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ABSTRACT With the prevalence of Internet of Things (IoT), edge computing has emerged as a novel
computing model for optimizing traditional cloud computing systems by moving part of the computational
tasks to the edge of the network for better performance and security. With the technique of services
computing, edge computing systems can accommodate the application requirements with more agility
and flexibility. In large-scale edge computing systems, service composition as one of the most important
problems in services computing suffers from several new challenges, i.e., complex layered architecture,
failures and recoveries always in the lifecycle, and search space explosion. In this paper, we make an attempt
at addressing these challenges by designing a simulation-based optimization approach for reliability-aware
service composition. Composite stochastic Petri net models are proposed for formulating the dynamics of
multi-layered edge computing systems, and their corresponding quantitative analysis is conducted. To solve
the state explosion problem in large-scale systems or complex service processes, time scale decomposition
technique is applied to improving the efficiency of model solving. Additionally, simulation schemes are
designed for performance evaluation and optimization, and ordinal optimization technique is introduced to
significantly reduce the size of the search space. Finally, we conduct experiments based on real-life data,
and the empirical results validate the efficacy of the approach.

INDEX TERMS Edge computing, reliability, service composition, stochastic Petri net, simulation-based
optimization.

I. INTRODUCTION
With the rapid development of information technology, ser-
vices computing has emerged as a new cross discipline
that covers the science and technology of bridging the gap
between business services and IT services [1]. It provides
a well-defined architecture and interface to create, operate,
manage and optimize the service processes with high flexi-
bility facing future business dynamics [2]. With the services
computing technology, the services can collaborate to provide
users with much more powerful functionalities that atomic
services commonly cannot fulfill. Such technology, namely
service composition, has been a hot topic in both academia
and industry for decades.

The associate editor coordinating the review of this manuscript and

approving it for publication was Shouguang Wang .

With the growing prevalence of the Internet of Things (IoT)
devices and technology, edge computing (or sometimes
called Fog computing as a more specific solution) is del-
icately proposed and designed to accommodate the appli-
cation requirements of IoT scenarios [3]–[5]. It is a novel
networked architecture that enables cloud computing capa-
bilities and an IT service environment at the edge of the
cellular network [6]. With the combination of edge comput-
ing and services computing, pervasively distributed things
(e.g. devices, sensors, actuators, smartphones and appliances)
in an IoT environment can offer heterogeneous capabilities
which are abstracted as services. Therefore, services com-
puting techniques have been increasingly popular in a large
variety of areas, especially in mobile applications [7].

In edge computing environments, service composition
achieves significant strength in meeting the increasingly
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complex and diverse service requirements [8]. It makes it
possible for the edge nodes and cloud clusters to cooperate
with each other in order to deal with the delays and resource
limitations for customized composite services [9], [10]. Ser-
vice composition has been successfully applied inmultimedia
and IoT services provisioning [11], [12].

In most of the modern IT systems, services are usually
deployed on virtual machines (VMs) for improving the reli-
ability and fault-tolerance, especially for the applications in
some critical areas such as power supply, traffic control, med-
ical healthcare, etc. VM migration and recovery techniques
have been applied for restarting a virtual machine while keep-
ing the services from interrupt when errors or failures occur.
Nevertheless, meanwhile, the quality of service (QoS) from
the user perspective has been affected by such techniques;
since the error probing, fault repairing and system restarts
have to take time to process.

In the edge computing paradigm, service composition
meets difficulties and challenges, which are mainly mani-
fested in the following aspects. (1) The introduction of edge
layer to traditional cloud service systems makes the service
provisioning system running with a complex architecture
with multiple layers, each of which is able to process all or
part of the required tasks. Besides traditional service selec-
tion which has been studied in the community for decades,
the scheduling between the layers should also be carefully
designed. (2) The failures and recoveries in the system
bring several challenges to performance evaluation and then
performance optimization. Their dynamics should be com-
prehensively considered in performance modeling, and the
reliability constraints as well as performance requirements
should be satisfied simultaneously in service composition.
(3) With the growing popularity of services computing and
IoT, the scale of services computing systems may become
extremely large. Solving the system model for performance
evaluation and optimization sometimes appears an extremely
difficult task because of the state space explosion prob-
lem [13]. An approach with high efficiency need to be studied
accordingly.

In order to address the challenges, this work presents
a simulation-based optimization approach for REliability-
Aware Service compositiON (REASON) for edge com-
puting environments. The main thrust of the contribution
is in the following four aspects. (1) We apply Stochastic
Petri Net (SPN) to construct the atomic service model for
reliability-aware performance evaluation, which is able to
capture the dynamics of task arrivals, service procedures,
failures, and recoveries. (2) We present a model composi-
tion scheme to formulate the complex process of service
composition, where scheduling between multiple layers and
service collaboration inside or beyond layers can be dynam-
ically modeled. (3) Quantitative analyses of the SPN mod-
els are provided, and then time scale decomposition (TSD)
technique is applied for solving the state explosion prob-
lem in large-scale systems or complex service processes.
(4) By introducing Ordinal Optimization (OO) technology,

we design a simulation-based approach of performance and
reliability optimization for service composition in edge com-
puting environments. The OO can further reduce the time
consumption in performance evaluation and optimization
by leveraging crude models and reducing the search space.
Both theoretical and experimental results are presented, and
the approach is expected to establish composition process
promptly especially for large-scale edge computing systems.

The remainder of this paper is organized as follows.
Section II surveys the related work on the pertinent topic of
this paper. In Section III, we present SPN models of edge
computing systems. In Section IV, mathematical analyses of
the SPN models are conducted, and a practical solution of
solving large-scale SPN models is provided. In Section V,
we design a simulation-based optimization scheme of service
composition which introduces the OO technique to improve
the efficiency of simulations by goal softening. In Section VI,
we conduct experiments based on real-life data for validating
the efficacy of our approach. Finally, we conclude the paper
in Section VII.

II. RELATED WORK
A. MEASUREMENT-BASED EXPERIMENTAL APPROACHES
Measurement-based scheme is the most straightforward solu-
tion to evaluate and optimize the system in most of the
scenarios. In such type of approaches, hardware equipments
or computer programs are designed and deployed into the
real-life systems or simulators. They collect data inside the
systems and calculate various quantities of our interests,
based on which optimal strategies can be selected.

Some researchers have designed measurement modules
or programs in the edge computing systems that have been
constructed and deployed. Stusek et al. [14] conducted test-
ing of selected OSGi (Open Service Gateway Initiative)
frameworks for IoT systems, and provided practical perfor-
mance analytical results for selecting the optimal solution.
Truong and Karan [15] designed a mobile edge cloud corner-
ing assistance (MECCA) application for examining various
performance and data quality impact for mobile edge cloud
applications. Morabito et al. [16] constructed a real testbed
to evaluate the container-based solutions in IoT environment,
and analyzed the power and resources consumption for per-
formance evaluation.

Some other researchers dedicated to developed simulator
or emulators to simulate or emulate a real system and its envi-
ronment, conduct measurement in the system and obtain the
performance indicators using statistics. D’Angelo et al. [17]
proposed a methodology of simulating large-scale IoT envi-
ronments. A multi-level simulator was employed, and per-
formance evaluation was conducted. Bouloukakis et al. [18]
designed queueing network models of IoT applications, and
simulated the models for performance evaluation and opti-
mization. Sonmez et al. [19] built a simulator tool upon
CloudSim for performance evaluation of edge computing
systems. Chen and Kunz [20] evaluated the performance of
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IoT protocols using a network emulator, with the combination
of measurement and emulation, the optimal protocol was
selected.

B. MODEL-BASED ANALYTICAL APPROACHES
Most of the measurement-based approaches discussed above
need to be deployed to the real-life systems or be conducted
based on system log data, which makes them impractical
when designing a system in the first place. To mitigate
the barrier, some researchers used model-based analytical
schemes for performance evaluation and optimization in edge
computing systems. Although some assumptions or simpli-
fications have to be made, the model-based approaches are
quite computationally efficient and are able to reveal the
interrelationships between the performance attributes and
system parameters, making them valuable in system design
and optimization.

Queueing theory is one of the most popular models of
performance evaluation and optimization. Xia et al. [21]
applied queueing network model for providing an ana-
lytic solution of performance attributes, which was expected
to optimize the energy efficiency of cloud data centers.
Chen et al. [22] constructed the queueing model for mobile
edge computing systems, and formulated a stochastic opti-
mization problem for energy-efficient dynamic task offload-
ing. Li et al. [23] used the M/M/k queueing model to estimate
the response time of IoT nodes, based on which explored
optimal QoS-aware services composition for service-oriented
IoT. Bouloukakis et al. [24] proposed a queueing network
model of the middleware overlay infrastructure of mobile
things. Wang et al. [25] formulated the edge nodes using
the queueing model, and designed a near-optimal offloading
scheme for the Internet of Vehicles.

Petri net is another powerful model for describing the
dynamics of discrete event systems. In recent years, there
have been many works applying Petri net models to handle
hard problems in computing systems [26]–[28]. Stochastic
Petri net (SPN) is a specific Petri net model which introduces
stochastic processes for performance analysis. He et al. [29]
defined a stochastic colored Petri net (SCPN) model for the
IoT-based smart environment and proposed a game model
for security situational awareness. Zhang et al. [30] proposed
a hierarchical-timed-colored Petri net (HTCPN) model to
analyze the sensor performance data for IoT-enabled real-
time environment. Ni et al. [31] designed priced timed Petri
nets of fog computing systems, and obtained optimal strate-
gies of resource allocation. Ding et al. [32] applied the Petri
net model to interactive control for obtaining an optimal
systematic strategy.

C. SUMMARY
Although there have been several cutting-edge research
works dedicating to the optimal service provisioning in edge
computing, the combination of quantitative modeling and
performance optimization remains largely unexplored. Also,
both the measurement-based and model-based approaches

still may face state space and search space explosion prob-
lems, making several schemes impractical in large-scale edge
computing systems. Last but not least, there lacks a com-
prehensive study on performance and reliability in the sys-
tem evaluation and optimization. Therefore, a systematic and
efficient methodology of reliability-aware QoS optimization
needs to be studied.

Previously, we have conducted some research works on
the topic of performance evaluation and optimization in edge
computing service systems. In [33], we put forward queueing
network models for performance evaluation of IoT service
systems. In [34], we introduced simulation techniques to
queueing models and designed an optimization scheme of
service selection for mobile edge computing. In [35], based
on the queueing model, we formulated a stochastic optimiza-
tion problem of energy efficient task scheduling for sensor
hubs in IoT, and designed an efficient scheme to solve the
problem. In [36], we further studied the task scheduling and
resource management problem in mobile edge computing by
designing a more efficient optimization algorithm. In [37],
we applied the generalized SPN model and made a pre-
liminary attempt to evaluate the performance and reliability
simultaneously of IoT services. In this paper, we combine
the SPN modeling and computer simulation techniques, and
jointly study the performance evaluation and optimization
problems for reliability-aware service composition in the
edge computing environment.

III. SPN MODEL OF SERVICE COMPOSITION
A computer system constructed with edge computing archi-
tecture consists of two main layers, i.e., edge layer and cloud
layer. In each layer, there are multiple virtualized servers
fulfilling different requirements from users. In this section,
we apply Stochastic Petri Net (SPN) model to formulate both
the layers, and present a model aggregation approach for
service composition.

A. SPN MODEL OF EDGE SERVERS
Commonly, in the edge layer, several IoT devices or users are
submitting their requests to the system. At the access network
end, edge servers are deployed to process part of the requests
for guaranteeing the quick response and privacy. Meanwhile,
some of the requests especially the computing-intensive and
data-intensive ones will be submitted to the cloud for high
performance computing. To capture the architecture and
dynamics of the service procedures, we construct an SPN
model for performance evaluation. Formally, the definition
of an SPN is given as follows.
Definition 1 (Stochastic Petri Net): A Stochastic Petri Net

(SPN) 6 is defined as a 6-tuple:

6 = (P,T ,A,w,m0, λ)

where
• P = {p1, p2, . . . , pNP} is the finite set of places.
• T = {t1, t2, . . . , tNT } is the finite set of transitions.
• A ⊆ (P× T ) ∪ (T × P) is the set of arcs from places to
transitions and from transitions to places.
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• w : A→ N+ is the weight function of the arcs.
• m0 : P→ N is the initial state of the SPN.
• λ : T → R+ is the set of firing rates of the transitions.

In an SPN, we use tokens to represent the resources or
tasks in the system, and assign them to the places. A marking
denotes how the tokens are assigned to the places, whose
definition is formally given in Definition 2.
Definition 2 (marking): A marking m of an SPN 6 =

(P,T ,A,w,m0) is a function m : P→ N.
Commonly, a marking is expressed by a vector as m =

[m(p1),m(p2), . . . ,m(pNP )], wherem(pi) denotes the number
of tokens in place pi. At a certain time point, we defined the
state of an SPN by a marking vector.
Considering the dynamics of the service processes in the

edge layer, with the definition of SPN, we propose the SPN
model of edge servers.We use places to indicate the state of an
edge computing systemwhich are conventionally represented
by circles, and timed transitions to denote the change of state
illustrated by bars. We draw directed arrows for representing
the arcs, and write their weights on them (but usually omitted
if equal to 1). Tokens under marking m are indicated by dark
dots in the appropriate places where m(pi) 6= 0. Afterwards,
the SPN model of edge servers is provided as Figure 1.

Basically, the dynamics of the service procedures in the
edge layer is illustrated as follows. Firstly, the users or
IoT devices submit their requests to the system at certain

FIGURE 1. SPN model of edge servers.

rates conforming to certain distributions. It is possible for
them to select one or multiple edge servers deployed on
the nearby base stations. The requests are formulated by
the tokens in place pI representing the initial state of the
system, and the task arrivals at the edge server indexed by
i are captured by a transition labeled as tAi. Such procedures
are called Task Arrival Model in Figure 1. Secondly, upon
the arrivals at each edge server i, the requests are queued
in a buffer, which is represented by place pQi. Once the
server is available for service, the request will be handled
and then either completed or submitted to the cloud site
for further processing. The service procedure is formulated
by transition tSi. The queueing behaviors are described by
the Queueing Model. Meanwhile, failures may happen on
each of the edge servers, which are captured by transition
tFi resulting in the transition of the server into failed state
under different failure rate. With virtualization techniques,
the server can be recovered or restarted, which is repre-
sented by transition tRi with its particular repair rate. The
above dynamic failure and recovery processes are formu-
lated by the Reliability Model which is another sub-model
in Figure 1.

B. SPN MODEL OF CLOUD SERVERS
Similarly, we present the SPN model of cloud servers.
Figure 2 illuminates an example.

FIGURE 2. SPN model of cloud servers.
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Initially, the requests from the edge side are dispatched
to one or multiple cloud servers for processing. The dis-
patching, also called task scheduling, may take some time
for calculating the optimal (or near-optimal) solution, which
is represented by the transition tD in the sub-model namely
Dispatching Model.
The requests arrived at each of the servers will also be

buffered, and have to wait until the server is available. Dif-
ferent from the edge layer, most of the cloud systems consist
of multiple servers constituting a cluster. A cluster shares the
same buffer but the requests can be processed in a parallel
way. Specifically, the characteristic of multiple servers with
a shared buffer is formulated by the Queueing Model in
Figure 2.

C. MODEL COMPOSITION
An edge computing system consists of both edge and cloud
layers. In order to formulate the whole system with the com-
plex layered architecture, we present a model composition
scheme in this subsection.

The basic idea of model composition is to ‘‘splice’’ the
edge model onto the cloud model according to the task
offloading pattern. The ‘‘output’’ place pC in the SPN model
of edge servers is spliced to the ‘‘input’’ place of the cloud
model. We should note that, the services can dynamically
composite, and the service selection may happen when
choosing proper services deployed on certain cloud servers.
Therefore, the requests come from the edge side can be
scheduled to certain cloud servers, demanding for an optimal
policy.

The main thrust of model composition is to clearly analyze
the relationships between the edge side and cloud side in
service composition in an edge computing environment, and
construct the SPN models accordingly. Figure 3 shows an
example of the composite model. In this sample edge com-
puting system, there are traffic sources from two services.
Service selection may take place for the first one, since two
edge servers are able to process the requests submitted from
the services. For the other one, the requests will be routed
directly to the corresponding edge server. At the cloud side,
two clusters are available for handling the request. The former
one is equipped with two cloud servers, while the latter
consists of three HPC nodes.

IV. QUANTITATIVE ANALYSIS OF SPN MODEL
With the SPN models, quantitative analysis of performance
and reliability attributes can be carried out, which is the
foundation ofQoS-aware service composition. In this section,
we present theoretical and technical approaches to perfor-
mance and reliability evaluation by solving the SPN models
for edge computing service systems.

A. SOLVING ATOMIC MODEL
The basic idea of the methodology for solving the SPN
model is to construct the underlying continuous-timeMarkov

chain (CTMC). To facilitate the construction process, some
notations are defined as follows.

• Root node: is defined as the first state of the CTMC,
obtained from the initial marking m0.

• Terminal node: is defined as a node from which no
transition of the SPN can fire.

• Duplicate node: is a node that is identical to a node
already in the CTMC.

• Node dominance: we define that marking m1 dominates
marking m2, denoted by m1 >d m2, if the following two
conditions hold:

1) m1(pi) ≥ m2(pi), for all i = 1, 2, . . . , nNP ;
2) m1(pi) > m2(pi), for at least some i =

1, 2, . . . , nNP .

• Symbolω: means ‘‘infinity’’ in representing some places
with unbounded tokens. For ∀n ∈ N, we specify n < ω

and ω + n = ω − n = ω.

We borrow the idea of constructing the reachability tree
from traditional Petri nets and present the algorithm of gen-
erating the underlying CTMC of an SPN 6 as Algorithm 1.

Algorithm 1 Algorithm of Constructing CTMC
Input: SPN 6 = (P,T ,A,w,m0, λ)

Output: transition rate matrix Q
1 Initialize m0 as the first state of the CTMC;
2 Let 9 ← {m0}, Q← 0;
3 for ψ ∈ 9 do
4 if no transition can fire at state ψ then
5 ψ is a terminal node;

6 else

7 Find ψ ′ s.t. ψ
tj
−→ ψ ′ for some tj ∈ T ;

8 if ψ ′ is a duplicate node then
9 Set the transition rate Q(ψ,ψ ′)← λj;

10 else
11 if ψ(pi) = ω for some pi ∈ P then
12 Let ψ ′(pi)← ω;

13 if ∃θ s.t. ψ ′ >d θ then
14 Let ψ ′(pi)← ω for all pi ∈ P s.t.

ψ ′(pi) > θ(pi);

15 Add a new node ψ ′ to the CTMC, and set
the transition rate Q(ψ,ψ ′)← λj;

16 Let 9 ← 9 ∪ {ψ ′}

17 Let 9 ← 9 − {ψ};

18 Let Q(ψ,ψ)←−
∑
k
λk for all ψ ∈ CTMC ;

Suppose there are n states of the constructed CTMC, and
let X = [x1, x2, . . . , xn] denote the steady-state probability of
the CTMC. For the steady-state probability analysis, we have
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FIGURE 3. SPN model of an edge computing system.

the following equations as Eq. (1).X · Q = 0;
n∑
i=1

xi = 1.
(1)

Hereafter, one can obtain the steady-state probability of the
state of a place p ∈ P containing i ∈ N tokens using Eq. (2).

P{m(p) = i} =
∑

mj(p)=i

Xj. (2)

Therefore, we obtain the average number of tokens for
each place pi ∈ P as Eq. (3). This expression can help when
calculating the average queue length, utilization of servers,
reliability of services, etc.

u(pi) =
∑
j

j · P{m(pi) = j}. (3)

With Little’s Law, the average response time of the tasks
being processed by the server (or cluster) indexed by i can be
calculated by Eq. (4), where λ is the task arrival rate at the
server (or cluster).

T = u(pi)/λ. (4)

Moreover, the reliability of the server (or cluster) is calcu-
lated by Eq. (5).

R =
P{m(pR) = 1}

P{m(pF ) = 1} + P{m(pR) = 1}
. (5)

B. ANALYSIS OF SYSTEM MODEL
An edge computing system may consist of several edge
servers and cloud clusters, which makes its SPN model quite
complicated, embedded with a number of places and transi-
tions. Although one can solve the SPN model with the same
methodology presented in the above sub-section, we provide
a more efficient analytical approach of the system model in
this part.

It is well-known that the failure rates and repair rates are
commonly orders of magnitude smaller than the arrival and
service rates. Also, some existing open-source data sets have
validated this fact [38]. It has been shown that the inter-arrival
times and service times are usually in the magnitude of sec-
onds or microseconds, while the times between failures are
commonly several hours or even days. Therefore, we clas-
sify the transitions into two sub-sets. The ones representing
the task arrivals, service processes, and task scheduling are
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defined as fast transitions denoted by the set of Tf , while the
transitions of failures and recoveries constitute the set of slow
transitions expressed by Ts.
Then we apply time scale decomposition (TSD) [39] tech-

nique to the SPN analysis. At the first step, we remove all
the slow transitions in Ts, and then obtain the simplified SPN
model at fast time scale, expressed by 6f . In 6f some places
such as Failed states have no initial tokens and will never
enter, and thus we are able to remove them without affecting
the analysis of the SPN model. Afterwards, the simplified
SPN model at fast time scale of edge servers is shown in
Figure 4.

FIGURE 4. SPN model of edge servers at fast time scale.

At the second step, we aggregate each SPN model at fast
time scale into a single place, and generate an SPN model
with the new places and slow transitions, denoted by6s. The
initial state of 6s is calculated from the initial state of 6
and of 6f . Illustratively, Figure 5 shows the aggregated SPN
model of Figure 1.

FIGURE 5. Aggregated SPN model of edge servers at slow time scale.

Consequently, we transfer the initial SPN solving problem
into two problems on the aggregated SPN models. Since
the state space of the underlying CTMC model increases
exponentially when SPN model scales up, the TSD approach
is able to significantly reduce the time consumption and
space complexity of SPN analysis. Without loss of generality,
the SPN model at fast time scale of the edge computing
system shown in Figure 3 is illustrated by Figure 6, while the
aggregated model at slow time scale is shown in Figure 7.

V. SIMULATION-BASED OPTIMIZATION OF SERVICE
COMPOSITION
With the SPN models and their analysis, we are able to
evaluate the performance and reliability of an edge computing

FIGURE 6. SPN model of an edge computing system at fast time scale.

FIGURE 7. Aggregated SPN model of an edge computing system at slow
time scale.

system with different service composition policies. Accord-
ing to the evaluation results, optimal policy can be selected,
and the QoS requirements can be satisfied. In this section,
we present a practical solution for optimal REliability-Aware
Service compositiON (REASON) in the edge computing
environment.

A. SIMULATION-BASED OPTIMIZATION BASED ON SPN
MODEL
In the previous section, we present the methodology of solv-
ing the SPN models. Basically, the SPN models are trans-
formed into their corresponding CTMC models, and then
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CTMC models can be mathematically solved using a lin-
ear structural equation system. With the analytical results,
the performance and reliability attributes can be obtained.

In reality, however, the scale of an edge computing system
may be significantly large, and hence solving SPN models
may suffer from the state explosion problem. Although we
have applied the TSD technique to reduce the state space of
the SPNmodel, sometimes it is still difficult to solve the prob-
lem within an acceptable time using the pure-mathematical
solutions. To attack this challenge, we introduce computer
simulation techniques for solving the SPNmodels practically.
We should note that, we can apply computer simulation
before or after applying the TSD to the SPN model, which
means that TSD can benefit both mathematical and experi-
mental approaches.

The basic idea is to design and implement a series of
analytical experiments based on the SPN models, and the
data from the experimental processes are collected to estimate
performance quantities. In each of the processes, the sim-
ulation is implemented with the event-driven methodology.
Here in our SPN models, the ‘‘event’’ means the firing of the
transitions. A series of events is generated according to the
dynamics of the system, and is kept updated which drives
the models continuously evolved. The feasible events are
stored in the sorted Event List which is the key data structure
of our simulation experiments. Random Variate Generators
are implemented and invoked for event updating. A general
framework of the event-driven simulation for performance
evaluation is illuminated by Figure 8.

FIGURE 8. Framework of simulation-based performance evaluation with
SPN model.

There are three ways to identify the parameters in the
simulations. Firstly, the parameters can be obtained from
real-life systems by analyzing system log data. This is the best
way to generate accurate analytical results of performance
evaluation. Secondly, the parameters can be set manually by
the administrators in the system design phase. In reality, some
parameters might be difficult to acquire especially before
the deployment of the systems, and thus some assumptions
may be made. Thirdly, the parameters can be tuned during
the simulations. A series of simulations will be conducted,

according to which the optimal parameter setting will be
found.

Initially, the event list is generated according to the model
parameter settings and input data. For example, some trace
data from real-life systems can be used to generate the time
points of task arrivals, and thus a number of arrival events are
initialized and input to the event list. Afterward, the proce-
dure of a simulation experiment is to continuously repeat the
following five steps.

1) The first entry (e1, t1) from the Event List is selected
and removed from the event list.

2) The simulation Time is updated to the new event time t1.
3) We update the State of the system x according to the

state transitions of the SPN model.
4) If some events are not possible to happen in the updated

state, their corresponding entries from the event list will
be removed.

5) According to the dynamics of the SPN model, we gen-
erate new feasible events under the updated state and
add them to the event list, whose lifetimes are generated
from the Random Variate Generator.

After the completion of the simulation processes, we col-
lect all the raw data and calculate the performance attributes.
The average response time can be obtained by analyzing the
interval between the departure and arrival of each task, and
the reliability attribute can be calculated by Eq. (5) shown in
Section IV-A.

The simulation-based optimization of service composition
consists of the following three steps. Initially, we find the
feasible policies of service composition according to the
requirements gathered from users, and construct SPN models
of different policies. Next, we conduct simulation experi-
ments for each of the policies and obtain the analytical results
of performance and reliability quantities. Finally, we compare
the data and find the optimal solution among the policies.

B. PRACTICAL SOLUTION FOR LARGE-SCALE EDGE
COMPUTING SYSTEMS
For some extremely large-scale edge computing systems,
the number of their feasible service composition policies
may also be very large. It might be impractical in reality to
experimentally simulate all the candidate policies and select
the optimal one. Therefore, we have to further improve the
efficiency of the optimization procedures to make our solu-
tion more practical in large-scale edge computing systems.

We introduce the Ordinal Optimization (OO) tech-
nique [40], the basic idea of which is to partially sacrifice the
optimality for finding the acceptable near-optimal solutions
in a reasonable time. Instead of finding the global optimal pol-
icy, our goal is softened into obtaining a good enough solution
with high probability (the probability is called ‘‘Alignment
Probability’’). We assume that G denotes the good enough
set consisting of the top-g (g = |G|) feasible solutions
for the optimization problem, and S is the selected top-s
(s = |S|) solutions obtained by our approach. Then the
alignment probability is mathematically expressed as Eq. (6),
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where k ∈ N+ is called the Alignment Level.

Pr (|G ∩ S| ≥ k) ≥ α. (6)

It can be proved that, even for the blind picking strategy,
the alignment probability converges to 1 in an exponentially
fast speed with respect to the size of the set G and S. Hence,
the efficiency of our approach can be further significantly
enhanced by goal softening using the OO fashion. Basically,
there are three main steps in our approach as follows.

1) Construct a computationally fast crude model to esti-
mate the quantitative objectives of all feasible policies.

2) Estimate the Ordered Performance Curve (OPC) class
of the problem and the noise level of the crude model,
and then calculate the size of set S.

3) Use the crude model to find the top-s policies which
constitute the selected set S, and run simulations with
a precise model for each of the top-s policies. The best
one is selected as the output of our approach.

Constructing a crude model is the first step of our
approach. In order to estimate the system very fast, we use
M/M/c queueingmodel to evaluate the performance attributes
and Reliability Block Diagram (RBD) to analyze the reliabil-
ity quantity. Each edge server is modeled by anM/M/1 queue,
while each cloud cluster is formulated as an M/M/c queueing
system where c is the number of virtualized (or physical)
servers in the cluster. With fundamental queueing theory,
the expected response time of a task processed on an edge
server represented by Te can be obtained by Eq. (7), and on
average it will cost Tc time for a cloud cluster to serve the
requests expressed as Eq. (8).

Te =
1

µe − λe
; (7)

Tc =
1
µc
+

1
µc
·
(cρc)c

c!
·

P0
c(1− ρc)2

; (8)

where λe and λc are arrival rates of the edge server and the
cloud cluster respectively, andµe andµc are the service rates.
ρc = λc/(cµc) is the utilization of the cloud cluster, and P0
is expressed as Eq. (9).

P0 =

[
c−1∑
k=0

(cρc)k

k!
+

(cρc)c

c!
·

1
1− ρc

]−1
. (9)

The RBD model for analyzing the reliability of the system
has been explored in our previously published paper [41],
where the reliability attribute, as well as mean time to fail-
ure (MTTF) andmean time to repair (MTTR), have been fully
discussed. We use the analytical expressions to estimate the
reliability of the system for the crude model.

With the estimation results, the second step is to estimate
the parameters of OO. The alignment level k and the size
of good enough set g should be specified by administra-
tors/users, and then we conduct a sampled simulation exper-
iment to calculate the OPC class and noise level of the crude
model. The appropriate s can be found from a pre-calculated
table which have been provided in [42].

Finally, we conduct our simulation experiments with all
the techniques we have presented in the above sections as the
precise model to evaluate the top-s candidate policies. After-
ward, with all the collected data from simulations, we are able
to find the optimal policy of service composition.

VI. EXPERIMENTAL RESULTS
In this section, we conduct simulation experiments to validate
our approach. Data sets from real-world systems are used for
parameter settings, and experimental results are provided.

A. EXPERIMENTAL SETTINGS
We simulate an edge computing systemwith our SPNmodels.
Experimental data is collected and analyzed, and empirical
results are obtained to validate our approach.

In our experiments, we consider a popular IoT scenario
where several cars are connected and upload their GPS and
status data to the system for processing. A real-world data
set namely ‘‘T-Drive’’ [43], [44] is applied to simulate the
task arrivals of the edge computing system. The data was
collected by Microsoft Research from 10,357 taxis in the city
of Beijing, China. Nearly 15 million pieces of GPS trajectory
data were recorded, covering over 9million kilometers during
a period of 1 week in 2008.

For the servers, we simulate their failures and recover-
ies according to the trace data provided by Los Alamos
National Laboratory (LANL) [38]. The data was collected
from 23High Performance Computing (HPC) systems during
the period of over 9 years from 1996 to 2005. There are
totally 4,750 machines and 24,101 processors in the system,
providing computing, Grid or web applications to the users.
During the service procedures, 23,739 failure situations have
been recorded, and the types and reasons have been analyzed.
We calculate the failure rates and repair rates to define the
parameters in our SPN models.

The service times are assumed to be exponentially dis-
tributed, and we apply a random scheduling algorithm to the
system for task scheduling and load balancing in the fol-
lowing discussions. Different server deployment strategies,
as well as parameter settings, are simulated and evaluated by
our approach, among which optimal policies of service com-
position among edge sides and cloud sides can be selected.

B. EXPERIMENTAL RESULTS
We firstly tune the parameter settings of the systems to val-
idate the effectiveness of our approach. Figure 9 illustrates
the variance of service reliability with the scaling up of
edge servers. With more edge servers processing the tasks
arrived at the system, the reliability of edge side can be
enhanced. Consequently, the end-to-end service reliability
increases simultaneously. Also, we see from the results that
the reliability values become more smooth when the number
of servers goes large, which means that it become less useful
for improving the reliability of a distributed system to add
more servers when there exist a number of servers being
deployed. It validates why IT companies commonly deploy
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FIGURE 9. Service reliability with edge server scaling up.

only two backup servers for their online applications. At the
cloud side, we have the similar experimental results shown
in Figure 10. More servers or clusters are able to process the
services in a parallel way, and thus providing more backup
when one of the machine fails. Arranging backup machines
is a popular way of enhancing system reliability in most of
the computer systems, which accords with our experimental
results.

FIGURE 10. Service reliability with cloud cluster scaling up.

Figures 11 and 12 illuminate the average response time
with the increase of edge servers and cloud clusters, respec-
tively. The experimental results validate our analyses. With
the increase of servers, the average response time decreases.
The reason is that more servers are available for processing
the user requests concurrently resulting in less delay. Both the
mathematical analyses of queueing theory and SPN can draw
the same conclusion.

Finally, we consider a service composition scenario where
services deployed on the edge side and services deployed
on cloud side need to cooperate for fulfilling a complex
workflow process. The objective is to minimize the aver-
age response time while fully considering the failure and

FIGURE 11. Average response time with edge server scaling up.

FIGURE 12. Average response time with cloud cluster scaling up.

recovery processes during the service procedures. Figure 13
illuminates the experimental results of the randomly selected
100 feasible solutions. We plot the response time and relia-
bility of the feasible policies and the selected top-8 ones with
our approach. Pareto optimality, which is for the optimization

FIGURE 13. Average response time with cloud cluster scaling up.
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of a vector of multiple criteria among optimal combinations,
is manually analyzed for each of the service composition
policy [45]. In our experiments, the blind picking algorithm is
applied to select the good enough solutions by crude model,
which is able to provide aworst-case analysis of our optimiza-
tion approach [40]. It is shown from our experimental results
that 37.5% of our selected set is Pareto optimal, indicating
that it is highly possible for our approach to find the optimal
solutions. We should also note that nearly 75% of the policies
obtained by our approach are in the top-10 optimal ones.
Therefore, Figure 13 validates the efficacy of our approach.

VII. CONCLUSION
In this paper, we study the reliability-aware service compo-
sition problem in edge computing from a systematic view
by integrating both performance evaluation and QoS opti-
mization. Stochastic Petri net models of edge servers and
cloud clusters are proposed, and time scale decomposition
technique is applied for their efficient quantitative analysis.
Based on the SPNmodels, an event-driven simulation scheme
is designed to evaluate the service composition policies,
according to which the optimal strategy can be selected. For
some large-scale edge computing systems, we apply the OO
technique in order to further reduce the search space and
hence decrease the time consumption of the optimization
procedures. The efficacy of our approach is validated by
experimental results. This work is expected to provide both
theoretical and practical reference to the design and optimiza-
tion of services computing systems in the edge computing
environment.
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