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a b s t r a c t 

Due to non-uniform density and variations in scale and perspective, estimating crowd count in crowded 

scenes in different degree is an extremely challenging task. The deep learning models mostly use pooling 

operation so that the density map of original resolution is obtained through the last upsampling. This 

paper aims to solve the problem of losing local spatial information by pooling in density map estimation. 

Therefore, we propose a dilated convolution neural network with global self-attention, named DCGSA. 

Especially, we introduce a Global Self-Attention module (GSA) to provide global context as guidance of 

low-level features to select person location details and a Pyramid Dilated Convolution module (PDC) that 

extracts channel-wise and pixel-wise features more precisely. Extensive experiments on several crowd 

datasets show that our method achieves lower crowd counting error and better density maps compared 

to the recent state-of-the-art methods. In particular, our method also performs well on the sparse dataset 

UCSD. 

© 2019 Elsevier B.V. All rights reserved. 
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. Introduction 

Massive stampede events around the world have caused great

njuries and deaths. Accurate population density estimation can

ring convenience to timely crowded warnings. Due to the rapid

evelopment of deep learning, crowd counting and crowd density

stimation [1–5] have obtained great improvement in recent years.

rowd counting outputs a total person number of persons in a

rowd image while crowd density estimation presents a heatmap

f crowd distribution. In this paper, we aim to solve the joint task

f estimating both people number and density map from a single

mage with the arbitrary perspective angle. 

This task faces two main challenges now: (1) Since the pre-

icted density map needs to follow pixel-by-pixel prediction, the

utput density map must approximate the spatial structure of the

riginal image so that they can render the smooth transition be-

ween each pixel and its nearest neighbors. However, some spa-
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ial structure information of the original image is missing during

he pooling process, which has an adverse impact on the smooth

ransition. (2) Pixels of each person’s head in one image range

idely due to the distance to the monitoring camera. A phe-

omenon of “Small person in the distance, large person in the

icinity" is formed as shown in Fig. 1 . Due to the advantages of

ow MAE (mean average error) and MSE (mean squared error),

eep convolutional neural networks have become the mainstream

ethod instead of traditional methods. Most methods extract fea-

ures through several convolution layers. Pooling layers are both

sed and finally the feature maps are restored to the original im-

ge size by bilinear interpolation. They do not adopt the idea of

ulti-scale like SSD [6] . For example, CSRNet [7] deploys the first

0 layers from VGG-16 [8] as the front-end and dilated convolu-

ion layers as the back-end. Only deep features are used for final

rediction, yet shallow features are discarded. The loss of spatial

nformation caused by pooling layers is not compensated. Thus,

he generated density map may lose some vital information about

erson location. Besides, the enlargement by bilinear interpolation

n the final stage is not conducive to estimating such a pixel-level

ask in crowd density map prediction. 

In this paper, we propose a new method called DCGSA (Di-

ated Convolution with Global Self-Attention). It aims at solving
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Fig. 1. Different sizes of person’s head at the different distances from a camera. 
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the issue that high-level features are skilled in making density

prediction, while weak in restructuring original resolution binary

prediction. U-shape networks [9–12] which use the low-level infor-

mation to help high-level features recover spatial details. Referring

to U-shape networks and SENet [13] , we design a decoder module

named Global Self-Attention Module (GSA) which can extract

the global context of high-level features as guidance to weight

low-level features. Besides, the existence of persons at multiple

scales brings difficulty in density prediction. Thus, inspired by

Dilated Convolution [14] and SPPNet [15] , we design an effective

feature exactor module called PDC (Pyramid Dilated Convolution).

It is used to extract both pixel-wise and channel-wise context for

high-level features extracted from deeper layer of convolutional

neural network. 

In summary, there are two contributions in this paper. Firstly,

we design Global Self-Attention Module to make up for lost in-

formation during the pooling process. Secondly, we propose Pyra-

mid Dilated Convolution Module to embed extracted person fea-

tures at different scales. By combining Global Self-Attention Mod-

ule and Pyramid Dilated Convolution Module, the total structure

DCGSA has achieved better performance. 

The rest of the paper is structured as follows. Section 2 presents

previous works of crowd density estimation, CNN attention mech-

anism, and dilated convolution. Section 3 introduces the details of

the proposed method while Section 4 presents the experimental

results on different datasets. In Section 5 , we make a conclusion of

the paper. 

2. Related work 

2.1. Crowd density estimation 

Crowd Density estimation aims to map an input crowd image

to its corresponding density map. The density map indicates the

number of people per pixel presented in the crowd image. Over

recent years, researchers have tended to use density regression-

based methods for crowd counting. Especially, the features ex-

tracted by CNN are more robust than previous hand-crafted fea-

tures. 

Multi-column CNN fuses features through several CNN columns

to regress the crowd density map. Zhang et al. [2] proposed a

multi-column based architecture (MCNN). The network includes

three columns corresponding to filters with receptive fields of

different sizes (large, medium, small). These different columns

are designed to cater to different person scales present in the

images. Boominathan et al. [3] combined deep and shallow fully

convolutional networks to predict the density map. The combi-

nation of two networks aims at solving non-uniform scaling of

crowd and variations in perspective. Unlike the methods above,
SRNet [7] use VGG-16 as a backbone for feature exacting. It uses

ilated convolution at the end of the network for understanding

ighly congested scenes. To embed local structural information,

ang et al. [16] proposed a deep network with metric learning.

he learning of better representations and distance measurement

re simultaneous. It proves that the metric learning can guide

he training process of deep networks with high-level semantic

eatures. Another research [17] by Wang proposes a Multiview-

ased Parameter Free framework (MPF) for group detection. A

ovel Structural Context descriptor is put forward to profile the

tructural properties of feature points. Two versions of the Self-

eighted Multiview Clustering method are designed to integrate

he points’ correlations from both the orientation and context

iews. They also propose a tightness-based merging strategy for

ombining the coherent local groups reasonably. 

.2. CNN attention mechanism 

A neural network with attention mechanisms can focus more

n relevant elements of the input than on irrelevant parts. It is first

tudied in Natural Language Processing (NLP). Encoder–decoder

odels with attention modules are designed to facilitate neural

achine translation [18–20] . In computing the output for a given

uery element, certain key elements are prioritized according to

he query. Self-attention modules were then presented for mod-

ling intra-sentence relations [21–24] . Especially, the Transformer

ttention module [24] has achieved state-of-the-art performance.

he success of attention mechanisms in NLP has motivated it-

elf to computer vision. Thus, different kinds of attention module

re applied to both object detection and semantic segmentation

25–28] . Here, the query and key are visual elements such as im-

ge pixels or regions of interest in computer vision. 

Channel-wise feature attention [13,25,29,30] is the represen-

ative of spatial self-attention. As different f eature channels en-

ode different semantic concepts, these works aim at capturing the

orrelations among these concepts. This can be achieved by ac-

ivation/deactivation of certain channels. Meanwhile, relationships

mong elements at different spatial positions are modeled. Differ-

nt attention weights are assigned to corresponding feature chan-

els, as shown in Formula 1. 

 out = F C ( x,y ) × W 

C (1)

Here, F C 
( x,y ) 

represents the pixel value of position ( x, y ) on the

hannel C of the input feature maps. W 

C represents the attention

eight corresponding to the channel C . The attention weight is

enerated by the network itself. 

The encoder-decoder model is to encode the input sequence

nto an intermediate context. This context is a specific length of
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Fig. 2. Different dilation rate on feature maps. 
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ncoding (which can be considered as a vector) and then restored

o an output target sequence through this context. Many works

31,32] suggest that attention mechanism in encoder–decoder

odel plays a role similar to word alignment in traditional ap-

roaches [33–35] . The input elements accorded high attention

eights are responsible for the model outputs. In encoder–decoder

ttention, the key and the query are from two different sets of

lements. The two sets of elements need to be properly aligned

ostly. For example, in the encoder–decoder attention of neural

achine translation, the key and the query elements correspond

o the words in the input and the output sentences, respectively.

imilarly, in semantic segmentation, the key and the query ele-

ents can correspond to the concepts in the low-level and high-

evel features. The low-level features can be prioritized according

o the high-level features. 

.3. Dilated convolution 

Dilated convolution [14] comes from the field of image seman-

ic segmentation. When an image enters a neural network, convo-

utional filters are used to extract features and pooling is used to

educe the image size and increase the receptive field. Since image

egmentation is a pixel-wise prediction, it is necessary to restore

he smaller image to its original size by upsampling. Although the

nput is finally resized by the upsampling operation, many details

pixel missing) are lost by pooling forever. Thus, dilated convolu-

ion turned out which increases the receptive field without reduc-

ng the size of feature maps. 

There is an important parameter in dilated convolution called

ilation rate. It represents the size of dilation as shown in Fig. 2 .

rom the perspective of feature maps, dilation is just sampling

n the feature maps. The sampling frequency is set according to

he parameter. When rate is 1, the feature maps will not lose any

nformation after sampling. At this time, dilated convolution is

onsidered as a standard convolution. When rate > 1, it is sampled

very rate-1 pixels. The feature maps after sampling are finally

onvolved with the kernel, which actually increases the receptive

eld in disguise. On the other hand, dilation can enlarge the

ernel size. (Rate-1) zeros are inserted between adjacent points.

rom Formula 2 and Formula 3, changes of the receptive field can

e observed. Formula 4 and Formula 5 show the size changes of

eature maps after ordinary convolution and dilated convolution. 

 ield = k ∗ k (2)

 iel d d = k + ( k − 1 ) ∗( rate − 1 ) (3)

 = 

W in − k + 2 p 

s 
+ 1 (4) 

 d = 

W in − k − ( k − 1 ) ∗ ( rate − 1 ) + 2 p + 1 (5) 

s 
Here, k is the kernel size, rate is the dilation rate, p is the

adding size and s is the stride size. 

Yet, there are two potential problems with a structure based

ntirely on Dilated Convolution: (a) The Gridding Effect. If the 3 × 3

ernel of 2 dilation rate is superimposed multiple times, not all

ixels will be used for calculation. This may lose the continuity of

he image information, leading to worse pixel-wise dense predic-

ion. (b) Long-ranged information might be not relevant. Large di-

ation rate may only be effective for segmentation of large objects,

hile it may be disadvantageous for small objects. Therefore, we

esign a new module called Pyramid Dilated Convolution module.

t referred to SPPNet [15] , but replaced pooling with dilated convo-

ution. Experiments prove that it can use all information of feature

aps and have a better prediction. 

. Proposed method 

In this section, we first introduce the proposed Global Self-

ttention (GSA) Module and Pyramid Dilated Convolution (PDC)

odule. Then we describe the complete encoder–decoder network

rchitecture DCGSA, designed for the joint task of predicting crowd

ensity map and crowd counting. 

.1. Global self-attention 

Crowd density prediction is to generate corresponding density

alues for each pixel. To some extent, it is similar to the idea of se-

antic segmentation. Therefore, decoder architectures which per-

orm well in the semantic segmentation task can be migrated to

he crowd density prediction task. For example, PSPNet [36] or

eeplab [37] uses bilinearly upsample directly while DUC [38] uses

arge channel convolution combined with reshaping. Both of them

ack different scales of low-level feature map information. This may

e harmful to recover spatial localization to origin resolution. Deep

etwork in [7] has already obtained considerable performance and

apability to obtain person information. However, they all ignore

o repair person pixel location. Therefore, we consider to fully use

igh-level features with abundant person information for weight-

ng low-level context to select precise resolution details. 

SENet [13] assigns the vector obtained by global average

ooling as the weight to each pixel on the feature map of each

hannel. It adaptively recalibrates channel-wise feature responses

y explicitly modeling inter-dependency between channels. How-

ver, global context just has high semantic information, which

s not helpful for recovering the spatial information. It can be

bserved that the network encodes finer spatial information in

he lower stage, but it has poor semantic consistency due to small

eceptive view. While in the high stage, it has strong semantic

onsistency due to large receptive view, but the prediction is spa-

ially coarse. Overall, the lower stage makes more accurate spatial

redictions, while the higher stage gives more accurate semantic
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Fig. 3. The structure of Global Self-Attention Module (GSA). 
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predictions. Inspired by this, we assume whether the channel-wise

context generated by global average pooling of deep layers can

guide shallow layers to learning person localization details. Thus,

we design Global Self-Attention Module in order to provide global

context to low-level features. The destination is to use high-level

features to guide the low-level features for the optimal prediction. 

Here, we use HF for high-level features in higher stage and LF

for low-level features in the lower stage. As default, the number

of HF ’s channels is twice that of LF while the feature map’s width

and height of LF are twice of that of HF . In detail, the global fea-

ture vector Vector is obtained from HF by Global Average Pooling

(GAP). Each number in the Vector directly gives the abstract rep-

resentation of each corresponding channel’s feature map. GAP not

only removes the limitation on the input size, but also retains the

spatial information extracted from each channel of the previous

convolution layer. Vector enters a 1 × 1 convolution with BatchNor-

malization (BN) [39] and Sigmoid activation function. The channels

decrease to the channels of low-level feature maps while going

through 1 × 1 convolution. In BN, the mean and standard-deviation

are calculated per-dimension over the mini-batches. Parameters γ
and β are learnable vectors of the input feature map’s size as

shown in Formula 6. BN forces such a data distribution to be scaled

to a standard normal distribution with a mean of 0 variance of 1.

Thus, it can lead the input value of the nonlinear transformation

function to fall into the area sensitive to the input, thereby avoid-

ing the problem of gradient disappearance. Mathematically, the es-

timates of its computed mean and variance are kept with a mo-

mentum of 0.1. The update rule for running statistics is shown as

Formula 7: 

y = 

x − E ( x ) √ 

V ar ( x ) + ε
∗ γ + β (6)

ˆ x new 

= ( 1 − momentum ) × ˆ x + momentum × x t (7)

Here, ˆ x is the estimated statistic and x t is the new observed

value. The sigmoid function scales the values in Vector to [ −1,1].

After the data is mapped by the Sigmoid function, it will gradually

move closer to the limit saturation region of the value range. Then

Vector is multiplied by features map obtained by low-level features

through the convolution. Useful features in low-level features are

strengthened meanwhile useless features are weakened. Besides,

upsampled high-level features are added with the weighted low-

level features. This can aggregate multi-scale density prediction

maps. 1 × 1 convolution can integrate the information of each fea-

ture channel and reduce computation. So, the fused feature maps
re through 1 × 1 convolution to reduce channels finally. It is de-

igned due to the success of U-Net. The whole data flow calcula-

ion is shown as follows: 

 N×C HF × 1 × 1 = GAP ( H F N×C HF ×H HF ×W HF 
) (8)

 ecto r N×C LF × 1 × 1 = ReLU ( BN ( Con v 1 ∗1 ( P ) ) ) (9)

ut put = Con v 1 ∗1 ( L F N×C LF ×H LF ×W LF 
× V ector + H F N×C HF ×H LF ×W LF 

) 

(10)

Here, N is the batch size and N × C × H × W is the matrix repre-

entation of data in a network. This module deploys different scale

eature maps more effectively and uses high-level features provide

uidance information to low-level feature maps in a simple way.

he structure of Global Self-Attention Module (GSA) is shown in

ig. 3 . 

.2. Pyramid dilated convolution 

Inspired by Attention Mechanism and spatial pyramid structure,

t is taken into account how to provide precise pixel-level infor-

ation for high-level features extracted from deep convolutional

ayers. The pyramid module fuses feature maps under different

ooling scales. Due to image scale-non-deformation and small

omputational burdens, pooling is widely used in various predic-

ion tasks. However, high-level feature maps are small in size and

ach pixel value is critical to some extent. Spatial information

oss caused by pooling may result in a less detailed density map.

lso, it lacks global context prior attention to select the features

hannel-wisely as in SENet and EncNet [40] . 

Above all, we design Pyramid Dilated Convolution (PDC) module

efer to PSPNet [15] . The dilated convolution architecture is based

n the fact that dilated convolutions support the exponential ex-

ansion of the receptive field without loss of resolution or cov-

rage. Thus, the pooling layers in original pyramid structures are

emoved to keep feature maps’ resolution unchanged. 3 × 3 ker-

els of convolution with padding are used to maintain the feature

ap size. According to VGG-16, using more convolutional layers

ith small kernels is more efficient than using fewer layers with

arger kernels when targeting the same size of receptive field. 3 × 3

onvolution also brings less computation burden. To better extract

ontext from different pyramid scales, convolutions of different di-

ation rate are adopted in pyramid structure respectively. Then, the
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Fig. 4. The structure of Pyramid Dilated Convolution Module (PDC). 
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Fig. 5. Four multi-scale Loss for total architecture’s training. 

L

3

 

C  

v  

A  

a  

t  

m  

t  

a  

t  

c  

i  

o

 

p  

b  

l  

d  

s  

s  

f  
yramid structure integrates information of different scales, which

an incorporate neighbor scales of context features more precisely.

nstead of pooling and upsampling, this dilated module can learn

ore spatial information without loss. Benefit from spatial pyra-

id structure, PDC module can fuse different scale context infor-

ation and produce better pixel-level attention for high-level fea-

ure maps in the meantime. CSRNet proves that each column in

uch branch structure learns nearly identical features. However,

ulti-column features can be selected, rather than abandoned di-

ectly. Due to overlapping of the fused features, they are finally put

nto a SE-block Module to enhance spatial encoding. Useful den-

ity features are enhanced and invalid features are discarded. This

ill adaptively recalibrate channel-wise feature responses by ex-

licitly modeling interdependencies between channels. The struc-

ure of PDC module is shown in Fig. 4 . Pyramid pooling module

n PSPNet has four-level pooling kernels with sizes of 1 × 1, 2 × 2,

 × 3 and 6 × 6 respectively. Similarly, we also use four-level fea-

ures by dilated convolution, rather than pooling. Using this 4-level

yramid, the dilated convolution kernels cover the whole, 1/2, 1/4

nd 1/8 of the image. The fused multi-scale features are weighted

y SE block for more robust and accurate representation. 

.3. Auxiliary multi-scale loss 

InceptionNet (GoogleNet) [41–43] shows that the network with

he auxiliary branches starts to overtake the accuracy of the net-

ork without any auxiliary branch and reaches a slightly higher

lateau near the end of training. The architecture of VGG-16 is

reated as four stages divided by pooling layers. Therefore, feature

aps at different stages can be regarded as feature maps generated

y different convolution kernels (MCNN), thus avoiding feature re-

undancy. In a single forward pass of network training, multi-scale

ensity predictions are obtained from different layers of the neu-

al network. This corresponds to the problem that person’s heads

ave different scales, depending on their distance to the camera.

herefore, four losses are adopted, leading to more detailed crowd

ensity map. Loss1, Loss2, and Loss3 are L2 Loss while Loss4 is L1

oss. L2 Loss (Formula 11) makes the feature maps in the network

s close as possible to the density distribution. At the end of the

etwork, L1 Loss (Formula 12) is used to estimate the number of

ensity map in the final fitting real number, leading to more pre-

ise prediction result. Total loss (Formula 13) added from L1, L2,

3, and L4 are propagated. Then, the gradient is calculated and the

etwork parameters are updated. Four multi-scale losses for total

rchitecture’s training are shown in Fig. 5 . 

 D 2 ( �) = 

1 

2 N 

N ∑ 

i =1 

p ∑ 

p=1 

‖ 

F ( X i ( p ) ;�) − F i ( p ) ‖ 

2 
2 (11) 

 D 1 ( �) = 

1 

N 

N ∑ 

i =1 

| C ( X i ;�) − C i | (12) 
 total = L 1 + L 2 + L 3 + L 4 (13) 

.4. Network architecture 

With proposed Global Self-Attention (GSA) and Pyramid Dilated

onvolution (PDC), we propose the total architecture Dilated Con-

olution with Global Self-Attention (DCGSA), as shown in Fig. 6 .

ccording to CSRNet [7] , it shows that a best tradeoff can be

chieved when keeping the first ten layers of VGG-16 with only

hree pooling layers instead of five. This is to suppress the detri-

ental effects on output accuracy caused by the pooling opera-

ion. Thus, the first 10 convolutional layers of VGG-16 are used as

 backbone. The model can be divided into four stages according

o the size of the feature maps. During the increase of stage, the

hannels of feature maps are doubled while the width and height

s the half. In the final stage, the output size of feature maps is 1/8

f the original input image. 

For the deepest features, the PDC module is added to gather

ixel-level and channel-level information from the output of the

ackbone. Combined with the global context, the output is fol-

owed by three GSA module to generate multi-scale density pre-

iction maps for predicting loss. The feature maps from the higher

tage are upsampled by bilinear interpolation to be equal to the

ize of lower stage. Above all, the first VGG extracts fine high-level

eatures, so it can be treated as an accurate encoder structure. The
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Fig. 6. The architecture of DCGSA for crowd density estimation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

t  

d  

δ  

p  

a  

F

F  

 

t  

o

4

 

p  

 

 

 

 

s  

i  

m  

r

4

4

 

g  

i  

i  

u  
GSA module decodes the high-level features to the final density

map of the original size, so it can be treated as an effective de-

coder module. The PDC module between them can gain another

round of performance boost. Finally, one 3 × 3 convolution kernel

is used for one-channel prediction. On this basis, auxiliary multi-

scale loss is also used for making more detailed prediction. Some

paper like [7] only uses the final feature map which is bilinear up-

sample to the input size. The predicted density map is less accu-

rate than one which is all predicted by CNN. Therefore, our method

makes full use of the advantages of CNN to obtain more detailed

prediction. 

4. Experiment 

In this section, we first introduce the ground truth generating

of density maps. Then we introduce data preprocessing and evalu-

ation metrics. Finally, we compare the proposed method to recent

state-of-the-art methods on the four datasets. There are Shang-

haiTech Part/A and Part/B dataset [2] , UCF_CC_50 dataset [4] and

UCSD dataset [44] . 

The batch size of the training process is set to 1. The model

is trained using mini-batch adaptive moment estimation (Adam)

with initial rate 1e-5. When training loss converges, the learning

rate reduces to 1e-7. We used the PyTorch with one NVIDIA Tesla

K80 to train and test the model. 

4.1. Ground truth generating 

A method for generating crowd density maps [45] is proposed

to take into account perspective distortion. It generates the ground

truth by estimating spread parameter of the Gaussian kernel. It is

based on the size of each person’s head in the image. However,

it is impractical to estimate head sizes and their underlying rela-

tionship with density maps. The head size is related to distance

between the centers of two neighboring persons in dense images.

The spread parameter for each person is data-adaptively deter-

mined based on its average distance to its neighbors. Therefore,

the average distance of each head to k nearest neighbors (other

heads) can stand for geometric distortion. The method of generat-

ing density maps is followed in [2] . For each person’s head x i , the

distances between it and other k nearest neighbors are calculated
o be a set { d i 
1 
, d i 

2 
, . . . , d i 

k 
} . According to the distance set, the mean

istance of each head d i = 

1 
k 

∑ k 
j=1 d 

i 
j 

is obtained. A delta function

( x − x i ) is convolved with a Gaussian kernel with variance σ i pro-

ortional to d i . An image with N heads labeled can be represented

s H(x ) = 

∑ N 
i =1 δ( x − x i ) . Density map F ( x ) is produced by using

ormula 14. 

 ( x ) = 

N ∑ 

i =1 

δ( x − x i ) ∗ G σi ( x ) , σi = βd i (14)

Here, the empirical value β is set to be 0.3, which can produce

he best result. The density map ground truth is generated based

n the whole image. Some of the results are shown in Fig. 7 . 

.2. Data preprocessing 

A picture is processed to generate 15 new images. These new

ictures are entered into the model along with the original picture.

(a) Reduce the image by 2 times and 4 times to generate 2 new

pictures. 

(b) Flip the image horizontally and vertically to generate 2 new

pictures. 

(c) Divide the image into 4 new pictures without overlapping. 

(d) Randomly cut 7 new pictures on the image. The size must

be bigger than 128 ×128. 

Different scale spaces are constructed by using the specified

cale factor to filter the image, thus changing the size or ambigu-

ty of the image content. Therefore, (a) is used to make the model

ore adaptable to different sizes of person heads. (b)–(d) are to

educe the model overfitting on fixed spatial information. 

.3. Crowd density dataset 

.3.1. ShanghaiTech dataset 

The ShanghaiTech dataset [2] includes 1198 images, whose

round truth are head-center annotations. This dataset is divided

nto two parts: Part/A and Part/B. The crowd distribution of images

n Part/A is more congested than Part/B. In Part/A, 300 images are

sed for training and 182 images are used for testing. Meanwhile,
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Fig. 7. Generated density maps by crowd location markers. 

Fig. 8. ShanghaiTech dataset (PartA and PartB). 

Fig. 9. UCF_CC_50 dataset. 
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00 images are used for training and 316 images are used for test-

ng in Part/B. Some samples of ShanghaiTech dataset are shown in

ig. 8 . 

.3.2. UCF_CC_50 dataset 

UCF_CC_50 dataset [4] has 50 images, which has 63,974 head

nnotations totally. The headcounts in one image range between

4 and 4543. It is the most challenge dataset due to the small

ataset size and large variance in crowd count. Here, the dataset

perations are followed and predicted results are evaluated by us-

ng 5-fold cross-validation. Some samples of UCF_CC_50 dataset are

hown in Fig. 9 . 

.3.3. UCSD dataset 

The UCSD dataset [44] has 20 0 0 frames, which are captured by

eal surveillance cameras. These scenes are mostly in sparse con-

itions, varying from 11 to 46 persons per image. The regions of

nterest (ROI) are also provided. The resolution of each frame is all
n low resolution (238 ×158). Among the 20 0 0 frames, Frames from

01 to 1400 are used for training while the rest of them for testing

7] . Some samples of UCSD dataset are shown in Fig. 10 . 

.4. Evaluation metrics 

As followed existing works for crowd counting, MAE (Mean Ab-

olute Error) and MSE (Mean Squared Error) are used for evalua-

ion. MAE and MSE are defined as follows: 

AE = 

1 

N 

N ∑ 

i =1 

∣∣y − y ′ 
∣∣ (15) 

SE = 

1 

N 

N ∑ 

i =1 

2 
√ 

| y − y ′ | 2 (16) 

Here, y is the actual person number, while y ′ is the predicted

umber of people in the experiment. MAE can better reflect the
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Fig. 10. UCSD dataset. 

Fig. 11. Crowd density estimation results of our method. 
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actual situation of the prediction value error. MSE is a measure of

the dispersion degree of random variables or data sets. The larger

MSE is, the larger the dispersion is; the smaller MSE is, the better

the accuracy and robustness of the model predicting the test data

are. 

PSNR [46] (Peak Signal-to-Noise Ratio) and SSIM [47] (Struc-

tural Similarity in Image) are also used to evaluate the quality of

the predicted density map. The larger PSNR and SSIM are, the bet-

ter quality the prediction has. To calculate the PSNR and SSIM, the

preprocess is referred to [7] , which follows normalization for both

ground truth and predicted density map. 

4.5. Performance evaluation 

Results of our method on Shanghai Part/A dataset are shown in

Fig. 11 . From left to right, they are the original image, ground truth

of density map and predicted density map, respectively. The num-
er above the image represents the total number of people in the

mage. The number of predicted density maps is obtained by accu-

ulating the values of all pixels in the image, as most paper use.

he predicted density map is grayscale image. We map it into RGB

pace, leading to an intuitive crowd heatmap. The redder the place

n the image is, the denser the crowd is. It can be observed that

ur method achieves good performance on dense conditions at dif-

erent levels. Due to precise pixel-level prediction of PDC module,

SA module focus on using low-level features to recover pixel lo-

alization by pooling. The whole encoder-decoder can be treated as

our stages and each stage has different scale features. In the en-

oder, feature maps of high stage are obtained by pooling from low

tage. In the decoder, feature maps of low stage are generated by

psampling from high stage. This method of stage-by-stage upsam-

ling to the original resolution of the input image can return each

ixel value to an approximate truth value. All pixel values of den-

ity map prediction can be learned by neural network inference. In
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Table 1 

Density estimation results of different methods on four datasets. 

Method PartA PartB UCF_CC_50 UCSD 

MAE MSE MAE MSE MAE MSE MAE MSE 

MCNN [2] 110.2 1173.2 26.4 41.3 377.6 509.1 1.07 1.35 

SwitchNet [1] 90.4 135.0 21.6 33.4 318.1 439.2 1.62 2.10 

SaCNN [5] 86.8 139.2 16.2 25.8 314.9 424.8 – –

CP-CNN [48] 73.6 106.4 20.1 30.1 295.8 320.9 – –

ACSCP [49] 75.7 102.7 17.2 27.4 291.0 404.6 1.04 1.35 

M-task [50] 73.6 112.0 13.7 21.4 279.6 388.9 – –

D-CNet [51] 73.5 112.3 18.7 26.0 288.4 404.7 – –

IG-CNN [52] 72.5 118.2 13.6 21.1 291.4 349.4 – –

SAANet [53] 63.7 104.1 8.2 12.7 238.2 310.8 – –

CSRNet [7] 68.2 115.0 10.6 16.0 266.1 397.5 1.16 1.47 

Our Method 65.6 107.2 9.8 15.7 257.0 343.9 1.08 1.44 

Fig. 12. The comparison between CSRNet and our method. 
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ddition to predicting better on the number of persons in an im-

ge, our model also shows better localized predictions. Its density

aps are much detailed than those output by the sub-model. The

ub-model tends to over-smooth large crowd’s regions, especially

vident in Fig. 13 . Besides, our hypothesis is validated that directly

sing low-level layers to help high-level layers build lost contents

nd compute loss is beneficial for localizing small-scale person, as

hese low-level feature maps have detailed spatial layout. 

In this paper, it is found in the experiments that the quality

f density map ground truth’s generation is directly related to the

rediction results of the model. The coordinates of person’s heads

re given in the crowd density datasets. Each coordinate corre-

ponds to a person head, but not necessarily at the center of the

ead. This may have a negative impact on the head characteristics

f model learning. 

Our model is compared with several approaches in recent pa-

ers on the datasets introduced in Section 4.4 . As shown in Table 1 ,

ur method has almost reached the state-of-the-art level on these

our datasets. It can be seen that our method has been greatly

mproved, compared with CSRNet. Expect for our method, other

ethods don’t make up for the loss of pixel information caused

y pooling. They only generate the prediction by upsampling the

nal output several times. Fig. 12 shows that our method predicts

etter than CSRNet on the region of relatively dense crowd. Also, in

able 2 , an improvement on MAE and MSE can be observed, com-

ared with CSRNet. Even in the very sparse condition (UCSD), our

ethod get −0.08 lower MAE and −0.03 lower MSE. SAANet [53] ,

ecently released by Amazon, uses the same scale-Aware idea as

ulti-scale Loss in Section 3.3 . Besides, it also designs an attention

ask module and optimized loss regularization. Attention mask is
ery similar to the classification activation map. When training, it

an guide the network to learn in a better direction and predict

etter. The ideas may become the future optimization direction of

his paper. 

.6. Ablation study 

In this subsection, an ablation study is performed to analyze the

ffects of different modules in the proposed method. Each module

s added sequentially to the network and results for each configu-

ation are compared on ShanghaiTech Part/A dataset. Due to large

ariations in crowd density and scale across images in this dataset,

t is difficult to estimate density maps and crowd count with high

ccuracy. Thus, this dataset is chosen for a detailed analysis of the

roposed method. 

Following five configurations are evaluated: (1) VGG16 (Base-

ine); (2) Baseline + GSA: Baseline network with Global Self-

ttention module in Section 3.1 ; (3) Baseline + PDC: Baseline net-

ork with Pyramid Dilated Convolution module in Section 3.2 ;

4) Baseline + GSA + PDC: Baseline network with both Global

elf-Attention module and Pyramid Dilated Convolution module;

5) Baseline + GSA + PDC + Multi-scale Loss: Baseline network with

SA module, PDC module and Multi-scale Loss in Section 3.3 . This

s the total structure. We also add a comparison with MCNN, CP-

NN, and CSRNet. MAE, MSE, PSNR, and SSIM of each component

re calculated and compared, as shown in Table 2 . 

The result of our total structure has lower MAE and MSE, higher

SNR and SSIM than the other three methods. PSNR and SSIM of

ur method have a little improvement than CSRNet. GSA module,
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Table 2 

Results for the different components of our architecture. 

VGG16 + GSA + PDC + Multi-scale Loss MAE MSE PSNR SSIM 

√ 

117.2 179.6 19.61 0.48 √ √ 

83.9 133.8 21.57 0.66 √ √ 

105.7 165.3 21.44 0.55 √ √ 

66.1 110.5 23.81 0.76 √ √ √ √ 

65.6 107.2 23.83 0.78 

MCNN 110.2 173.2 21.4 0.52 

CP-CNN 73.6 106.4 21.72 0.72 

CSRNet 68.2 115.0 23.79 0.76 

Fig. 13. Result comparison of the method with GSA module or not (from left to right: original image, ground truth, prediction by the method without GSA, prediction by 

the method with GSA). 

Fig. 14. The total loss changes of MAE or MSE (final stage loss) with Multi-scale Loss or not on the verification set. 
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PDC module, and Multi-scale Loss are proved to be beneficial and

effective. 

4.6.1. PDC module makes high-level features more detailed 

Higher-level features with more semantic information are com-

posed of lower-level features. Due to spatial invariance of images,

it is simpler and more efficient to operate on high-level features

than on the original image. ParseNet and PSPNet add a specific

module to the feature map extracted by resnet50 to make the

features more precise. The PDC module designed is to help clarify
ocal confusions. Dilated convolution achieves the same function-

lity as pooling, but it does not lose spatial pixel information.

yramid structure composed of dilated convolution has stronger

eature extraction and expression ability. As shown in Table 2 , the

mprovement in MAE and MSE is −11.5 and −14.3, respectively. 

.6.2. GSA module greatly increases the quality of density map 

Global Self-Attention module (GSA) is aimed to recover pixel lo-

alization information by low-level features. We exploit the capa-

ility of high-level information by low-level context aggregation.
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SA module uses high-level features to guide low-level features

earning. It also gradually decodes high-level features into original

esolution density maps. By skillfully fusing the high-level features

ith the low-level features, every pixel of the image is involved in

eature extraction and training. This is a simple and robust method

o mix up the missing spatial information. Fig. 13 shows that it

rings a moderate improvement (33.3 on MAE, 45.8 on MSE). 

.6.3. Multi-scale loss reduces the training time of networks 

Using more stringent L1 Loss on the final generated density

ap makes the crowd count more accurate. L2 Loss is used in dif-

erent scale feature maps in the process to make the model learn

aster. As shown in Fig. 14 , “MAE” and “MSE” presents the loss

n the final stage and “not” represents whether it is with Multi-

cale Loss or not. It proves that Multi-scale Loss can greatly reduce

he training time of the network. Experiment confirms that Multi-

cale Loss can improve our method with a little performance. We

chieve lower error, 65.6 MAE and 107.2 MSE. 

. Conclusion 

In this paper, we propose a new architecture called Dilated

onvolution with Global Self-Attention (DCGSA). It is easy-trained

nd end-to-end for crowd counting and density map generating.

e design two notable modules, Global Self-Attention module and

yramid Dilated Convolution module. Global Self-Attention module

xploits high-level feature maps to guide low-level features recov-

ring pixel location. Pyramid Dilated Convolution module provides

ixel-level and channel-level context and increases respective field

y performing pyramid structure. Due to dilated convolution lay-

rs, our structure is capable of losing no resolution as much as

ossible. 

In the future, there are three main research directions on crowd

ensity estimation: (1) How to generate better density map’s

round truth based on head coordinates; (2) How to find and dis-

inguish very small heads; (3) How to use attention mechanism

nd generate better attention mask. 
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