
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE GEOSCIENCE AND REMOTE SENSING LETTERS 1

An Adaptive-Rank Singular Spectrum Analysis for
Simultaneous-Source Data Separation

Yaru Xue, Libo Niu , Chong Chen, and Xin Xu

Abstract— Simultaneous-source exploration improves effi-
ciency and reduces the cost when acquiring seismic data. How-
ever, the adjacent shot records interfere with each other, and
an efficient deblending way is needed. The traditional truncated
singular spectrum analysis (SSA) algorithm is employed in the
local window to predict coherent events. After all the local
events are predicted, the whole dither noise could be estimated
completely. Traditional processing in the time domain complicates
deblending. In this letter, a global-frequency SSA is proposed to
predict dither noise with a simple iteration scheme. This method
will lead to an increase in the rank in the Hankel matrix. Thus,
a trigonometric function is introduced to adaptively determine
the rank instead of the rank-truncated method. The experiments
on actual seismic data show that the proposed method not
only improves the deblending performance but also enjoys high
efficiency.

Index Terms— Adaptive rank-reduction (RR), simultaneous-
source separation, singular spectrum analysis (SSA), trigonomet-
ric function.

I. INTRODUCTION

IN SEISMIC exploration, the time interval of source exci-
tation is usually set to long enough to prevent crosstalk

from adjacent seismic sources, which results in low acquisition
efficiency, especially in marine exploration. The simultaneous-
source seismic exploration method permits records from dif-
ferent sources to overlap in the time domain so that the
acquisition efficiency can be significantly improved [1]–[5].
However, it is necessary to separate the simultaneous-source
record that is blended in the time domain for the subsequently
traditional process.

Simultaneous-source separation is generally posed as an
inversion problem to estimate the coherent signals and then
subtract dither noise from the blended gathers. Because of
the ill-posed nature of the blending problem, a regularization
term is often introduced in the coherent events’ estimation
procedure. Sparsity promotion and low-rank promotion are the
currently often-used regularization terms. Mahdad et al. [6]
introduced the f − k filter to regularize the coherent events.
Zu et al. [7] proposed a coherency-pass shaping operator to
separate simultaneous source data, but it may leave residual
noise when there is strong blending interference. Chen [8] used
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the seislet-domain shaping regularization to map the coherent
events to the more admissible model. Gan et al. [9] used
seislet frames with two corresponding local dips to sparsify
each signal component. An amplitude-preserving high-order
Radon transform was incorporated with a regularization inver-
sion method to achieve AVO-preserving deblending perfor-
mance [10].

No matter for the seislet transform or other kinds, these
sparsity promotions are based on fixed basis functions, and
their sparsity is depended on the similarity between signal
and basis functions. Based on the linear event predictability, a
low-rank property is demonstrated in the singular spectrum.
Its basis functions are driven by the data, which is more
conducive to data sparsity. Singular spectrum analysis (SSA)
has been widely used in denoising and data reconstruction
[11], [12]. Cheng and Sacchi [13] introduced SSA to separate
the simultaneous-source data in the local window. The events
in the small local window could be regarded as linear with
low-rank properties. In the Hankel matrix, the rank is equal to
the number of events, which is difficult to determine in field
data. Cheng and Sacchi [13] calculated the initial rank and step
size through many simulations. Similar rank-reduction (RR)
strategy deployed in the data reconstruction using SSA [14].
A simple rank increasing (RI) was proposed by Xue et al. [15],
which sets the initial reconstructed rank to 1 and increases the
rank step by step with iterations. This algorithm is simple but
converges slowly.

The local scheme is another strategy in the SSA algorithm.
In the small local t − x window, not only coherent events
but also blending noise from another window are included.
Therefore, it is necessary to estimate all the window coherent
data before noise prediction, which brings algorithm complex-
ity. In this letter, we propose to divide the window only in
the spatial domain to simplify the dither noise prediction-
subtraction scheme. A trigonometric function is also intro-
duced to adaptively estimate the Hankel rank.

II. METHOD

A. Simultaneous-Source Acquisition Model

Here, the blending model is reviewed in brief. Taking two-
sources acquisition as example, the two sources are fired
alternatively and pseudosynchronously. The observed blending
data Dobs with two shots D1 and D2 are related by the
following expression:

Dobs = D1 + D2� (1)
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Fig. 1. Deblending encoder and decoder diagram.

where � is the relative delay matrix

� = diag(1, 1, 1 . . . , 1)N × exp(−iωδtn) (2)

where ω is the angular frequency, and δtn is the relative delay
time of the nth shot. The coherent D1 is superposed by the
dithered gather D2.

Introducing the adjoint dithering code �H , we obtained the
pseudodeblended data

D p =
�

Dobs

Dobs�H

�
=

�
I �

�H I

��
D1

D2

�
= D + DT (3)

where

D =
�

D1

D2

�

is the expected deblended data and

T =
�

0 �
�H 0

�
.

Most of deblending processing are carried out in the pseudode-
blending domain. From formula (3), an easy iterative deblend-
ing scheme can be achieved. The shaping operator S are
embedded to attenuate the crosstalk noise

Dn+1 = D p − T [S(Dn)]. (4)

To clearly explain the relationship between pseudodeblending
and deblending data, the pseudodeblending is defined as an
encoder and deblending as a decoder, and their relations are
plotted in Fig. 1. The decoder is the inverse of encoder.
Without shaping operator, the decoder will converge very
slowly because spectrum radium of T is close to 1. The
shaping operator is introduced to speed up the deblending.

B. Deblending Scheme: Rank-Reduction in the Frequency
Domain

The SSA operator has been used in denoising, data recon-
struction. Its detail algorithm refer to [13]. Here, we talk about
the deblending scheme.

Generally, SSA is used to estimate the coherent events; then,
the blending noises predicted with dither code � are subtracted
from observed data, and this procedure is called the prediction-
subtraction scheme. To benefit from the linear prediction of
events and low-rank property, the seismic profile is divided
into many local windows in the t − x domain, as shown in
Fig. 2(a). The formula (2) tells us that the coherent dither noise

Fig. 2. Local window scheme. (a) Local window strategy for the RR method.
(b) Local window strategy for the proposed method.

Fig. 3. Disadvantage of local t − x window prediction. (a) Blended data.
(b) Data reconstructed from the yellow box. (c) Noise predicted by recon-
structing data. (d) Noise in yellow box.

is up or down along the trace, which means that there are two
seismic reflection records in each trace. Thus, in a local t − x
window, besides the coherent events and their corresponding
dithered noise, the noises from the adjoint window are also
included.

Fig. 3 explains this phenomenon clearly. Fig. 3(a) simulates
a two-layer gather. The coherent event in the green box is
estimated using SSA shown in Fig. 3(b) and its corresponding
dither noise in Fig. 3(c). Compared with the whole dither
noise of green box zoomed in Fig. 3(d), it only includes the
first event dither noise. The result of dither noise distributed
in a multilocal window brings that the prediction-subtraction
only carried out until whole local profiles are processed. The
abovementioned deblending pseudocode is listed in Algorithm
1. In this algorithm, coherent even estimations are executed
in the frequency domain, and the dither noise subtractions
are in the time domain. This transform between the time and
frequency domains brings complexity in the iteration.

To overcome the complexity of prediction in all the local
t −x windows, a novel local strategy is proposed in the f − x
domain, and localizations are carried out only in the spatial
domain, as shown in Fig. 2(b). In each window, the dither
noise DT and its corresponding coherent data D are all
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Algorithm 1

Inputs: The blended data Dobs , dither code � and error threshold ε

Initialize: The pseudodeblending data :D p =
�

Dobs

Dobs�H

�

divide the D p into a set of local window data
�

Di
ω, i = 1, 2, . . . , n

�
Prediction and subtraction iteration:

1. For each local window data Di
ω in the time domain

A Transform them to frequency domain

B For each frequency, execute SSA algorithm.

C Transform it to time domain and get the estimation D̂i
ω of Di

ω

⎫⎪⎬
⎪⎭

Many FFT and its
inverse are involved here

2. Patch the D̂i
ω into a whole profile and get the current coherent estimation D̂

3. Transform D̂ into dither noise with operator T and subtract from D p

4. If


D̂ + D̂T − D p



 ≤ ε, end, otherwise return 1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

Once iteration

included, no other window crosstalk introduced. The coherent
prediction and dither noise subtraction can be all accomplished
in this window and avoid the transform between the time
and frequency domains. The deblending scheme becomes as
simple as in Algorithm 2. It is clear that this scheme is more
efficient than Algorithm 1.

C. Adaptive Rank Determination Rule

Expanding windows will increase the amount of valid infor-
mation contained in the window [16]. The abovementioned
proposed method will lead to a high rank because all the
events are included in the local–global-frequency window.
This increases the difficulty of rank determination. A new
trigonometric method is proposed here to adaptively solve this
rank, and its diagram is shown in Fig. 4. First, the largest and
smallest singular value points ζ1 and ζN are fixed in the graph;
another singular value point ζk is then picked to form a triangle
with an angle α. To compute the angle α, the distance of ζ1

to ζk is computed by

d1k =
�

(ζ1 − ζk)2 + (k − 1)2. (5)

Similarly, the distances d1N between ζ1 and ζN and dkN

between ζk and ζN can be computed. Then, the angle α is
calculated using a trigonometric function easily.

Seismic signals show low rank in the singular spectrum
because of events’ strong correlation [17]; their singular values
weight more on the first few ones and converge quickly like
the region a in Fig. 4. However, the noise singular values
distribute smoothly like the region b. The demarcation of the
region a and b signifies the rank of coherent signals. From
the demonstration of Fig. 4, α reaches its minimum value in
the demarcation.

In each iteration of this process, the corresponding rank
is determined automatically and adaptively changed with
a signal-to-noise ratio (SNR), which can greatly speed up
the convergence. Applied to all frequencies, a frequency-
dependent rank scheme is acquired.

III. DATA EXPERIMENTS

Marine simultaneous-source exploration has broad
prospects. We tested the proposed algorithm with real

Fig. 4. Trigonometric function estimated rank.

Fig. 5. Synthetic model. (a) Original unblended data. (b) Blended data.

marine data. For towed-streamer exploration, the common
offset gathers (COGs) have the same size data, and all the
experiments are carried out in the COG.

The original section consists of 400 traces with 1000
samples shown in Fig. 5(a) and the blended data in Fig. 5(b).
In the experiment, the local window width is set to 100 traces
and the step size to 50 traces, which means that each trace is
processed twice and their average is the last results. The RI
method is employed for comparison with the time width set
to 200 examples.

The deblended results of the proposed method are shown in
Fig. 6(a) and the RI method in Fig. 6(b). Their corresponding
zoomed-in images are shown in Fig. 6(c) and (d), respectively.
It is clear that the dither noise is greatly attenuated in the
proposed method, while the noise is still clear in the RI results.

To evaluate the performance of deblending, the SNR is
defined as follows:

SNR = 10log10
�D�2

2

�D − D̂�2
2

(6)
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Algorithm 2

Inputs: The blended data Dobs , dither code � and error threshold ε

Initialize: The pseudodeblending data :D p =
�

Dobs

Dobs�H

�
, transform the D p into frequency D f

Divide the D f into a set of local window data
�

Di
f ω, i = 1, 2, . . . m

�
, here m is much less than window number

n in the algorithm 1

Prediction and subtraction iteration:
1. For each local window data Di

f ω

A For each frequency, execute SSA algorithm and get the estimation D̂i
f ω

B Transform D̂i
f ω into dither noise with operator T , subtract from Di

f and

get the current deblended data D̂ f

⎫⎪⎬
⎪⎭Once iteration

2. if


D̂ f + D̂ f T − D f



 ≤ ε, go to 3, otherwise return 1

3. Transform D̂ f into time domain and get the deblending data D̂

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

Only one time
FFT and its inverse

Fig. 6. Deblended comparison for the real data in COG. (a) Deblended data
by the proposed method. (b) Deblended data by the RI method. (c) Zoomed-in
image in the yellow box of the proposed method. (d) Zoomed-in image in the
yellow box of the RI method.

Fig. 7. Algorithm performance evaluation. (a) SNR with the number of
iterations. (b) Time required for the number of iterations.

where D stands for the original data and D̂ stands for the
deblended data. The SNR of proposed and RI method changes
with iteration is shown in Fig. 7(a). The proposed method
converges after ten iterations. For the RI method, it converges
slowly because of the unit rank step size. It is until the almost
35 iterations to reach the same SNR of the proposed method.

The computation time is also compared. The machine CPU
for this test is i7-8750H, the main frequency is 2.2 GHz, and
the software is MATLAB 2016a. The computation time with
iterations is plotted in Fig. 7(b). While the SNR increases, the
time required for the proposed method increases slowly. The

Fig. 8. Analysis of the rank of proposed method. (a) Rank selected by the
trace at 20 Hz with different iterations. (b) Rank selected by the trace with
different frequencies in the last iteration.

higher the number of iterations, the more the time is saved.
The time saving is mainly from two procedures. First, the
local window number of this method is far less than the t − x
method. In this experiment, there are eight local windows in
the proposed method and 80 in the RI method. The second way
to save time is that fewer FFT computations are needed, only
once the Fourier transform in the proposed method. Although
the demarcation α is introduced, its computation is very easy.

The rank adaptive variation at 20 Hz is also analyzed.
In Fig. 8(a), the rank is gradually increasing with iteration,
which is consistent with SNR increasing. In early iterations,
it is shown that the first few ranks are small and enlarge
slowly; because the dither noise is strong and distributed on
almost every eigenvalue, a small rank is expected. As the
iteration goes, the SNR increases, noise weakens, and rank
enlarges quickly. This rank-determination rule accelerates the
convergence, and the expected results can be obtained in fewer
iterations.

In Fig. 8(b), the rank in the last iteration of each frequency is
shown, and the ranks are different for different frequencies, so
the proposed adaptive rank determination scheme is frequency-
dependent. There is no explicit relationship between rank and
frequency because of the random dithering code.

Furthermore, the spectrums of processed data are showed.
The proposed method spectrum is plotted in Fig. 9(a) with
a red line and the RI method with a blue line. The real
data spectrum and blended data spectrum are also plotted in
green and black lines, respectively. For a clear comparison,
the relative errors are demonstrated in Fig. 9(b). The proposed
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Fig. 9. Evaluating the results of spectrum convergence. (a) Spectrum of data.
(b) Errors compared with clean data.

Fig. 10. Evaluating eigenvector convergence of a single frequency.
(a) Eigenvector spectrum at 20 Hz. (b) Errors compared with clean data.

method shows a smaller deviation from the real data than the
RI method.

Finally, to explain the convergence performance of the
proposed method, the eigenvectors at 20 Hz are extracted.
The singular spectrum eigenvectors demonstrate the principal
components in the seismic data. Fig. 10(a) shows the first
eigenvector of different methods for comparison. Fig. 10(b)
shows the difference between the real data. The eigenvector
of the proposed method converges almost to the real data at the
10th iteration, but there are still obvious deviations in the RI
method. This result shows our method with better convergence
performance.

IV. SUMMARY

In this letter, we propose a novel iterative method for
simultaneous-source separation based on the SSA algorithm.
There are two main contributions to this work. First, a simple
iterative prediction-subtraction scheme is built, which spares
too much local processing in the time domain. Second, an
adaptive rank-determination scheme is devised to adaptively
predict noise in the frequency domain. In the marine data
experiment, the proposed method shows good performance
with high SNR results and time-saving.
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