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Abstract
With the growing prevalence of Internet of Things (IoT) devices and technology, a burgeoning computing paradigm
namely mobile edge computing (MEC) is delicately proposed and designed to accommodate the application requirements
of IoT scenario. In this paper, we focus on the problems of dynamic task scheduling and resource management in MEC
environment, with the specific objective of achieving the optimal revenue earned by edge service providers. While the
majority of task scheduling and resource management algorithms are formulated by an integer programming (IP) problem
and solved in a dispreferred NP-hard manner, we innovatively investigate the problem structure and identify a favorable
property namely totally unimodular constraints. The totally unimodular property further helps to design an equivalent linear
programming (LP) problem which can be efficiently and elegantly solved at polynomial computational complexity. In order
to evaluate our proposed approach, we conduct simulations based on real-life IoT dataset to verify the effectiveness and
efficiency of our approach.

Keywords Internet of Things (IoT) · Mobile edge computing · Task scheduling · Resource management ·
Revenue-optimal

1 Introduction

The Internet of. Things (IoT) is a promising technical field
in recent years, which interconnects a variety of senors and
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other IoT devices over the network enabling themselves to
cooperate with each other and achieve common goals [29].
With the increasing amount and types of IoT devices joining
the network, several IoT technical requirements are newly
put forward. Massive data generated by IoT devices at the
frontend brings challenges for efficient information process-
ing, especially for the particular scenario requiring real-time
data handling (e.g., Internet of Vehicles [10]). Furthermore,
much more intelligent and powerful processing capacity
should be equipped at the edge, and thus helps to provide
various IoT devices (e.g., smart phones, GPS traker, mobile
camera, smart bands, etc.) with diverse services. Therefore,
it necessitates a burgeoning computing paradigm designed
for IoT business and applications, called edge computing.

Edge computing gains much more momentum with the
proliferation of IoT [34]. According to the technical survey
from International Data Corporation (IDC) [39], the global
data generated by IoT devices will be summed up to 180
zettabytes (ZB) by 2025, of which 70% should be processed
at the edge of network. In an edge computing system, job
requests as well as generated data from IoT devices is served
and processed proximally at the edge server. The edge
server is located closer to the IoT device than the centralized
cloud data center, thereby shortening the job response time.
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IoT devices are dispersed in wide area, whose locations are
time-varied with device mobility. The set of accessible edge
servers of each IoT device depends on the current location of
the IoT device and the coverage radius of edge base stations.
With multiple edge servers deployed geographically, job
requests proposed by various IoT devices will be transmitted
to and served at one of their accessible edge servers,
according to a well-designed scheduling strategy.

Since the era of cloud computing, task scheduling and
resource management have always been a high-profile
issue in the academic as well as industrial community [3]
[24]. It mainly focuses on how to schedule the incoming
job requests across multiple resource units of a cloud
cluster, and there is no difference on scheduling costs when
dispatching jobs to various resource units. Nevertheless, the
problem of task scheduling and resource management looks
different in the context of edge computing, summarized as
the following two points.

• Uneven ross-layer data transmission latency: Each IoT
device can always have multiple accessible edge ser-
verswithheterogeneousdata transmission distances.Be-
cause of heterogeneous data transmission distances, la-
tency on data transmission to different edge server va-
ries. Therefore, uneven data transmission latency needs
to be taken into accountwhen determiningwhich of edge
servers should be dispatched to the job request [5, 6]. It
would incur less scheduling costs on data transmission
if the job request is scheduled to a closer edge server.
Otherwise, it would cost more on data transmission.

• Asynchrony in cross-layer job dynamics: The principle
of First-Come-First-Served is a simplified but widely
recognized assumption in the scheduling design.
According to the principle of First-Come-First-Served,
the job request proposed earlier should be queued
ahead and processed in prior. In the edge computing
system, however, heterogeneity of data transmission
latency results in the dissatisfaction of First-Come-
First-Served. Thanks to the shorter data transmission
latency, the job request proposed later than other IoT
devices may be arrived at the dispatched edge server
earlier, further holding the service priority. It embodies
the asynchrony in cross-layer job dynamics, which
makes the problem of task scheduling intractable in the
edge environment.

In this paper, we put forward a cross-edge task
scheduling and resource management algorithm for edge
computing, whose objective is to maximize the edge
providers’ revenue. Each IoT device proposes a batch job
request formed by several tasks, together with the associated
budget. Through our task scheduling and resource allocation

algorithm, edge providers can make their efforts to
accomplish all of the tasks within job request, further
earning the maximum revenue from job budgets.

The discrete nature of our task scheduling and resource
management problem makes it challenging to solve out.
Task scheduling problem is essentially a combinatorial
problem while the resource capacity of edge server is
specified by the number of instances. Hence, our problem
is inherently an integer programming (IP) problem, which
is generally NP-hard [16]. In order to solve out our
problem efficiently, we find out the favorable property
of totally unimodular constraints [16], which provides
integral optimum guarantee for linear programming (LP).
Thanks to this favorable property, we take advantage of
λ−technique [26] to conduct equivalent LP transformation
of our original IP problem. The effectiveness and efficiency
of our proposed approach is validated through simulations
based on real-life IoT dataset.

The original contribution of our work is threefold as
follows.

• According to the layered structure of edge computing
paradigm, we formulate the cross-edge job processing
framework in an edge-enabled IoT system. Computa-
tional resource capacity of edge servers, heterogeneity
of job requests, overlapped signal coverage of edge
base stations and device mobility are fully taken in
consideration.

• On the basis of system formulation, a cross-edge
task scheduling and resource management algorithm
is carefully designed, which achieves the optimal
revenue earned by edge providers. In virtue of discrete
characteristics of original problem formulation, we
conduct equivalent LP transformation by means of
totally unimodular constraints [16] and λ−technique
[26]. Therefore, IoT jobs can be scheduled efficiently.

• We conduct simulations based on a real-world dataset of
base stations and end users in the Melbourne CBD
area [17] to verify our proposed approach. Besides,
the effectiveness of our scheduling algorithm is
demonstrated with a comparison with state-of-art
polices.

The remainder of our paper is organized as follows. In
Section 2, we survey the related work most pertinent to
this paper. In Section 3, the fundamental notations of edge
computing model are given, based on which the problem
of task scheduling and resource management is formulated.
Section 4 firstly introduces the overall framework of
our task scheduling and resource management algorithm,
and then conducts equivalent LP transformation aimed to
solve our problem with high efficiency. In Section 5, we
perform experiments based on real-life IoT dataset to verify
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our algorithm. In Section 6, we finally summarize our
research work in our paper and make a outlook of our future
work.

2 Related work

2.1 Peer-to-peer network

Different from the traditional client-server (CS) model,
peer-to-peer (P2P) networking is a distributed computation
model in which interconnected peers free up part of their
resources (e.g. CPU core, disk storage, network bandwidth,
etc.) to share amongst each other without the need of
centralized servers. Peers are not only consumers but also
providers of resources.

The interactive mechanism amongst peers in P2P net-
works has been extensively studied in the literature. Guo
et al. [9] promoted the sustainability of body sensor net-
work (BSN) through proposing a data transmission schedul-
ing and energy harvesting strategy, where sensor states, data
dynamics, and energy dynamics were fully taken care of.
Kim et al. [15] improved the efficiency of data forwarding
for P2P networks by effectively making prediction of con-
nection status using Bayesian classifier, furthering reducing
the energy consumption of data transmission. Satsiou et al.
[28] concentrated on the problem of fair resource alloca-
tion amongst peers based on peers’ reputation maintenance,
where each peer can only obtain shared resources anal-
ogous to its contribution. From the perspective of social
networks, Chen et al. [4] eliminated the malicious peers in
P2P file sharing networks, and made the friendly peers col-
laboratively achieving the common goals through reputation
querying. Lee et al. [18] studied the problem of reputation
management with blockchain technology applied, where
peers’ reputation can be self-maintained without the use of
a central node responsible for reputation management. Kim
et al. [14] took the advantage of ML technology to remove
the bad data from untrusted peers in P2P networks and
further improve the service reliability.

2.2 Edge computing

With the rapid development of IoT, an emerging computing
paradigm namely edge computing has been put forward.
The architecture of edge computing is designed by learning
the features of P2P networking. Ramachandran et al. [27]
characterized the edge as a peer of cloud. The functionality
of cloud was separated into multiple edge sites deployed
close to the IoT device. Job requests from IoT devices were
scheduled to and served at the edge site, shortening the job
response time and saving the network bandwidth for remote
data transmission.

The problem of task scheduling in edge environment
has been a hot topic in recent years. Lu et al. [22]
analyzed the geographic routing problem in mobile
vehicular network, where data link error rate and vehicle
density of streets were fully considered. Wang et al.
[32] focused on the problem of multi-task scheduling
in hybird edge-cloud environment, where several critical
issues like profit, deadline and dependence were taken
into account. Zhao et al. [38] proposed a dynamic
approach for cross-edge task scheduling which optimized
the total system cost and energy efficiency of device.
Yang et al. [35] regulated the procedure of live virtual-
machine (VM) migration in hybrid edge-cloud system
with the optimization objective of maximum the average
QoS. Ma et al. [23] comprehended the multi-vehicle task
offloading problem in edge computing as a strategic game,
and achieved the cost-effective and incentive-compatible
scheduling scheme when a Nash equilibrium solved
out. With the techniques of Lyapunov optimization and
Vickrey-Clarke-Groves (VCG) auction, Zhang et al. [37]
designed an online computation offloading mechanism in
edge-computing systems optimizing the long-term reward.
Wang et al. [31] formulated the problem of computation
offloading in multi-access edge environment as a deep
sequential model based on reinforcement learning, enabling
the ability to automatically discover the common patterns
behind various applications. Teng el. at [30] studied the
task scheduling problem from the perspective of IoT
service providers through focusing on code dissemination
in vehicular sensor networks, improving the coverage and
cost of disseminating process. Zhang et al. [36] optimized
related parameters to network resources in IoT network
from two different time scales, and ultimately reduced the
energy consumption resulting from network communication
between IoT devices.

We have done several research works previously on the
topic of edge computing. In [12], we applied stochastic
queueing theory to provide delicate performance modeling
and analysis for IoT services in hierarchical edge computing
paradigm. In [20], we formulated the task scheduling
problem in edge computing system with Markov Decision
Process (MDP) to balance the tradeoff between QoS criteria
and energy costs incurred by the computational workload
in edge servers. In [11], we put forward a simulation-
based framework for QoS-aware dynamic service selection
in MEC systems, where the concept of goal softening
and techniques of ordinal optimization were introduced
to make our approach practical in large-scale systems.
Differing from our previous works, this paper studies the
task scheduling and resource management problem in MEC
environment, taking into account the QoS, mobility and
signal coverage, in order to maximize the revenue of the
edge servers in the MEC system.
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3 Systemmodel and problem formulation

3.1 Fundamental notations

System overview We consider an MEC system for IoT
services, which consists of N mobile IoT devices and M

edge servers. The time horizon is discretized into time slots
with the length of τ , indexed by t . Each mobile IoT device
moves across time slots, and arbitrarily decides whether to
propose the job request at each time slot τ . The job request
from mobile IoT devices is firstly pre-processed in local,
then is transmitted to the dispatched edge servers for remote
execution.

Tasks within the job request are regulated to be scheduled
to edge servers at each decision time slot Γ . Resources
allocated to the job request are also determined while
scheduling. System operator is responsible to configure the
length of decision time slot Γ based on the actual situation,
which may cover one or more units of time slot τ . At each
decision time slot Γ , task requests proposed by mobile IoT
devices will be scheduled and dispatched to the edge site,

constrained by the signal coverage of edge base stations and
resource capacity of edge servers.

Figure 1 describes the processing architecture and
dynamics of MEC system. Each mobile IoT device moves
according to its own trajectory (i.e., blue, pink, or green
arrowed line with different dash types in Fig. 1). The black
arrowed dotted line in Fig. 1 points to the allocated edge
server, while the gray broken line represents the signal
coverage boundary of each edge base station.

Edge server Multiple edge servers are geo-distributed over
the system, each of which is usually a micro data center
placed near a base station. The base station adjacent to the
edge server is called edge base station. IoT business and
applications are deployed within the edge server, serving for
job requests submitted by mobile IoT devices. The set of M

edge servers is denoted by M, and each of edge server is
indexed by j .

There are totally Aj resource instances equipped within
the edge server j . At each time slot t , Rj (t) resource
instances are supplied for incoming job requests. Since part

Fig. 1 Overview of Mobile Edge Computing (MEC) system
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of resource instances at time slot t may have been allocated
to previous job requests when conducting task scheduling
to incoming job requests, the available number of resource
instances at time slot Rj (t) is no greater than the overall
resource capacity Aj , as formulated by Rj (t) ≤ Aj .

Signal coverage overlap across edge base stations is
considered. Each edge base station j has a limited signal
coverage with the maximum distance Lj . The IoT devices,
whose locations are within the scope of maximum signal
coverage Lj of edge base station j , form up the set of
affiliated IoT devices for the edge base station j , labeled as
Nj . The affiliated IoT devices can propose their job requests
and upload the IoT data to the specified base station for
further edge processing. From the standpoint of IoT devices,
the set of accessible edge servers/base stations for the job
request of IoT device i is indicated byMi .

Moreover, the CPU cycle frequency of each resource
instance is denoted by fM. Note that all of M edger servers
are regarded as homogenous with the same CPU cycle
frequency per resource instance.

Mobile IoT device The sensor hub has become one of
typical representatives for IoT devices [8, 13]. It collects
multiple pieces of data from different sensors and buffers
them for further batch processing [7]. Higher-valued
information can be concluded through integrating data from
various kinds of sensors [19]. In our work, we formulate the
mobile IoT device as a sensor hub which gathers multiple
pieces of sensing data and packages them as a job request
to the edge site for batch processing. Multiple pieces of
sensing data are regarded as several tasks within a single job
request.

At each decision time slot Γ , job requests from N

mobile IoT devices are collected and scheduled for batch
processing at edge site. The set of N mobile IoT devices
is denoted by N , and each edge server is indexed by
i. Each mobile IoT device may change its position from
time to time, and thus may have different accessible
edge servers/base stations Mi at various times. Edge base
stations’ signal coverage and IoT device’s location jointly
determine the set of accessible edge servers/base stations
for an IoT device. Because of the mobility of IoT devices,
job requests proposed at various times may be scheduled to
different edge servers.

Each IoT device i will report a budgetBi representing the
maximum payment for edge computation when proposing
a job request to the edge site. A number of tasks are
processed in batch, which are bundled into a single job
request for execution. With more tasks executed at edge site,
the edge provider will gain more revenue from the budget
Bi . The IoT device also submits a maximum expected
job completion time τmax

i . It is assumed that, only the
tasks executed within the time of τmax

i are paid. Thus, the

unaccomplished tasks within τmax
i will be rejected by edge

providers, requiring to be re-submitted by the IoT device.
The job request proposed at each decision time slot

Γ should be firstly processed at the mobile IoT device,
including data preprocessing and packing. The IoT device i

has the CPU frequency of fi , andμlc
i CPU cycles are needed

for local execution at the mobile IoT device. Therefore,
the local computational latency τ lc

i can be calculated by
Eq. 1. Regarding to the edge execution, μrc

i CPU cycles
are estimated for data processing at edge site, an thus the
remote computational latency at edge site is formulated in
Eq. 2. For the convenience of timeslot-based task scheduling
introduced later, the computational latency at device and
edge site is measured in time slot τ .

τ lc
i =

⌈
μlc

i

fi · τ

⌉
(1)

τ rc
i =

⌈
μrc

i

fM · τ

⌉
(2)

Furthermore, data transmission between the mobile IoT
device and edge servers is required during the lifecycle
of a job request, resulting in a data transmission latency.
Without loss of generality, we assume that there is the data
size of δrc

i to be processed at edge site. Then, according
to the Shannon-Hartley formula, data transmission latency
between the mobile IoT device i and edge server j can
be calculated as Eq. 3, where wi represents the channel
bandwidth allocated to the mobile IoT device i, while hi

denotes the channel power gain of device i and pi is the
wireless transmit power of the mobile IoT device i. Channel
background noise is indicated by σ . The channel power gain
hi is negatively correlated to the data transmission distance
dtr
i,j , estimated by dtr

i,j
−4 [33]. Note that, data transmission

latency is also estimated in time slot τ .

τ tr
i,j =

⌈
δrc
i

wi · τ · log2(1 + hipi/σ )

⌉
(3)

Table 1 summarizes the notations used in the problem of
task scheduling and resource management in MEC system.

3.2 Problem formulation

We formulate the problem of task scheduling and resource
management in MEC system. Each job request can be cross-
edge scheduled to multiple edge servers, according to our
well-defined scheduling algorithm. Let αi,j (t) denote the
number of edge server j ’s resource instances allocated to
the job request of mobile IoT device i at the time slot t .
Task scheduling is conducted per decision time slot Γ . The
granularity of decision time slot Γ is configured by system
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Table 1 Summary of notations

Notation Definition

t, τ index, length of time slot

Γ index of decision time slot

i, N,N index, number, set of mobile IoT devices

j, M,M index, number, set of edge servers/base stations

Bi budget proposed by IoT device i’s job request

Lj maximum distance of signal coverage for edge server/base stations j

Mi set of accessible edge servers/base stations for IoT device i

Nj set of affiliated IoT devices within signal coverage for edge server/base stations j

μlc
i , μrc

i number of CPU cycles to IoT device i’s job request for local computation, remote computation at edge site

fi, fM CPU frequency of IoT device i, edge server

τ lc
i , τ rc

i local computational latency, remote computational latency at edge site for IoT device i’s job request

δrc
i data size to IoT device i’s job request for remote computation at edge site

wi, hi , pi channel bandwidth, channel power gain, wireless transmit power of IoT device i

σ noise power at edge site

dtr
i,j , τ

tr
i,j data transmission distance, latency between IoT device i and edge server j

τmax
i maximum expected job completion time for IoT device i’s job request

Ti,j set of available time slots for remote execution at edge server j for IoT device i’s job request

Aj , Rj (t) number of edge server j ’s overall resource instances, available resource instances at time slot t

k,Rj (t) index, set of possible resource allocations for edge server j at time slot t

αi,j (t) number of edger server j ’s resource instances allocated to IoT device i’s job request at the time slot t

λk
i,j (t) real decision variables generated by λ-technique [26] in LP transformation

operator according to the actual situation, including one or
more units of time slot t .

In this work, task scheduling is conducted with the
objective of optimizing the revenue earned by edge
providers, which is specifically maximizing the summation
of each edge provider j ∈ M’s revenue. The overall
revenue is earned from the submitted budgets Bi of all
N mobile IoT devices. As described in Section 3.1, it
is proportional to the task completion ratio within the
maximum expected job completion time τmax

i , formulated
as Eq. 4.

∑
i∈N

∑
j∈Mi

τmax
i∑

t=τ lc
i +τ tr

i,j

Bi

τ rc
i

· αi,j (t) (4)

Given the limited resource capacity of edger servers at
each time slot t , the total amount of allocated resources of
each edge server j ∈ M cannot excess its resource capacity,
formulated as the following constraint (5) regarding the
resource capacity of edge servers.

∑
i∈Nj

αi,j (t) ≤ Rj (t) ∀j ∈ M, ∀t ∈ Ti,j (5)

Besides, it is obvious that the task completion ratio within
the maximum expected job completion time τmax

i should be

no greater than 1. The constraint about task completion ratio
is formulated as Eq. 6.

∑
j∈Mi

τmax
i∑

t=τ lc
i +τ tr

i,j

αi,j (t)

τ rc
i

≤ 1 ∀i ∈ N (6)

Through combining the optimization objective with
the above-mentioned constraints, our problem of task
scheduling and resource management in MEC system can
be formulated formally and mathematically as follows.

max
αi,j (t)

∑
i∈N

∑
j∈Mi

τmax
i∑

t=τ lc
i +τ tr

i,j

Bi

τ rc
i

· αi,j (t) (7)

subject to,∑
i∈Nj

αi,j (t) ≤ Rj (t) ∀j ∈ M, ∀t ∈ Ti,j (8)

∑
j∈Mi

τmax
i∑

t=τ lc
i +τ tr

i,j

αi,j (t) ≤ τ rc
i ∀i ∈ N (9)

αi,j (t) ∈ Rj (t) ∀i ∈ N , ∀j ∈ Mi , ∀t ∈ Ti,j (10)
where Rj (t) denotes the set of all possible resource
allocations {0, 1, . . . , Rj (t)}, and Ti,j indicates the set of
available time slots for remote execution refering to {τ lc

i +
τ tr
i,j , τ

lc
i + τ tr

i,j + 1, ..., τmax
i }.
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The optimization problem defined above is an integer
programming (IP) problem, which is generally NP-hard
[16] to solve out. In order to schedule job requests in
an efficient manner, we try to explore and make use of
favorable techniques overcoming the challenges on problem
solving, which will be introduced in detail in Section 4.

4 Algorithm design

In this section, we firstly outline the task scheduling and
resource management framework in MEC system, and then
concentrate on the equivalent LP transformation aimed to
solve our problem efficiently. Theoretical analyses on the
effectiveness and computational complexity are given as
well.

4.1 Task scheduling framework overview

Algorithm 1 illustrates the pseudo code of cross-edge task
scheduling algorithm achieving optimal earning. When the
job request proposed by mobile IoT device is scheduled,
the number of allocated resource instances is determined as
well. The procedure of task scheduling is conducted round
by round with decision time slot Γ .

At each decision time slot Γ , task scheduler firstly
receives the job requests submitted by N mobile IoT
devices during the last decision time slot, with location
of mobile IoT device and other device information (e.g.,
Bi, τ

max
i , etc.) collected as well. According to the current

location of mobile IoT device and signal coverage of edge
base stations, the set of its accessible edge servers/base
stations (i.e., Mi) is obtained. Then, it is high time to
perform LP solving aimed to acquire the results of task
scheduling and resource allocation α. How to apply LP
techniques to solve the task scheduling problem (7) will be
fully discussed in Sections 4.2 and 4.3.

When scheduling the job requests according to α, edge
providers will earn the maximum revenue from budgets.
Since edge servers’ resource capacity is limited, part
of tasks within the job request may be rejected and
unscheduled. The reason for task rejection is a less budget
offering Bi with a strict requirement for maximum expected
job completion time τmax

i . The mobile IoT device having
rejected task is suggested to re-submit its unscheduled
tasks with more budget added or a relaxed requirement for
maximum expected job completion time τmax

i .
With the resources allocated to job requests, each edge

server’s resource capacity at different time slots should be
updated. If the number of resource instances αi,j (t) of edge
server j is allocated to the job request i at time slot t ,
then the edge server j ’s resource capacity at time slot t

will be reduced by αi,j (t) number of resource instances,

in preparation for the next round of task scheduling at the
decision time slot of Γ = Γ + 1.

4.2 Integral optimum guarantee

A linear programming problem can yield an optimal solu-
tion in integers, if its coefficient matrix is total unimodular
(TU) [16]. In our problem setting, we investigate the coef-
ficient matrix of linear constraints (8) and (9), testifying
whether to satisfy the TU property. The coefficient matrix
is denoted by an r-by-c matrix Cr×c.

The matrixCr×c is said to be total unimodular, if it meets
the following two conditions: (1) Any of it entries ax,y in
Cr×c belongs to {−1, 0, 1}; (2) There exist two disjoint
row subsets R1 and R2 exactly partitioning the row set
{1, 2, ..., r}, such that

∣∣∑
x∈R1

ax,y − ∑
x∈R2

ax,y

∣∣ ≤ 1, for
∀y ∈ {1, 2, ..., c}.

Lemma 1 The coefficient matrix formed by the con-
straints of Eqs. 8 and 9 satisfies the total unimodular (TU)
property.
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Proof : Suppose that the matrix Cr×c represents the
coefficient matrix formed by the constraints (8) and (9),
where the numbers of rows and columns are respectively
denoted by r and c, specifically formulated by Eqs. 11 and
12. The number of rows represents the total number of
constraints, where r1 and r2 separately indicate the number
of constraints (8) and (9). The number of columns shows the
dimension of the variable α.

r = r1 + r2

=
⎡
⎣ ∑

j∈M

∑
i∈Nj

(
τmax
i − τ lc

i − τ tr
i,j + 1

)⎤
⎦ + N (11)

c =
∑
i∈N

∑
j∈Mi

(
τmax
i − τ lc

i − τ tr
i,j + 1

)
(12)

Firstly, any entry of coefficient matrix Cr×c belongs to
{0, 1}, satisfying the Condition 1 where any matrix entry is
either -1, 0, or 1.

Secondly, in terms of the Condition 2, the entries of rows
which belong to the row subset {1, 2, ..., r1} are elected as
the set R1. As well, the remaining entries of rows form up
another set R2, satisfying R1

⋂
R2 = ∅. Each entry in the

coefficient matrix Cr×c is denoted by ax,y , where x and
y are the index of matrix’s row and column. In view of
the constraints (8), it is pointed out that the summation of
entries grouped by columns in rows R1 is a 1 × c vector
whose entries are 1, formulated by Eq. 13. With respect
to the constraints (9), as such, the summation of entries
grouped by columns in rows R1 is also a 1 × c vector with
all entries equal to 1, expressed as (14). Through integrating
(13) and (14) into account, we conclude that the coefficient
matrix Cr×c satisfies the Condition 2 specified as Eq. 15.∑
x∈R1

ax,y = 1, ∀y ∈ {1, 2, ..., c} (13)

∑
x∈R2

ax,y = 1, ∀y ∈ {1, 2, ..., c} (14)

∣∣∣∣∣∣
∑
x∈R1

ax,y −
∑
x∈R2

ax,y

∣∣∣∣∣∣ = 0 ≤ 1, ∀y ∈ {1, 2, ..., c} (15)

In brief, it is summarized that the coefficient matrix
Cr×c both satisfies two conditions for total unimodularity,
proving that the coefficient matrix formed by the constraints
of Eqs. 8 and 9 satisfies the total unimodular (TU)
property.

Lemma 1 provides the legitimacy of linear relaxation on
the integer constraints (10). Our task scheduling problem (7)
has integral optimum as long as any optimum exists. The
integer constraints (10)’s relaxation is formulated as Eq. 16.

αi,j (t) ∈ [
0, Rj (t)

] ∀i ∈ N , ∀j ∈ Mi , ∀t ∈ Ti,j (16)

4.3 Equivalent LP transformation

With the problem structure of TU constraints exploited,
we further take advantage of λ-technique to transform
the IP problem (7) to an equivalent linear programming
(LP) problem which has the same optimal solution [26].
Thanks to the success of equivalent LP transformation,
our scheduling problem (7) can be solved efficiently in
polynomial time with the problem scale.

Recall that a decision variable αi,j (t) ∈ Rj (t) =
{0, 1, ..., Rj (t)}, then the objective function (4) can be
linearized with the λ-representation as follows.

∑
i∈N

∑
j∈Mi

τmax
i∑

t=τ lc
i +τ tr

i,j

Rj (t)∑
k=0

Bi

τ rc
i

· k · λk
i,j (t) (17)

In specific, each of integer variable αi,j (t) in our IP
problem (7) is removed by sampling at each of its possible
value k ∈ Rj (t), weighted by the newly introduced
variables λk

i,j (t) ∈ R
+, satisfying the following equations.

αi,j (t) =
Rj (t)∑
k=0

k · λk
i,j (t),

Rj (t)∑
k=0

λk
i,j (t) = 1 (18)

λk
i,j (t) ∈ R

+, ∀k ∈ Rj (t) (19)

Combining with linear relaxation on integer constraints
(10), the equivalent LP problem is obtained as follows.

max
αi,j (t), λk

i,j (t)

∑
i∈N

∑
j∈Mi

τmax
i∑

t=τ lc
i +τ tr

i,j

Rj (t)∑
k=0

Bi

pi

· k · λk
i,j (t) (20)

subject to,

∑
i∈Nj

Rj (t)∑
k=0

k · λk
i,j (t) ≤ Rj (t) ∀j ∈ M, ∀t ∈ Ti,j (21)

∑
j∈Mi

τmax
i∑

t=τ lc
i +τ tr

i,j

Rj (t)∑
k=0

k · λk
i,j (t) ≤ τ rc

i ∀i ∈ N (22)

Rj (t)∑
k=0

λk
i,j (t) = 1 ∀i ∈ N , ∀j ∈ Mi , ∀t ∈ Ti,j (23)

αi,j (t), λk
i,j (t) ∈ R

+ ∀i ∈ N , ∀j ∈ Mi ,

∀k ∈ Rj (t), ∀t ∈ Ti,j

(24)

Theorem 1 An optimal solution to problem (7) is an
optimal solution to problem (20), which can be solved
at polynomial computational complexity in the number of
mobile IoT devices and edge servers.
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Proof : According to Lemma 1, the coefficient matrix with
the TU property ensures the integral optimum of the LP
problem (20), which is also the optimal solution to the IP
problem (7).

Reference to the literature [2], an LP problem can be
solved in time that is polynomial with the problem’s input
size (i.e., number of variables and constraints) using existing
methodologies like the interior-point, simplex, and ellipsoid
algorithms. Note that, the number of λ-varibles in the
LP problem (20) is O(NMT ∗R∗), where T ∗ and R∗ are
formulated as Eq. 25. And the number of constraints of
Eqs. 21–23 is O(NMT ∗).

T ∗ =
∣∣∣∣∣∣

⋃
i∈N ,j∈Mi

Ti,j

∣∣∣∣∣∣ , R∗ = max
j∈M

Aj (25)

In summary, the LP problem (20) can be solved at
polynomial computational complexity of O(NMT ∗R∗).
Thanks the optimum equivalence between problem (7) and
(20) proved earlier, the optimal solution of problem (7)
which is formulated by IP can be worked out at polynomial
computational complexity in the number of mobile IoT
devices (i.e. N) and edge servers (i.e., M), through LP
solving.

By Theorem 1, our task scheduling problem (7) can
be precisely solved with a polynomial computational
complexity in the scale of MEC system, including the
number of mobile IoT devices and edge servers. Henceforth,
the revenue-optimal task scheduling results in MEC system
can be solved with efficient LP algorothms (e.g., interior-
point, simplex, and ellipsoid algorithms, etc.) and solvers
(e.g., IBM CPLEX [1], YALMIP [21]).

5 Evaluation

5.1 Experimental setup

In order to evaluate the performance of our proposed cross-
edge task scheduling algorithm, we conduct experiments
whose scenario is simulated based on the geolocation
information of base stations and users within the Melbourne
CBD area in the EUA dataset [17]. Twenty of base
stations are randomly selected from the EUA dataset and
applied as edge server/base stations in our experiments.
The geolocation information of users in the EUA dataset
is used as the initial location of mobile IoT devices, and
the mobility of IoT devices is implemented according to a
Gaussian random walk model.

In Table 2, the values of main system parameters
are presented, where the parameters of Li , Bi , τmax

i are
randomly generated within the with respect to each mobile

Table 2 Experimental parameter setting

Param. Value Param. Value

τ 2 ms � Γ 50 ms

wi 1.5 Mbps pi 1 W �

σ 10−13 W � δrc
i 2,000 bits

Li 550 - 750 m Bi 10 - 15 pence

Aj 5 τmax
i 140 - 155 ms

IoT device. Parameters marked with � are configured
according to [25], while other parameters are set after
our in-depth investigation. Experiments are carried out in
MATLABwith the aid of the YALMIP optimization toolbox
[21] to invoke IBM CPLEX solver [1] used for LP problem
solving.

5.2 Experimental results

With the purpose of verifying the effectiveness of our
proposed approach, we compare our cross-layer task
scheduling algorithm with an intuitive baseline algorithm
which is Greedy Scheduling. In the greedy scheduling
algorithm, job requests from each mobile IoT device will be
scheduled to the nearest edge server; meanwhile, cross-edge
scheduling should not be permitted.

First, we simulate the procedure of task scheduling by
decision time slots under the above two algorithms. At each
decision time slot, fifty mobile IoT devices propose job
requests according to the Bernoulli distribution with the
probabilistic parameter randomly determined between (0.4,
0.5). Besides, each mobile IoT device moves based on the
two-dimensional Gaussian random walk of (μx + μy, σ

2
x +

σ 2
y ), where μx and μy are randomly generated between

(-0.5 m, 0.5 m) while σx and σy equal to 1 m.
Figure 2 shows the overall revenue of the edge

providers across various decision time slots under different
algorithms. It can be easily seen that the overall revenue
earned under our cross-edge task scheduling algorithm is
always higher than that under greedy algorithm. This is
because the cross-edge scheduling mechanism makes the
edge resources more sufficiently utilized. As regards the
greedy algorithm, nevertheless, job requests are merely
scheduled to the single nearest edge server, resulting in
imbalance on resource utilization amongst the edge servers.
Edge servers surrounded by a large number of devices
will receive active requests for resource allocation leading
to request queueing and resource overutilization, while
edge servers having less devices surrounded will rarely
receive requests for resource allocation, incurring more
idle resources. More sufficient utilization of edge resources
in our proposed algorithm implies more tasks within the
job request are accomplished within the decision time
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Fig. 2 Edge providers’ overall revenue under different algorithms

slot, as illustrated in Fig. 3. In summary, our cross-edge
task scheduling algorithm develops the utilization of edge
resources, and thereby earns a higher revenue.

Second, we also tune the number of mobile IoT devices
which propose job requests to evaluate the revenue earning
under two different algorithms, as depicted in Fig. 4.
Although edge providers can earn more revenue with
the increasing number of mobile IoT devices, different
scheduling algorithm makes a difference on the specific
gain of revenue. Edge providers under our cross-edge
task scheduling algorithm always earn higher than that
under greedy algorithm This is because, our cross-edge
task scheduling algorithm has a better tolerance on device
expansion. Job requests can be handled across multiple
edge servers in a distributed manner when our cross-edge
algorithm is applied. In comparison, job requests can be
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Fig. 3 Mobile IoT devices’ job completion ratio under different
algorithms

15 20 25 30 35 40 45 50 55 60 65 70 75

The Number of Mobile IoT Devices

0

100

200

300

400

500

600

700

O
ve

ra
ll 

R
ev

en
ue

Cross-Edge Task Scheduling
Greedy Scheduling

Fig. 4 Edge providers’ overall revenue with various mobile IoT device
scales

only dispatched to the single nearest edge server in the
greedy algorithm. Thanks to the cross-edge scheduling,
tasks within the job request are more efficiently processed,
thus relieving the request congestion due to device
expansion and handling more tasks with more revenue
earned.

Third, computational complexity of our algorithm is
testified as well, by means of measuring the runtime of
our cross-edge task scheduling algorithm. As demonstrated
in Fig. 5, algorithmic runtime is measured under different
system scales (i.e., number of mobile IoT devices or edge
servers). The algorithmic runtime result at each particular
system scale is averaged over 1,000 runs. Our algorithm
is performed on the machined whose processor is Intel
Core i5-3470 @3.20Ghz with the memory size of 8 GB.
Under the growth of system scale (i.e., number of mobile
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Fig. 5 Algorithmic runtime at different system scales (i.e., number of
mobile IoT devices or edge servers)
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IoT devices or edge servers), our algorithmic runtime is
always kept as a polynomial increase. It further verifies
the theoretical analysis of computational complexity in
Theorem 1 that our algorithm can be solved at polynomial
computational complexity in the number of mobile IoT
devices and edge servers.

6 Conclusion and future work

In this paper, we study the problem of task scheduling and
resource management for IoT batch jobs in MEC system,
where the optimal edge providers’ revenue is achieved.
Based on the system formulation, our task scheduling
problem maximizing revenue is intuitively formulated by
an IP problem. By virtue of the NP-hardness solving
IP problem, we find out the favorable property of TU
coefficient matrix, and further introduce the λ-technique
to transform the original IP problem to an equivalent
LP problem. Thanks to the polynomial computational
complexity for LP problem solving, our task scheduling
problem can be worked out in an efficient manner.
Experiments based on real-life IoT dataset are conducted to
verify our proposed approach.

There are several avenues for future work. On the
one hand, we plan to design a more sophisticated task
scheduling algorithm considering the future job dynamics,
rather than merely maximizing revenue of job requests
proposed at the current decision time slot. On the other
hand, we can also comprehend the problem of multi-device
job scheduling in edge computing from the perspective
of game theory, and try to find out several game-
theoretical properties (e.g., fairness, individual rationality,
envy freeness) which helps to the design of MEC
systems. Some other interesting research topics on edge
computing can be explored if our proposed methodology is
implemented in real-life IoT systems.
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