International Multiphase Flow Technology Forum (IMFTF) Friday, April 22nd, 2022

In situ measurement and imaging technique of particle separation in centrifugal fields by advanced wireless electrical resistance detector (aWERD)

Dr. Yosephus Ardean Kurnianto **PRAYITNO**^{1,2} Prof. Masahiro TAKEI¹

https://www.ihi.co.jp/separator/en/products/screw/hs-I.html

Where is Chiba Japan?

OUTLINE

3

Voverview of Electrical Impedance Tomography¹ (5 min)

- ✓ In situ measurement on decanter centrifuge by Wireless Electrical Resistance Tomography (WERT) (40 min)
- ✓ Development of Lymphedema Monitor (10 min)
- ✓ Concluding Remarks and Questions (5 min)

¹J. Yao and M. Takei, Application of Process Tomography to Multiphase Flow Measurement in Industrial and Biomedical Fields - A Review, *IEEE Sensors Journal*, 17(24), 8196-8205 (2017)

Plant Group

Lithium-ion battery slurry

Collection

Box (Plastic)

Vibration Generator

Collection Box(Cu)

Waste Wire

Water Inlet

Inlet

Tilt Vibration Tech

Collection Box(AI)

Separator

WERD/ WERT

High Speed Switching Device (Multiplexer)

Impedance Measurement Device (FPGA Board : Redpitaya)

SMB Cable(Redpitaya to Arduino)

Miniaturization

TAKEI Laboratory 武居 研究室 Laboratory on Multiphase Flow and Visualization

Centrifuge

Wireless

Energy Plant

Our Electrical Tomography &

Applications

Chemical Reactor

Bio Group

Lymphedema

Micro-channel

Thrombosis Provided by Prof. Nakamura ⁴

Overview of Electrical Impedance Tomography

https://youtu.be/nO6WWbqsin0

Basic Image Reconstruction

$\Delta \mathbf{V} = \mathbf{J} \Delta \boldsymbol{\sigma}$

 $\Delta \mathbf{V}$: Measured relative voltage [-]

6

J: Jacobian matrix [-]

 $\Delta \boldsymbol{\sigma}$: relative conductivity [-]

Application: Prototype of Lymphedema Monitor

OUTLINE

Voverview of Electrical Impedance Tomography¹ (5 min)

✓ In situ measurement on industrial decanter by Wireless Electrical Resistance Tomography (WERT)²⁻⁶ (40 min)

✓ Development of Lymphedema Monitor (10 min)

✓ Concluding Remarks and Questions (5 min)

²Y. Atagi and M.Takei, real-time imaging of particles distribution in centrifugal particles-liquid two phase fields by wireless electrical resistance tomography (WERT) system, *IEEE Access*, Vol. 7. pp.12706 - 12713 (2019)

³K. Kimura, Y.A.K. Prayitno, and M. Takei, In situ particles deposition imaging in centrifugal fields by implemented SPH-DEM-ANN into linear sensor-type wireless electrical resistance tomography (IsWERT), *Powder Tech.*, Vol. 398, 117140 (2022)

⁴Z. Tong and M. Takei, real-time measurement of particle volume fraction in centrifugal fields by wireless electrical resistance detector (WERD), *Flow Meas. and Inst.*, 65, 90-97 (2018)

⁵Y. A. K. Prayitno and M. Takei, in-situ measurement of sludge thickness in high-centrifugal force by optimized particle resistance normalization for wireless electrical resistance detector (WERD), *Measurement Sci. & Tech.*, 32(3), 034001 (2020)

⁶Y.A.K. Prayitno and M. Takei, *In situ* measurement of hindered settling function in decanter centrifuge by periodic segmentation technique in wireless electrical resistance detector (*ps*WERD), *Advanced Powder* 7 *Tech.*, 33(1), 103370 (2021)

Development of Wireless PT for Centrifuge² I aboratory on Multinhase Flow and Visualizatio

TAKEI Laboratory

Experimental Setup of WERT in Lab Scale

Experimental Conditions and Method

3D Imaging of Particles Distribution α_p by WERT #1

3D Imaging of Particles Distribution α_p by WERT #2

Parabolic solid-liquid interface becomes sharper as rotation velocity ω increase

Governing Equations of Simulation Model

Mass conservation equation

$$\frac{\partial \alpha_q}{\partial t} + \nabla \cdot (\alpha_q \mathbf{u}_q') = 0$$

Simulation condition is the same as the experiment

Momentum conservation equation

Subscript *q* denotes either the liquid (*I*) or particle (*p*) phases

- ρ: Density [kg/m³]; α: Volume fraction [-]; α_p+α_l=1
- **u**': Velocity vector of fluid in moving reference frame;
- *p* : Pressure shared by both phases[Pa]; $\overline{\overline{\tau}}$: Stress-strain tensor;
- K_{ls} : Interphase momentum exchange coefficient between liquid and particle phase ; $\Delta \mathbf{u}_{lp}$: Velocity difference between liquid and particle phase[m/s];
- \mathbf{F}_{lift} : Lift force[N]; \mathbf{F}_{vm} : Virtual mass force[N];
- ω : Angular velocity vector of the moving frame relative to stationary reference frame ;
- r': Position vector in the moving frame; q: Liquid phase or particle phase

Comparison between Experiment & Simulation

As shown in z_m -< α_p > graph, < α_p > by WERT presents the same variation trend with the numerical simulation

OUTLINE

Voverview of Electrical Impedance Tomography¹ (5 min)

✓ In situ measurement on industrial decanter by Wireless Electrical Resistance Tomography (WERT)²⁻⁶ (40 min)

✓ Development of Lymphedema Monitor (10 min)

✓ Concluding Remarks and Questions (5 min)

²Y. Atagi and M.Takei, real-time imaging of particles distribution in centrifugal particles-liquid two phase fields by wireless electrical resistance tomography (WERT) system, *IEEE Access*, Vol. 7. pp.12706 - 12713 (2019)

³K. Kimura, Y.A.K. Prayitno, and M. Takei, In situ particles deposition imaging in centrifugal fields by implemented SPH-DEM-ANN into linear sensor-type wireless electrical resistance tomography (IsWERT), *Powder Tech.*, Vol. 398, 117140 (2022)

⁴Z. Tong and M. Takei, real-time measurement of particle volume fraction in centrifugal fields by wireless electrical resistance detector (WERD), *Flow Meas. and Inst.*, 65, 90-97 (2018)

⁵Y. A. K. Prayitno and M. Takei, in-situ measurement of sludge thickness in high-centrifugal force by optimized particle resistance normalization for wireless electrical resistance detector (WERD), *Measurement Sci. & Tech.*, 32(3), 034001 (2020)

⁶Y.A.K. Prayitno and M. Takei, *In situ* measurement of hindered settling function in decanter centrifuge by periodic segmentation technique in wireless electrical resistance detector (*ps*WERD), *Advanced Powder Tech.*, 33(1), 103370 (2021)

Overview of SPH-DEM-ANN coupled by *Is***WERT**³

Current issues

A lack of *in situ* image reconstruction technique for realtime particles-liquid separation in industrial decanter

*Y.A.K. Prayitno and M. Takei, *Meas. Sci. and Tech.*(2020) **Y. Atagi and M. Takei, *IEEE Access (*2019)

Technical problems

 σ [Sm⁻¹]

80

60

40

20

TAKEI Laboratory 研究室 oratory on Multiphase

Flow and Visualization

17

Conventional

*Is*WERT problem

Flowchart of SPH-DEM-ANN coupled by *Is*WERT³

Calculated of phase-particles position

Beads-particles position:

$$\mathbf{X}^{P} = \left[(x_{1}^{P}, z_{1}^{P}), \dots (x_{n}^{P}, z_{n}^{P}), \dots (x_{N_{P}}^{P}, z_{N_{P}}^{P}) \right]^{T} \in \mathbb{R}^{N_{P}}$$

Liquid-particles position:

$$\mathbf{X}^{L} = \left[(x_{1}^{L}, z_{1}^{L}), \dots (x_{n}^{L}, z_{n}^{L}), \dots (x_{N_{L}}^{L}, z_{N_{L}}^{L}) \right]^{T} \in \mathbb{R}^{N_{L}}$$

Calculation of the radius of neighbour liquid-particles a and b for liquid-particles position in axisymmetric centrifugal fields

$$\rho_{a} = \sum_{b} m_{b} W_{ab}(q) \quad (1) \implies W_{ab}(q) \begin{cases} \frac{10}{7\pi h^{2}} \left(1 - \frac{3}{2}q^{2} \left(1 - \frac{q}{2}\right)\right) & 0 \le q \le 1 \\ \frac{5}{14\pi h^{2}} (2 - q)^{3} & 1 \le q \le 2 \\ 0 & 2 \le q \end{cases}$$
(2)

 $\rho_a[\text{kgm}^{-3}]$: density of particles a q[-]: dime $m_a[\text{kg}]$: mass of particles a h[mm]: sm $W_{ab}[-]$: Kernel function for particles $a \rightarrow b$

q[-]: dimensionless length

h[mm]: smoothing length

$$\frac{\nabla P_a}{\rho_a} = \sum_b m_b \frac{P_b}{\rho_b^2} \nabla W_{ab} + \sum_b m_b \frac{P_a}{\rho_a^2} \nabla W_{ab}$$
(3)

Pressure difference $P_b - P_a$ by centrifugal force $\mathbf{F}_{a \leftarrow b}^c$ as,

 $\mathbf{F}_{a\leftarrow b}^{c} = -m_{a}m_{b}\left(\frac{P}{\rho^{2}}\right)\nabla W_{ab} \qquad (4)$

Momentum equation for liquid-particles influenced by $\mathbf{F}_{a\leftarrow b}^{c}$

$$\frac{d\mathbf{v}_{a}}{dt} = -\sum_{b} m_{b} \left(\frac{P_{b}}{\rho_{b}^{2}} + \frac{P_{a}}{\rho_{a}^{2}} + \Pi_{ab} \right) \nabla W_{ab} \quad (5)$$

Fig. Phase-particles position mechanism

 P_a [Pa]: Pressure of particles a P_b [Pa]: Pressure of particles b

 Π_{ab} [ms⁻¹]: velocity difference in artificial velocity

 $W_{ab}(\mathbf{r}_{ab},h)$

Solving liquid-particles position in axisymmetric centrifugal fields

$$\Pi_{ab} = \begin{cases} \frac{-\alpha \bar{c}_{ab} \mu_{ab}}{\bar{\rho}_{ab}} & \mathbf{v}_{ab} \cdot \mathbf{r}_{ab} < 0\\ 0 & \mathbf{v}_{ab} \cdot \mathbf{r}_{ab} > 0 \end{cases}$$
(6)
$$\bar{c}_{ab} = \frac{c_a + c_b}{2}$$
(8)
$$\bar{\rho}_{ab} = \frac{\rho s_a + \rho s_b}{2}$$
(9)

Smoothing prevention under the case of $\mathbf{r}_{ab} < 0.1h \rightarrow \eta^2 = 0.01h^2$

 α [mm]: radius of shear and bulk viscosity \bar{c}_{ab} [ms⁻¹]: mean sound speed of liquid-particles μ_{ab} [Pas]: smoothed viscosity of liquid-particles $\bar{\rho}_{ab}$ [kgm⁻³]: mean density of liquidparticles η [-]: dimensionless viscous term to prevent singularities

Solving particles-phase flow in SPH-DEM for bead-particles velocity \mathbf{v}_P

$$\frac{\mathrm{d}\mathbf{v}_{P}}{\mathrm{d}t} = \sum_{L} m_{L} \frac{V_{P}}{\rho_{L}} \frac{2P_{P}}{\rho_{L}^{2}} \nabla W_{PL} \qquad (10)$$

$$\nabla W_{PL} = \nabla W(\mathbf{r}_{P} - \mathbf{r}_{L}, h)$$
Solving Eq.(1)-(10), phase-particles position:

$$\mathbf{x}_{n}^{P} = [(\mathbf{x}_{n}^{P}, \mathbf{z}_{n}^{P})]^{T} \text{ and } \mathbf{x}_{n}^{L} = [(\mathbf{x}_{n}^{L}, \mathbf{z}_{n}^{L})]^{T} \qquad (11)$$

$$\mathbf{X}^{P} = \left[\mathbf{x}_{1}^{P} \dots \mathbf{x}_{n}^{P}, \dots \mathbf{x}_{N_{p}}^{P}\right]^{T} \in \mathbb{R}^{N_{P}} \qquad (12)$$

$$\mathbf{X}^{L} = \left[\mathbf{x}_{1}^{L} \dots \mathbf{x}_{n}^{L}, \dots \mathbf{x}_{N_{p}}^{L}\right]^{T} \in \mathbb{R}^{N_{L}} \qquad (13)$$
Fig. SPH-DEM simulation model

 $m_P[kg]: mass of bead-particles<math>m_L[kg]: mass of liquid-particles<math>P_P[Pa]: Pressure of bead-particles<math>P_L[Pa]: Pressure of liquid-particles<math>\rho_P[kgm^{-3}]: density of bead-particles<math>\rho_L[kgm^{-3}]: summation density of liquid-particles<math>V_P[m^3]: Volume of bead-particles relative to bead-particles number <math>M_P$ 23 $\mathbf{X}^P[mm]: position array of bead-particles<math>\mathbf{X}^L[mm]: position array of liquid-particles$

Conductivity map generation (Step 2) #1

Step 1: Phase-particles position Constant values calculation by SPH-DEM σ_n^P Conductivity of bead-particles σ_n^L \mathbf{X}^{P} , \mathbf{X}^{L} Conductivity of liquid-particles σ_n^0 Conductivity of air-particles Step 2: Conductivity map generation $\hat{\mathbf{x}}_1 = \left[\left(\hat{x}_{\lambda_1}, \hat{z}_{\lambda_1} \right) \right]^T$ Coincided phase-particles position array: $\hat{\mathbf{x}}_{n} = \left[\left(\hat{x}_{\lambda_{n}}, \hat{z}_{\lambda_{n}} \right) \right]^{T} \in \mathbb{R}^{2} \begin{cases} \hat{\mathbf{x}}_{n}^{P} \\ \hat{\mathbf{x}}_{n}^{L} \end{cases}$ $\hat{\mathbf{x}}_{2} = \left[\left(\hat{x}_{\lambda_{2}}, \hat{z}_{\lambda_{2}} \right) \right]^{T}$ $\hat{\mathbf{x}}_{3} = \left[\left(\hat{x}_{\lambda_{3}}, \hat{z}_{\lambda_{3}} \right) \right]^{T}$ $\hat{\mathbf{y}}_{n} = \left[\gamma_{\lambda_{1}}, \gamma_{\lambda_{2}}, \gamma_{\lambda_{3}} \right] \in \mathbb{N}^{3}$ Triangle mesh array: $\boldsymbol{\gamma}_{n} = \left[\gamma_{\lambda_{1}}, \gamma_{\lambda_{2}}, \gamma_{\lambda_{3}} \right] \in \mathbb{R}^{3} \begin{cases} \boldsymbol{\gamma}_{n}^{P} \\ \boldsymbol{\gamma}_{n}^{L} \end{cases}$ Elements array: $\boldsymbol{\Gamma} = \left[\boldsymbol{\gamma}_1, \dots \boldsymbol{\gamma}_n, \dots \boldsymbol{\gamma}_{N_{\mathcal{V}}}\right]^T \in \mathbb{R}^{N_{\mathcal{V}}}$ Simulated material array: \mathbf{D}^{sim} Γ, Ջ, σ Node-particles array: $\mathbf{D}^{sim} = \begin{bmatrix} D_1^{sim}, \dots D_n^{sim}, \dots D_{N_{\gamma}}^{sim} \end{bmatrix} \in \mathbb{R}^{N_{\gamma}}$ $\widehat{\mathbf{X}} = \begin{bmatrix} \widehat{\mathbf{x}}_1, \dots \widehat{\mathbf{x}}_n, \dots \widehat{\mathbf{x}}_{N_\lambda} \end{bmatrix}^T \in \mathbb{R}^{N_\lambda}$ Phase-particles conductivity array: $\boldsymbol{\sigma} = \left[\sigma_1, \dots \sigma_n, \dots \sigma_{N_{\gamma}}\right]^T \in \mathbb{R}^{N_{\gamma}}$ Step 4: Training component of model 24 Step 3: Normalized resistance calculation factors by ANN

Conductivity map generation (Step 2) #2

2-1) Extraction step of phase-particles dot

25

Conductivity map generation (Step 2) #3

• r_{eff} solved under closed-pack conditions as $d/\sqrt{3}$

$$\sigma_{n} \begin{cases} \sigma_{n}^{P} & \text{If } \min(\|\hat{\mathbf{x}}_{n}^{\gamma} - \mathbf{X}^{P}\|) < r_{eff,P} \\ \sigma_{n}^{L} & \text{Else if } \min(\|\hat{\mathbf{x}}_{n}^{\gamma} - \mathbf{X}^{L}\|) < r_{eff,L} \text{ (14) } D_{n}^{sim} \begin{cases} 0 & \text{for } \sigma_{n}^{0} \text{ represented air-phase} \\ 1 & \text{for } \sigma_{n}^{L} \text{ represented liq-phase} \\ 2 & \text{for } \sigma_{n}^{P} \text{ represented par-phase} \end{cases} \end{cases}$$

Normalized resistance calculation (Step 3)

Model factors training (Step 4)

Experiment component by *Is***WERT (Step 5**)

Predicting component of phase-particles array (Step 6)

Experimental Results #1

Case 1: Beads-particle number N_P [-] = 40

ω [rpm]	\mathbf{D}^{exp}	D ^{sim}	HSC	ω [rpm]	\mathbf{D}^{exp}	D ^{sim}	HSC
175	D Air Liq.			235			
205				265			

Experimental Results #2

Case 2: Beads-particle number N_P [-] = 48

ω [rpm]	\mathbf{D}^{exp}	D ^{sim}	HSC	ω [rpm]	\mathbf{D}^{exp}	D ^{sim}	HSC
175				235			
205				265			

Experimental Results #3

Case 3: Beads-particle number N_P [-] = 56

ω [rpm]	\mathbf{D}^{exp}	D ^{sim}	HSC	ω [rpm]	D ^{exp}	D ^{sim}	HSC
175				235			
205				265			

Discussion: Comparison with HSC

OUTLINE

Voverview of Electrical Impedance Tomography¹ (5 min)

✓ In situ measurement on industrial decanter by Wireless Electrical Resistance Tomography (WERT)²⁻⁶ (40 min)

✓ Development of Lymphedema Monitor (10 min)

✓ Concluding Remarks and Questions (5 min)

²Y. Atagi and M.Takei, real-time imaging of particles distribution in centrifugal particles-liquid two phase fields by wireless electrical resistance tomography (WERT) system, *IEEE Access*, Vol. 7. pp.12706 - 12713 (2019)

³K. Kimura, Y.A.K. Prayitno, and M. Takei, In situ particles deposition imaging in centrifugal fields by implemented SPH-DEM-ANN into linear sensor-type wireless electrical resistance tomography (IsWERT), *Powder Tech.*, Vol. 398, 117140 (2022)

⁴Z. Tong and M. Takei, real-time measurement of particle volume fraction in centrifugal fields by wireless electrical resistance detector (WERD), *Flow Meas. and Inst.*, 65, 90-97 (2018)

⁵Y. A. K. Prayitno and M. Takei, in-situ measurement of sludge thickness in high-centrifugal force by optimized particle resistance normalization for wireless electrical resistance detector (WERD), *Measurement Sci. & Tech.*, 32(3), 034001 (2020)

⁶Y.A.K. Prayitno and M. Takei, *In situ* measurement of hindered settling function in decanter centrifuge by periodic segmentation technique in wireless electrical resistance detector (*ps*WERD), *Advanced Powder* 35 *Tech.*, 33(1), 103370 (2021)

Overview of WERD: Research Background

Overview of WERD: Research History

In situ hindered settling function by WERD⁶

Period segmentation WERD (psWERD) #1

39

Period segmentation WERD (psWERD) #2

nase **40**

Step 1: Segmentation of R(t)

Simplified EEC model in three settling conditions

pre = no supplied particle *tran* = supplied particle *post* = saturated **Measured by WERD**

$$\mathbf{V}_{R(z,t)} = \begin{cases}
R(z,t) \text{ in } pre \ t_0 \leq t \leq t_1 \\
R(z,t) \text{ in } tran \ t_1 \leq t \leq t_2 \\
R(z,t) \text{ in } post \ t_2 \leq t \leq t_3
\end{cases}$$
(1)

at measurement points $z_1 \leq z \leq z_3$

 $R(z,t)[\Omega]$: Measured resistance in different point and timez[mm]: Measurement pointt[s]: Measurement time

Step 2: Elimination of SC's adverse effect

FFT in three settling conditions

$$\bar{R}(\mathbb{Z},\omega) = \int_{z_n}^{z_n} \int_{t_n}^{t_{n+1}} R(z,t) e^{-i(\mathbb{Z}z+\omega t)} dz dt \qquad (2) \qquad \begin{array}{l} \text{Differential speeds } \omega \text{ affects the fluctuating } R(t) \text{ under settling periods} \\ \Rightarrow R_L(z,t) = \frac{1}{2\pi} \int_{\mathbb{Z}}^{\mathbb{Z}} \int_{f_L}^{f_S} \bar{R}(\omega) e^{i(\mathbb{Z}z+\omega t)} d\mathbb{Z} d\omega \text{ in } t_0 \leq t \leq t_1 \qquad (3) \\ \Rightarrow R_{LP}(z,t) = \frac{1}{2\pi} \int_{\mathbb{Z}}^{\mathbb{Z}} \int_{f_{LP}}^{f_S} \bar{R}(\omega) e^{i(\mathbb{Z}z+\omega t)} d\mathbb{Z} d\omega \text{ in } t_1 \leq t \leq t_3 \qquad (4) \end{array}$$

42

 f_P [1/s] : particle frequency

 $\overline{R}[\Omega^2 s]$: Measured resistance in frequency domain $R_L [\Omega]$: Liquid resistance $R_{LP} [\Omega]$: Slurry resistance $f_L [1/s]$: liquid frequency $f_S [1/s]$: screw frequency

Step 3: Calculation of particle volume fraction ϕ

$$\sigma_{L}(z,t) = \frac{1}{R_{L}(z,t)} \frac{d}{A_{Elc}}$$
(5)
$$\sigma_{P} = \frac{1}{R_{P}} \frac{l}{A_{Elc}} ; R_{P} \text{ at } \phi_{cp}$$
(6)
$$\int_{-}^{+} \overline{\sigma}_{L}(z,t) = \frac{1}{N} \sum_{t_{0}}^{t_{1}} \sigma_{L}(z,t) \text{ in } t_{0} \leq t \leq t_{1} \text{ and } z_{1} \leq z \leq z_{3}$$
(7)
$$\sigma_{LP}(z,t) = \frac{1}{R_{LP}(z,t)} \frac{d}{A_{Elc}} \text{ in } t_{1} \leq t \leq t_{2} \text{ and } z_{1} \leq z \leq z_{3}$$
(8)
$$\sigma_{LP}(z,t) = \frac{1}{R_{LP}(z,t)} \frac{d}{A_{Elc}} \text{ in } t_{2} \leq t \leq t_{3} \text{ and } z_{1} \leq z \leq z_{3}$$
(9)
Effective medium theory (EMT): Relationship of conductivity σ and volume
fraction ϕ by complex multiphase mixture
$$\int_{-}^{-} \overline{\sigma}_{L} \sigma_{P} - \sigma_{P} \sigma_{LP}(z,t)$$
(10)

$$\phi(z,t) = \frac{\overline{\sigma}_L \sigma_P - \sigma_P \sigma_{LP}(z,t)}{\overline{\sigma}_L \sigma_{LP}(z,t) - \sigma_P \sigma_{LP}(z,t)}$$

 σ_L [Sm⁻¹]: Liquid conductivityd[mm]: Electrode distance σ_{LP} [Sm⁻¹]: Slurry conductivity A_{Elc} [mm²]: Electrode area σ_P [Sm⁻¹]: Closed-pack particle conductivity ϕ_{cp} [-]: Closed-pack particle volume fraction $\bar{\sigma}_L$ [Sm⁻¹]: Liquid relative conductivity ϕ [-]: Particle volume fraction

Step 4: Calculation of $H(\phi)$

 $H(\phi)$: Decanter's particle settling \neq Stokes settling velocity u_{St}

$$u_{St} = \frac{(\rho_p - \rho_l)a^2g}{18\mu_l} \quad (11) \qquad G = \frac{\omega^2(r_{sep} - r_{deb})}{g} \quad (12)$$

$$u_{hin} = \frac{H(\phi)(\rho_p - \rho_l)a^2\omega^2(r_{sep} - r_{deb})}{18\mu_l} \quad (13) \qquad G = \frac{\omega^2(r_{sep} - r_{deb})}{g} \quad (14)$$

$$\downarrow u_{hin}^{ins}(z,t) = \frac{r_{set}(\phi(z,t))}{\Delta t} = \frac{r_{set}(\phi_{cp}(z,t) - \phi_0(z,t))}{t_2 - t_1} \quad (14)$$

$$\downarrow H(\phi(z,t)) = \frac{u_{hin}(z,t)}{u_{St}} = \left(1 - k\left(\frac{\phi(z,t)}{\phi_{cp}}\right)\right)^p \quad (15)$$

Assumption:

- Settling radius r_{set} = clearance between screw conveyor SC and bowl $\approx 1 1.5 \text{ mm in } A_{PSA}$
- Settling time in $r_{set}(\phi(z,t)) \rightarrow$ determine u_{hin}

 $H(\phi)[-]$: Hindered settling function G[g]: centrifugal force u_{St} [mms⁻¹]: Stokes settling velocity u_{hin} [mms⁻¹]: Hindered settling velocity u_{hin}^{ins} [mms⁻¹]: In situ hindered settling velocity u_{hin}^{ins} [mms⁻¹]: In situ hindered settling velocity 44

 A_{PSA}

r_{set}

Industrial-Scale Experiments of $H(\phi)$ by WERD **Setup and Conditions**

Fig. Decanter-WERD setup

G₁

Fig. Experiments condition

Parameter

a

Centrifugal force G

Configuration of SC					
Parameter	a/b				
SC1 [-]	0.4375				
SC2 [-]	0.2222				

Diff. speed of SC

Parameter	Value		
ω_1 [rad/s]	0.524		
ω_2 [rad/s]	1.047		
ω_3 [rad/s]	3.142		

 $G_2[g]$

Value

1,075.3

2,129.9

45

Results: Effect of SC to WERD

 G_1

100

 t_3

TAKEI Laboratory

Flow and Visualization

研究室 oratory on Multiphase

46

武居

 G_2

Results: Elimination of SC's adverse effect

SC1 $G_1 = 1,075.3 \ g$ $\omega_2 = 1.047 \ rad/s$

- *R*(*t*)in DC signal, fluctuation as the effect of ω
- In *Pre* period :
 - $f_S = 0.183 [1/s]$
 - $f_L = 0.365 [1/s]$
- In *Tran* and *Post* period :
 - $f_P = 0.009 0.165 [1/s]$ and 0.217 0.348 [1/s]

 ω_2

SC1

- Similar range of calculated frequency f under ω_2 as,
 - Passing screw f = 0.167 [1/s]
 - No-passing screw f = 0.334 [1/s]

Results: Transient behavior of in situ ϕ

- Lower $G \rightarrow G_1 = 1,075.3 g$: ϕ distributed through z_1

0.500-0.625

0.625-0.750

 G_1, G_2

Results: Calculation of *in situ* $H(\phi)$

• Determine coefficient of *k*, *p*

Table fitting parameter values

Experimental condition	k	p	RMSE				
$SC_1 - G_1 - \omega_2$							
Measurement point 1 z_1 [D]	0.55	17.5	0.00014				
Measurement point 2 z_2 [D]	0.55	30	0.00012				
$SC_1 - G_2 - \omega_2$							
Measurement point 1 z_1 [D]	0.55	60	0.00005				
Measurement point 2 z_2 [D]	0.55	40	0.00009				

Discussions: Comparison to previous works

- $H(\phi)$ of Richardson & Zaki = Ekdawi & Hunter = gravitational settling
- $H(\phi)$ of Michael and Bolger = particle settling in decanter centrifuge
- $G = 1,000 2,000 g \Rightarrow H(\phi)$ from Michael and Bolger $H(\phi)$ from Menesklou and Gleiss

 $H(\phi(z,t)) = \left(1 - k\left(\frac{\phi(z,t)}{\phi_{cp}}\right)\right)^{p} \Leftrightarrow \begin{array}{l} \text{Good agreement to previous works} \\ \text{with same operational conditions} \end{array}$

OUTLINE

- **Voverview of Electrical Impedance Tomography**¹ (5 min)
- ✓ In situ measurement on industrial decanter by Wireless Electrical Resistance Tomography (WERT)²⁻⁶ (40 min)
- ✓ Development of Lymphedema Monitor (10 min)
- ✓ Concluding Remarks and Questions (5 min)

Research Background What is lymphedema?

- 20-30% onset after surgery for breast cancer and gynecological cancer¹⁻²⁾
- Early detection is important for advanced chronic diseases
 Significant decrease in QOL (quality of life) and ADL (activity of daily living)
- Often retreats from social life

O Stages I Stages II Stages II Stages

¹⁾Cormier JN, *Cancer* (2010)

²⁾Zou L, *Breast Cancer* (2018) ³⁾ Japan Medical Lymphatic Drainage Association <u>https://www.mlaj.jp/</u>

52

Number of patients

Increasing number of patients

210,000 $people^{3}$

6,000 people/year³⁾

Current diagnosis of lymphedema

Circumferential diameter measurement [1]

Bioimpedance (BI) Ultrasound [2] method [1]

MRI [3]

- 1) Subcutaneous injection of indocyanine green (ICG) and real-time observation with near infrared rays
- 2) How to inject a contrast medium subcutaneously and take a picture with a gamma camera

Lymphatic scintigraphy ²⁾[1]

[1] Cheng M, et al., "Principles and practice of lymphedema surgery", USA, Elsevier (2016)
[2] Suehiro, Kotaro, et al. "Significance of ultrasound examination of skin and subcutaneous tissue in secondary lower extremity lymphedema." Annals of vascular diseases 6.2 (2013): 180-188.
[3] Wang L, et al. Edema areas of calves measured with magnetic resonance imaging as a novel indicator for early staging of lower extremity lymphedema, Lymphat Res Biol 16, 240–247 (2018)

Development of Lymphedema Monitor

OUTLINE

- **Voverview of Electrical Impedance Tomography**¹ (5 min)
- ✓ In situ measurement on industrial decanter by Wireless Electrical Resistance Tomography (WERT)²⁻⁴ (15 min)
- ✓ Development of Lymphedema Monitor (5 min)
- ✓ Concluding Remarks and Questions (5 min)

Conclusions

- In situ measurement on industrial decanter is feasible by applying Industrial Process Tomography: Wireless Electrical Resistance Detector/Tomography
- Boundary and initial condition are important aspects to sharply develop the measurement technique
- Requirements/focus on object's demand is inevitable to produce an impactful technology

「見えない」を「視える」に ~ビジュアライゼーション・テクノロジーの

基礎開発と産業展開~

Seeing the "invisible" ~Fundamental Development of Visualization Technology and its Application to Industry~

TAKEI Laboratory 武居 研究室 Laboratory on Multiphase Flow and Visualization

http://www.em.eng.chiba-u.jp/~takei/top.htm