which was
proposed and defined by Rafael et al. (2002). As for the value of m,
positive value indicates the large matrix block and negative value
indicates the small matrix block.

f ðLÞ¼mLþ b: (2)

2.3. Simultaneous matrix depletion

Some microseismic results have indicated that the stimulated
reservoir volume (SRV) including complex fracture networks will
be created around the macrofractures after fracturing. In these re-
gions, the ultra-low permeability matrix is broken into smaller
pieces and high density of microfractures could be activated
because of the high injection pressure. Therefore, the
matrixemacrofractures communication could be active (Fig. 1) and
the simultaneous matrix depletion must be taken into consider-
ation to avoid unreasonable estimation of the production. Based on
the distribution of matrix block, the size of matrix blocks will be
larger whenmoving outward the microfracture. In these situations,
there is negligible matrixemacrofracture contact area compared to
matrixemicrofracture contact area and the flow occurs between
the larger-sized matrix blocks and microfractures (Fig. 1). Based on
the previous works (Ezulike and Dehghanpour, 2014; Qiu and Li,
2019), the simultaneous matrix depletion, which represents the
2-D linear flow process in the matrix, is divided into two 1-D linear
flow processes in order to simplify the derivation, as shown in
Fig. 2. As an extension of the previous work, we focus on the
derivation of approximate analytical solution considering the
distance-dependent matrix blocks in this paper.

2.4. Model development

According to the above section, the matrix is divided into two
submatrix to describe two 1-D linear flow processes. Among them,
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submatrix m1 (the darker matrix part) feeds the macrofractures in
the x direction, and submatrix m2 feeds the microfractures in the y
direction. Thewhole derivation process begins with writing a series
of partial differential equations describing the fluid flow in each
medium. First, the flow process within submatrix m1 can be
expressed as

v2pm1

vx2
þ v2pm1

vy2
þ v2pm1

vz2
¼ ðfmctÞm1

km1

vpm1

vt
þ mm1

km1

ðL
0

qm1 Maf ðLÞdL;

(3)

pm1ðx; y; z;0Þ¼pi; (4)

kF
mF

vpF
vx

����
x¼x1

¼ km1

mm1

vpm1

vx

����
x¼x1

; (5)

vpm1

vx

����
x¼xL

¼0; (6)

vpm1

vy

����
y¼ym

¼0; (7)

vpm1

vy

����
y¼ye

¼0; (8)

vpm1

vz

����
z¼z0

¼0; (9)

vpm1

vz

����
z¼ze

¼0; (10)

where qm1_Ma is the interporosity-flow between submatrix m1 and
macrofractures.

Eq. (4) represents the initial constant-pressure conditions. Eq.
(5) indicates that the flow rate is equal at the interface between
submatrix m1 and the macrofractures. Eqs. (6)e(10) indicate no-
flow outer boundary conditions.

Similarly, the expression for transient linear flow within sub-
matrix m2 is



Fig. 2. Conceptual flow model of simultaneous matrix depletion.
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v2pm2

vx2
þ v2pm2

vy2
þ v2pm2

vz2
¼ ðfmctÞm2

km2

vpm2

vt
þ mm2

km2

ðL
0

qm2 Mif ðLÞdL;

(11)

pm2ðx; y; z;0Þ¼ pi; (12)

kf
mf

vpf
vy

�����
y¼y1

¼ km2

mm2

vpm2

vy

����
y¼y1

; (13)

vpm2

vx

����
x¼x1

¼0; (14)

vpm2

vx

����
x¼xL

¼0; (15)

vpm2

vy

����
y¼ym

¼0; (16)

vpm2

vz

����
z¼z0

¼0; (17)

vpm2

vz

����
z¼ze

¼0; (18)

where qm2_Mi is the interporosity-flow between submatrix m2 and
microfractures. Eq. (12) indicates that the initial pressure is con-
stant. Eq. (13) indicates that the flow rate is equal at the interface
between submatrix m2 and the microfractures. Eqs. (14)e(19)
represent no-flow outer boundary conditions.

In regard to the microfractures, the flow process is in the x
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direction. Therefore, the following mathematical expressions
including initial condition and boundary conditions apply

v2pf
vx2

þ v2pf
vy2

þ v2pf
vz2

¼ ðfmctÞf
kf

vpf
vt

; (19)

pf ðx; y; z;0Þ¼pi; (20)

kf
mf

vpf
vy

�����
y¼y1

¼ km2

mm2

vpm2

vy

����
y¼y1

; (21)

kf
mf

vpf
vx

�����
x¼x1

¼ kF
mF

vpF
vx

����
x¼x1

; (22)

vpf
vx

����
x¼xL

¼0; (23)

vpf
vy

����
y¼0

¼0; (24)

vpf
vz

����
z¼z0

¼0; (25)

vpf
vz

����
z¼ze

¼0: (26)

Eq. (20) indicates the initial pressure is constant inside the
microfractures. Eq. (21) represents the equal flow rate at the loca-
tion of y ¼ y1 between submatrix m2 and the microfractures.
Similarly, the equal rate between the micro- and macrofractures
occurs at the location of x ¼ x1, as expressed in Eq. (22). Eqs.
(23)e(26) represent no-flow outer boundary conditions.
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Fluid flow inside macrofractures towards the wellbore is in the y
direction. The following mathematical expressions including initial
condition and boundary conditions apply

v2pF
vx2

þ v2pF
vy2

þ v2pF
vz2

¼ ðfmctÞF
kF

vpF
vt

; (27)

pFðx; y; z;0Þ¼ pi; (28)

pFðx; y0; z;0Þ¼pwf ; (29)

kF
mF

vpF
vx

����
x¼x1

¼ km1

mm1

vpm1

vx

����
x¼x1

; (30)

kF
mF

vpF
vx

����
x¼x1

¼ kf
mf

vpf
vx

�����
x¼x1

; (31)

vpF
vx

����
x¼0

¼0; (32)

vpF
vy

����
y¼ye

¼0; (33)

vpF
vz

����
z¼z0

¼0; (34)

vpF
vz

����
z¼ze

¼0: (35)

Eq. (28) indicates the initial pressure is constant inside the
macrofractures, while Eq. (29) reflects the assumption of a constant
bottom-hole pressure (BHP). Eq. (30) represents the principle of
fluid continuity between submatrix m1 and the macrofractures at
2
66666666666664

dqnm1 Ma

dt
dqnm2 Mi

dt
dqfn
dt

dqFn
dt

3
77777777777775
¼ ð2n� 1Þ2

2
66666666666666664

0 �
�

1
tm1

þ TFm1

tFJF

�
�TFm1

tFJF

TFm1

tFJF

�
 

1
tm2

þ Tfm2
tfTFf

!
0

Tfm2
tfTFf

0

1
tF

� TFf
tFJF

�
 
1
tf

þ TFf
tFJF

!
TFf
tFJF

0
1
tF

1
tF

� 1
tF

3
77777777777777775

2
664
C1qnm1 Ma
C2qnm2 Mi

qfn
qFn

3
775; (44)
the location of x ¼ x1. Eq. (31) is identical to Eq. (22). Eqs. (32)e(35)
represent no-flow outer boundary conditions.
2.5. Solution methodology

In this paper, the integration method is adopted to solve the
series of partial differential equations. Moreover, the average
pressure in the different media is defined as the volume weighted
average, and we can thus transform the above system of partial
differential equations (PDEs) into a system of ordinary differential
equations (ODEs). A detailed derivation has been provided in
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Appendix A. The series of ODEs is obtained as follows:

�C1qm1 Ma ¼
�
Vpct

�
m1

dpm1

dt
; (36)

�C2qm2 Mi ¼
�
Vpct

�
m2

dpm2

dt
; (37)

�qf þ qm2 Mi ¼
�
Vpct

�
f
dpf
dt

; (38)

�qF þ qf þ qm1 Ma ¼
�
Vpct

�
F
dpF
dt

: (39)

As for the above equations, it is necessary to eliminate the
average pressure in the next step. Based on the analytical solution
for transient linear flow under constant pressure condition
(Wattenbarger et al., 1998; Ogunyomi et al., 2016), the average
pressure in the different media can be written as

pF ¼ pwf þ
qFi
JF

X∞
n¼1

qDFn
ð2n� 1Þ2

; (40)

pf ¼ pF þ
qfi
TFf

X∞
n¼1

qDfn
ð2n� 1Þ2

; (41)

pm2 ¼ pf þ
qim2 Mi
Tfm2

X∞
n¼1

qDm2n

ð2n� 1Þ2
; (42)

pm1 ¼ pF þ
qim1 Ma
Tfm1

X∞
n¼1

qDm1n

ð2n� 1Þ2
: (43)

Substituting Eqs. (40)e(43) into Eqs. (36)e(39) and then
rewriting the above ODEs in the following matrix form:
where the parameters are defined as

JF ¼
p2

4
qFi

pi � pwf
;

TFf ¼
p2

4
qfi

pf � pF
;
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TFm1 ¼ p2

4
qim1 Ma
pm1 � pF

;

Tfm2 ¼ p2

4
qim2 Mi
pm2 � pf

;

tF¼
�
Vpct

�
F

JF
;

tf ¼
�
Vpct

�
f

TFf
;

tm1 ¼
�
Vpct

�
m1

TFm1
;

tm2 ¼
�
Vpct

�
m2

Tfm2
:

qFi ¼
kFAF

mxF

�
pi �pwf

�
;

qfi ¼
kfAf
mxf

�
pf �pF

�
;

qm1i ¼
km1Am1

mxm1
ðpm1 �pFÞ;

qm2i ¼
km2Am2

mxm2

�
pm2 � pf

�
:

After a series of mathematical manipulations (details in
Appendix B), the analytical solution presenting directly oil rate
versus production time can be derived. In Eq. (45), l1, l2, l3, l4 and
x1, x2, x3, x4 are four eigenvalues and four eigenvectors of parameter
matrix in Eq. (44) and r1er16 represent the elements in
eigenvectors.

qF ¼ b1b3r4qFine
l1t þ b1b2r8qFine

l2t � b1a4r12qFine
l3t

þ b1a3r16qFine
l4t þ

ffiffiffiffi
p

p
b1b3r4qFin
4

ffiffiffiffiffiffiffiffiffiffi
jl1jt

p erfc
�
3

ffiffiffiffiffiffiffiffiffiffi
jl1jt

q �

þ
ffiffiffiffi
p

p
b1b2r8qFin
4

ffiffiffiffiffiffiffiffiffiffi
jl2jt

p erfc
�
3

ffiffiffiffiffiffiffiffiffiffi
jl2jt

q �

�
ffiffiffiffi
p

p
b1a4r12qFin
4

ffiffiffiffiffiffiffiffiffiffi
jl3jt

p erfc
�
3

ffiffiffiffiffiffiffiffiffiffi
jl3jt

q �

þ
ffiffiffiffi
p

p
b1a3r16qFin
4

ffiffiffiffiffiffiffiffiffiffi
jl4jt

p erfc
�
3

ffiffiffiffiffiffiffiffiffiffi
jl4jt

q �
: (45)

where the coefficients in the analytical solution are defined as

a1 ¼ðr1r12 � r4r9Þðr1r6 � r2r5Þ � ðr1r10 � r2r9Þðr1r8 � r4r5Þ;

a2 ¼ðr1r16 � r4r13Þðr1r6 � r2r5Þ � ðr1r14 � r2r13Þðr1r8 � r4r5Þ;

a3 ¼ðr1r11 � r3r9Þðr1r6 � r2r5Þ � ðr1r10 � r2r9Þðr1r7 � r3r5Þ;

a4 ¼ðr1r15 � r3r13Þðr1r6 � r2r5Þ � ðr1r14 � r2r13Þðr1r7 � r3r5Þ;
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b1 ¼
r1ðr1r6 � r2r5Þ
a2a3 � a1a4

;

b2 ¼
a4ðr1r11 � r3r9Þ � a3ðr1r15 � r3r13Þ

r1r7 � r3r5
;

b3 ¼
a4r9 � a3r13 � b2r5

r1
:

Obviously, we can find that the oil rate is related to nine vari-
ables in Eq. (45), i.e., the time constants of the macrofractures,
microfractures and submatrices m1 andm2, productivity index and
three transmissibility values. Moreover, the initial production rate
of the macrofractures is also important in the analytical solution.
The variables in Eq. (45) can be obtained by fitting and are
substituted into the solution for further production prediction.

3. Model validation

Validation against the Laplace-transform solution. In this
section, we compare the proposed analytical solution to typical
Laplace-transform solutions. Firstly, the triple-porosity model
proposed by Samandarli (2012) is chosen to obtain convincing re-
sults. Because it is not only a classical and reliable model, but also
has nearly identical model assumptions and boundary conditions
to the new model in this paper. Obviously, the result of new model
matches perfectly with Samandarli's analytical solution in Fig. 3(a).
Therefore, it is concluded that our model is applicable in triple-
porosity reservoirs.

Moreover, the Laplace-transform solution derived by Ezulike
and Dehghanpour (2014) is also chosen for verification. The main
reason is the authors proposed a quadrilinear flow model (QFM)
considering simultaneous matrixemicrofracture and
matrixemacrofracture depletion. Before verifying the results, their
solution has to be numerically inverted through Stehfest (1970)
algorithms. It is evident that our model also matches their analyt-
ical solution very well in Fig. 3(b). Furthermore, four main flow
regimes are identified. Regimes 1 and 3 have both the linear slope
of�1/2 and represent the transient linear flow inmicrofracture and
transient linear flow from matrix to microfracture, respectively.
Regime 4 exhibits the exponential flow decline which means the
no-flow boundaries have been reached. Comparing Fig. 3(a) and
(b), regime 2 with the slope of �1/4 is special and can be inter-
preted as bilinear flow due to simultaneous linear flow in macro-
fracture and microfracture. In most cases, regime 3 is regarded as
the target regime for fitting production data in the field because the
matrix in unconventional reservoirs contributes significantly to
production.

Verification against numerical model. Based on the symmetry
assumption, a numerical model which is represented simply with
three interacting media (matrix, two microfractures and one
macrofracture) has been constructed, whose top view is shown in
Fig. 4. Meanwhile, the local grid refinement is implemented to 41
grids in the x direction and 49 grids in the y direction in order to
describe the variable matrix block sizes. The pressure profile also
represents the variable matrix blocks and simultaneous matrix
depletion. Table 1 summarizes the important parameters used in
numerical model.

In general, the oil rate obtained from the numerical model (black
circle) and the newmodel (red line) suitably agree with each other,
as illustrated in Fig. 5. Table 2 summarizes the output parameters
from our model after fitting. Obviously, three flow regimes could be
identified. The time constant for transient linear flow in macro-
fracture is 0.005 d and thus regime 1 is too short to be observed.



Fig. 3. (a) Comparison of our model with the triple-porosity Laplace-transform solution; (b) Comparison of our model with Laplace-transform solution considering the simul-
taneous matrix depletion.

Fig. 4. Top view of the numerical model.

Table 1
Basic parameters for numerical case.

Parameters Value

Model dimensions (x � y � z), ft 80 � 74 � 3
Initial pressure, psi 2500
Bottom-hole pressure, psi 500
Viscosity, cP 3
Oil compressibility, 10�5 psi�1 9.75
Rock compressibility, 10�6 psi�1 6.1
Porosity 0.06
Macrofracture permeability, mD 50
Microfracture permeability, mD 5
Matrix permeability, mD 0.001
Volume of macrofractures, ft3 22.2
Volume of microfractures, ft3 4.8
Volume of the matrix, ft3 17733

Fig. 5. Comparison verification between the numerical case and new model.

Table 2
Output parameters after validating against the
numerical model.

Parameter Value

tm1, d 55
tm2, d 85
tf, d 0.08
tF, d 0.005
Tfm1/TFf 0.108
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The microfracture time constants are 0.08 d and regime 2 can last
about 0.1 d. Regime 3 represents transient linear flow from sub-
matrix m2 tomicrofracture and can be observed to last for 85 d. The
no-flow boundaries can be reached when the production time is
long enough and then regime 4 can also be observed.
TFm2/JF 0.08
TFf/JF 0.143
qFi, STB/d 1.24
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Fig. 6. Flowchart for production data analysis.

Table 3
Output parameter values after fitting.

Parameter CARD-1 2WS-1

tm1, d 133 238
tm2, d 248 2488
tf, d 0.03 229
tF, d 0.001 0.002
Tfm1/TFf 0.33 0.3
TFm2/JF 0.65 0.75
TFf/JF 0.15 0.14
qFi, STB/d 367 686

Table 4
Estimated parameter values according to the production data analysis.

Parameter CARD-1 2WS-1
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4. Production data analysis and field application

4.1. Production data analysis

The accuracy of the newmodel has been validated by comparing
with typical analytical solutions and numerical model. In this sec-
tion, a flow chart is developed for applying the new model to field
data to make production analysis easier, which is presented in
Fig. 6. The first three steps focus on the data processing and history
matching. The main purpose is to get the output parameters of the
new model through fitting. The obtained parameters are not only
substituted into the new model for production prediction, but also
can be used to estimate the petrophysical properties because they
strictly follow the mathematical and physical definition according
to the last two steps.
Vm1, 105 m3 4.4 69.7
Vm2, 105 m3 38.7 118.7
Vf, m3 35 4322
VF, m3 17 61
Km1, mD 0.001 0.0006
Km2, mD 0.003 0.0002
Kf, mD 3 4
KF, mD 150 30
4.2. Field application

Example 1. CARD-1 is a horizontal well with 10 stages of hydro-
fracturing stimulationwhich is drilled to exploit the Halo oil play in
western Canada sedimentary basin. This well has been on constant
bottom-hole pressure production for just over 400 d and the pro-
duction data can be retrieved from Clarkson and Pedersen (2011).
Fig. 7. The application of the new model in well CARD-1. (a) Actual oil rate in log-log plot; (b) Results by history matching and forecasting in log-log plot.
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Fig. 8. The application of the new model in well 2WS-1. (a) Actual oil rate in log-log plot; (b) Results by history matching and forecasting in log-log plot.
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The half-slope and unit-slope on the log-log plot can be
exhibited in Fig. 7(a) and is essential for diagnosing the dominant
flow regimes. The first flow period lasts over 200 d, and the second
flow period represents that the pressure reaches the boundaries.
Therefore, the two flow regimes in Fig. 7(a) can be diagnosed
separately as regime 3 and regime 4. According to the flowchart, the
new model is then used for matching the actual data and fore-
casting the future production. The fitting and prediction results are
shown in Fig. 7(b). The fitting results indicate a good matching, and
all output and estimated parameters are listed in Tables 3 and 4,
respectively. Obviously, the macro- and microfracture time con-
stants are determined as 0.001 and 0.03 d respectively. Thus,
regime 1 and regime 2 are too short to be observed. The feed times
for submatrices 1 and 2 are estimated to be 133 and 248 d. In other
words, the transient linear flow from matrix to macrofracture ac-
counts for almost half of the matrix transient flow time, which is
also an important proof to considering simultaneous matrix
depletion.

Example 2. Well 2WS-1 is a typical vertical shale oil well which
was used to develop the Second White Speckled Shale in Canada.
This well was in continuous production under constant bottom-
hole pressure for approximately 3500 d. Similarly, the production
data is extracted from Clarkson and Pedersen (2011) and exhibited
on the log-log diagnostic plot which is shown in Fig. 8(a). Three
flow regimes could be identified including two transient linear flow
and one early unit-slope. Considering the first linear flow period
lasted for longer than 600 d and the second linear flow period
lasted approximately 2000 d, the second half-slope linear flow can
be diagnosed as regime 3. The next step involves history matching
the production data with our new model. The excellent fitting and
prediction results can be obtained and shown in Fig. 8(b). All output
and estimated parameters are listed in Tables 3 and 4, respectively.
According to the output parameters, the feed times for submatrix
m1 is much lower than that of submatrix m2. It is likely that the
permeability of macrofracture is closer to that of microfractures.
5. Conclusions

In this study, we developed an approximately analytical solution
to account for the variable matrix blocks and simultaneous matrix
depletion in unconventional oil reservoirs. In addition to make
production prediction, the solution can be used to capture the flow
contribution from non-uniformly distributed matrix and then
interpret the field data. The specific conclusions can be
summarized.

(1) During the mathematical derivation, the partial-differential
equations (PDEs) constructing mathematical models are
transformed into ordinary-differential equations (ODEs) by
integration and average pressure replacement. A rate-vs.-
time solution in real-time space can be obtained, bypassing
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the numerical inversion for the Laplace transform. The linear
flow regions are easy to be diagnosed and the corresponding
flow time can be obtained directly after fitting which is
convenient for reservoir and engineering application.

(2) The analytical model provides a practical approach to
consider simultaneous matrixemacrofracture and
matrixemicrofracture depletion by breaking a single 2-D
problem into two 1-D problems. A typical flow region (a
quarter-slope) can be observed because of the significant
matrixemacrofracture communication, which will help for
reasonable estimation of microfracture and/or macrofracture
properties. Comparing with the existing dual- and triple-
porosity models, the proposed model is more
comprehensive.

(3) In contrast to the existed models that consider the fixed
matrix-block size, the distribution of the matrix blocks de-
pends on the distance from the main hydraulic-fracture
plane which is expressed mathematically by typical linear
functions in the paper. After fracturing, a high density of
microfractures is created near macrofractures. Namely, the
smaller matrix block near macrofractures with higher
matrixemacrofracture contact area could enhance the
transfer of fluids from matrix to macrofractures and have a
positive impact on well performance.

(4) The parameters in the analytical solution are defined strictly
following the mathematical and physical meanings. Espe-
cially for time constants, they are strongly correlated with
the porous volume of each medium. Based on the output
parameters, the porous volume and permeability of each
medium can be inferred, which is significant for well test and
production prediction.
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Appendix A

In regard to the governing equation of submatrix m1 expressed
as Eq. (3), multiple integrals are computedwith x ranging from x1 to
xL, y ranging from ym to ye and z ranging from z0 to ze:
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ðxL
x1

ðye
ym

ðze
z0

 
v2pm1

vx2
þ v2pm1

vy2
þ v2pm1

vz2

!
dxdydz

¼ ðfmctÞm1
km1

ðxL
x1

ðye
ym
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z0

�
vpm1

vt

�
dxdydz

þ
ðxL
x1

ðye
ym

ðze
z0

 
mm1
km1

ðL
0

qm1 Maf ðLÞdL
!
dxdydz: (A1)

Removing space-independent time t outside of the spatial in-
tegral gives
ðxL
x1

ðye
ym

ðze
z0

v

vx

�
vpm1

vx

�
dxdydzþ

ðxL
x1

ðye
ym

ðze
z0

v

vy

�
vpm1

vy

�
dxdydzþ

ðxL
x1

ðye
ym

ðze
z0

v

vz

�
vpm1

vz

�
dxdydz ¼

ðfmctÞm1
km1

v

vt

ðxL
x1

ðye
ym

ðze
z0

pm1dxdydzþ
 
mm1
km1

qm1 Ma

ðL
0

f ðLÞdL
! ðxL

x1

ðye
ym

ðze
z0

dxdydz:

(A2)
Firstly, the volume-averaged pressure can be defined as

p ¼

ð
pdV

V
: (A3)

Therefore, the average pressure of three interacting media can
be expressed sequentially as

pm1 ¼

ðxL
x1

ðye
ym

ðze
z0

pm1dxdydz

ðxL
x1

ðye
ym

ðze
z0

dxdydz

; (A4)

pm2 ¼

ðxL
x1

ðym
y1

ðze
z0

pm2dxdydz

ðxL
x1

ðym
y1

ðze
z0

dxdydz

; (A5)

pf ¼

ðxL
x1

ðy1
0

ðze
z0

pf dxdydz

ðxL
x1

ðy1
0

ðze
z0

dxdydz

; (A6)
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pF ¼

ðx1
0

ðye
0

ðze
z0

pFdxdydz

ðx1
0

ðye
0

ðze
z0

dxdydz

: (A7)

Similarly, the bulk volume of three interacting media can be
defined sequentially as

Vbm1 ¼
ðxL
x1

ðye
ym

ðze
z0

dxdydz; (A8)
Vbm2 ¼
ðxL
x1

ðym
y1

ðze
z0

dxdydz; (A9)

Vbf ¼
ðxL
x1

ðy1
0

ðze
z0

dxdydz; (A10)

VbF ¼
ðx1
0

ðye
0

ðze
z0

dxdydz: (A11)

Eq. (A4) can be translated into

ðxL
x1

ðye
y1

ðze
z0

pm1dxdydz ¼ pm1Vbm1: (A12)

Substituting Eq. (A12) into Eq. (A2), Eq. (A2) can be rewritten as

ðye
ym

ðze
z0

�
vpm1

vx

����
xL
� vpm1

vx

����
x1

�
dydzþ

ðxL
x1

ðze
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����
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� vpm1
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����
ym

!
dxdz

þ
ðxL
x1

ðye
ym

�
vpm1

vz

����
z0
� vpm1

vz

����
ze

�
dxdy

¼ ðfmctÞm1
km1

Vbm1
dpm1

dt
þ mm1

km1
Vbm1qm1 Ma

ðL
0

f ðLÞdL:

(A13)

Simplifying Eq. (A13) by substituting the boundary conditions,
we can obtain
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�
ðye
ym

ðze
z0

 
km1

mm1

vpm1

vx

����
x1

!
dydz ¼ ðfctÞm1Vbm1
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dt

þ Vbm1qm1 Ma

ðL
0

f ðLÞdL: (A14)

According to Darcy's law

qm1 Ma ¼
ðye
ym

ðze
z0

 
km1

mm1

vpm1

vx

����
x1

!
dydz: (A15)

Moreover, we define the pore volume of three interacting media
as

Vpm1 ¼ Vbm1f; (A16)

Vpm2 ¼ Vbm2f; (A17)

Vpf ¼ Vbff; (A18)

VpF ¼ VbFf: (A19)

Eq. (A14) can be rewritten as

�C1qm1 Ma ¼
�
Vpct

�
m1

dpm1

dt
; (A20)

where C1 is a constant, and C1 ¼ 1þ Vbm1
R L
0 f ðLÞdL.

Similarly, we can obtain the ODE of submatrix m2 as

�C2qm2 Mi ¼
�
Vpct

�
m2

dpm2

dt
; (A21)

where C2 is a constant, and C2 ¼ 1þ Vbm2
R L
0 f ðLÞdL.

Similarly, the multiple integral transformation is applied to
calculating the governing equation of the microfracture:

ðxL
x1

ðy1
0

ðze
z0

 
v2pf
vx2

þ v2pf
vy2

þ v2pf
vz2

!
dxdydz

¼ ðfmctÞf
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�
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vt

�
dxdydz: (A22)

Eqs. (A6) and (A10) are substituted to simplify Eq. (A22) as

ðy1
0

ðze
z0

�
vpf
vx

����
xL
� vpf

vx

����
x1

�
dydzþ

ðxL
x1
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þ
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ze
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�
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¼ ðfmctÞf
kf

Vbf
dpf
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: (A23)

Multiplying both sides by kf
mf
and simplifying Eq. (A23) based on

boundary conditions, we can obtain as
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�
ðy1
0
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(A24)

According to Darcy's law

qf ¼
ðy1
0

ðze
z0

 
kf
mf

vpf
vx

�����
x1

!
dydz: (A25)

The following flux continuity at the interface between the
microfracture and matrix is recognized

kf
m

vpf
vy

����
y¼y1

¼ km2

m

vpm2

vy

����
y¼y1

; (A26)

Substituting Eqs. (A25) and (A26) into Eq. (A24), we obtain

�qf þ qm2 Mi ¼
�
Vpct

�
f
dpf
dt

: (A27)

The governing equation of the microfracture can also be calcu-
lated by multiple integral transformation:
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0
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0

ðze
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�
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vt

�
dxdydz: (A28)

Eqs. (A7) and (A11) are substituted to simplify Eq. (A28) and the
new expression for Eq. (A28) can be obtained as
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: (A29)

Applying the boundary condition and multiplying both sides by
kF
mF
, Eq. (A29) can be simplified as
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(A30)

According to Darcy's law

qF ¼
ðx1
0

ðze
z0

�
kF
mF

vpF
vy

����
0

�
dxdz: (A31)

The following flux continuity at the interface between the mi-
cro- and macrofractures is considered
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With themicrofracture rate expressed in Eq. (A25), Eq. (A30) can
be rewritten as

�qF þ qf þ qm1 Ma ¼
�
Vpct

�
F
dpF
dt

: (A34)

Appendix B

Substituting Eqs. (40)e(43) into Eqs. (36)e(39), we obtain
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Vpct

�
F
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X∞
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(B1)
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(B6)
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After dividing both sides by certain parameters, the following is
obtained
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Eqs. (B5)e(B8) can be rewritten in the following matrix form:
2
66666666666664

dqnm1 Ma

dt
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dt
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dt

dqFn
dt

3
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775: (B9)
For this coefficient matrix in Eq. (B9), we obtain four eigen-
values, namely, l1, l2, l3, l4 and four eigenvectors, namely, x1, x2, x3,
x4 and r1er16 represent the elements in eigenvectors.

x1 ¼

0
BB@

r1
r2
r3
r4

1
CCA; x2 ¼

0
BB@

r5
r6
r7
r8

1
CCA; x3 ¼

0
BB@

r9
r10
r11
r12

1
CCA; x4 ¼

0
BB@

r13
r14
r15
r16

1
CCA: (B10)

The fluid flow has not yet occurred in the matrix and micro-
fracture when time t¼ 0 and the initial production rate depends on
the contribution from macrofractures, which is defined as qFin.

qnm1 Maðt¼0Þ¼ 0; (B11)
qF¼ b1b3r4qFine
l1t þ b1b2r8qFine

l2t � b1a4r12qFine
l3t þ b1a3r16qFine

l4t

þ lim
z/∞

ðZ
3
ffiffiffiffiffiffiffi
jl1tj

p

�
b1b3r4qFine

z2 þ b1b2r8qFine

l2
jl1j

z2

� b1a4r12qFine

l3
jl1j
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þb1a3r16qFine

l4
jl1j

z2� dZ
2

ffiffiffiffiffiffiffiffiffiffi
jl1tj

p :

(B17)
qnm2 Miðt¼0Þ¼0; (B12)
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qfnðt¼0Þ¼0; (B13)

qFnðt¼0Þ¼ qFin: (B14)

Substituting the initial conditions, Eq. (B9) can be solved
analytically to represent the relationship between the production
rate and real time.
qF ¼ b1b3r4qFine
l1t þ b1b2r8qFine

l2t � b1a4r12qFine
l3t

þ b1a3r16qFine
l4t þ
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�
: (B15)

We define Z ¼ ð2n�1Þ
ffiffiffiffiffiffiffiffiffiffi
jl1tj

p
and calculate the derivative as

dn ¼ dZ
2

ffiffiffiffiffiffiffiffiffiffi
jl1tj

p : (B16)

Therefore, Eq. (B15) can convert the summation to an integral:
By adopting the error function, Eq. (B17) can be valuated and
simplified as
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For the limit, when z/∞, lim
z/∞

erfðzÞ ¼ 1. And for the comple-

mentary error function can be written as erfcðzÞ ¼ 1� erfðzÞ.
Finally, the approximate analytical solution can be derived as

qF ¼ b1b3r4qFine
l1t þ b1b2r8qFine

l2t � b1a4r12qFine
l3t

þ b1a3r16qFine
l4t þ
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