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A B S T R A C T

When incipient faults occur in chemical processes, some variables will slightly deviate from original trajectories,
and process residuals will gradually be continuously biased toward one side of their mean values, i.e., process
variation will occur. Traditional indices are inadequately sensitive to this situation or achieve it at the cost of a
high false alarm rate (FAR). To address this situation and explore methods with low FAR in dynamic processes,
canonical variate residuals (CVRs) are generated. Then, a novel multivariate q-sigma (Mq-sigma) rule is proposed
to monitor CVRs. It considers the process variation mentioned above in a window and sets the control limit for
each variable. When tested on a simulated process, the Mq-sigma is highly sensitive to process variations and can
detect incipient faults earlier than other methods, i.e., it has the lowest detection delay and FAR.
1. Introduction

The most important aspect in chemical processes is to ensure the
stable operation of systems. However, faults are inevitable due to dis-
turbances and equipment aging. Most faults have an evolutionary process
from incipient faults to serious faults. Therefore, faults should be detec-
ted early to ensure the stable operation of systems. Methods for incipient
fault detection in processes are accordingly discussed in this paper.
1.1. Literature review

Process monitoring and fault detection (PM-FD) is particularly
important to maintain high-quality products and process safety. Research
on PM-FD technologies has received considerable attention in recent
years [1,2]. In modern industries, lots of process data can be available;
thus, data-driven methods, i.e., multivariate statistical process moni-
toring (MSPM) techniques, are widely used [3,4]. As typical MSPM
methods, principal component analysis (PCA) [5–7], partial least squares
[8,9], Fisher discriminant analysis [10], independent component anal-
ysis (ICA) [11,12] and canonical variate analysis (CVA) [13,14] have
drawn increasing attention. Unlike model-based methods [15], they do
not need priori process knowledge. To detect faults, these MSPM
methods usually need to establish a threshold and a statistical model by
training data off-line. Then, online data are used to calculate statistics
through comparing the statistics with previous statistical models to judge
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whether faults have occurred.
Many abnormal events or serious faults usually evolve from incipient

faults that have small magnitudes, e.g., the explosion of a nuclear power
plant in Fukushima in 2011 was caused by a small aging problem [16],
and the Tianjin port explosion in 2015 was caused by a small leak of
nitrocellulose [17]. Numerous methods based on basic data-driven
methods have been improved to enhance detection performance
[18–22], but incipient faults are always neglected because they are
usually covered by noise and process trend, causing minor changes in
systems. Traditional methods mentioned and improved methods, such as
dynamic PCA and kernel PCA, are insensitive to them and cannot detect
them effectively. Thus, some novel methods and improvements for
detecting incipient faults have been presented. The classical exponen-
tially weighted moving average and cumulative sum charts and their
multivariate extension solved the limitation of the lack of sensitivity and
can detect small shifts in data [23–25]. Bakshi proposed the multiscale
PCA which combines the wavelet analysis to extract deterministic fea-
tures and approximately decorrelate autocorrelated measurements [26].
Also based on PCA, Yoon and MacGregor applied multiresolution anal-
ysis by wavelet transformations to decompose the cumulative effects of
multiscale data [27]. Reis and Saraiva proposed a multiscale statistical
process control method, which fully integrated the data of different
resolutions [28]. A method based on a library of basis functions provided
by wavelet packets is presented for conducting multiscale statistical
process control by Reis et al. [29]. Grasso and Colosimo proposed an
gust 2020
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Fig. 1. Hypothetic relationship between FAR and DD. t is the DD we want; tmax
denotes the maximum DD; a, b, c, and z are FARs of the four methods corre-
sponding to t.
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automated approach to enhance multiscale signal monitoring [30]. Rato
and Reis proposed dynamic PCA with decorrelated residuals, it presents
low auto-correlation levels and is very sensitive to incipient faults [31].
The Kullback–Leibler divergence using PCA based on a probability dis-
tribution measure was proposed by Harmouche et al. [32]. Ji et al. pro-
posed representative smoothing techniques and a generic fault detection
index to detect incipient faults [33]. An extension of CVA, canonical
variate dissimilarity analysis (CVDA), was proposed by Pilario and Cao to
detect incipient faults in nonlinear dynamic processes under varying
operating conditions [34]. Then, they developed the CVDA into mixed
kernel CVDA [35]. Ge et al. proposed the wavelet analysis method, which
showed good performance, and combined it with residual evaluation
[36].

These methods perform efficiently in many industrial applications,
but their indices are always based on the Mahalanobis or Euclidean
distance, i.e., T2 and Q statistics. They consider only the control limits for
the last statistics and focus on the information of each moment. Deter-
mining whether several points that exceed the control limits belong to
the same variable is impossible. That is, these methods do not focus on
the continuous change in measuring points of the same variable. When
process information is transformed into distance information, the infor-
mation among all variables is considered, whereas the information of a
single variable is ignored.

When a system is stable, state variables will fluctuate around their
steady-state or mean values; when faults occur, process variation will
appear [37], i.e., some state variables will be influenced by them and
then deviate from their original trajectories, process residuals will
deviate from zero to one side (long or short term), i.e., absolute de-
viations (the difference between measured and mean values) are greater
or less than zero. In an actual process, when several points are continu-
ously biased toward one side of the mean value and exceed the threshold,
which means the condition is abnormal, the system should shut down to
avoid further expansion of anomalies.

A univariate control chart was first proposed by Shewhart [37] to
control product quality; it is effective in process monitoring and can set a
control limit for each variable individually, but it does not consider the
information among variables. For variables subject to normal distribu-
tion, if their observed values fall within the upper control limit (UCL) and
lower control limit (LCL) (i.e., μ-3σ �xi� μþ3σ, where xi denotes the ith
observed value, μ denotes the mean value, and σ denotes the standard
deviation), then they are under control. The three-sigma rule [38] can be
used to judge whether product quality is out of control. Nevertheless, in
an actual process, we should not only observe whether these points are
beyond the control limit but also pay attention to process variations.
Faults may occur even if the control limit is not exceeded. Especially for
incipient faults, the control limit 3σ does not necessarily indicate
abnormal changes.

In this work, CVDA, which is an effective tool for dynamic processes,
is used to generate canonical variate residuals (CVRs). Then, a multi-
variate q-sigma rule is proposed to monitor continuous abnormal changes
in each CVR, i.e., process variation. It sets the UCL and LCL for each CVR
and considers the information among all CVRs. The distribution of
incipient and serious faults is monitored and discussed through changing
the scope of the two control limits.

1.2. Problem statement and motivation

Statement 1: Low false alarm rate (FAR) with high detection delay
(DD). Sensitivity, promptness, and robustness are highly concerned in
fault detection [39]. Robustness is determined using FAR, sensitivity is
determined using fault detection rate (FDR), and promptness is deter-
mined using DD. FARmeasures the probability of false alarms, and a false
alarm is an indication of a fault when a fault has not occurred. FDR
measures the probability of successful fault detection, and a successful
fault detection is an indication of a fault when a fault has occurred. DD is
the time period between the start of a fault and the time of the detection
2

time (DT) and DT is the first time after several consecutive alarms are
raised. Robustness always contradicts sensitivity and promptness, i.e.,
FAR, FDR, and DD are difficult to consider simultaneously. Traditional
methods always consider FAR first, i.e., a low FAR. Nonetheless, a low
FAR will cause low FDR, then DD will increase. High DD is unconducive
to incipient fault detection. The hypothetic relationship between FAR
and DD is shown in Fig. 1. We always make the confidence level larger
than 95%, i.e., making FAR less than 5%. If we want to detect the fault t
hours after it occurs, methods 1, 2, and 3 cannot detect it within 5% FAR
or they achieve it at the cost of high FAR. Thus, one of the objectives of
this work is to explore methods with low DD and FAR, such as method 4.

Statement 2: Misdiagnosis. T2 and Q statistics focus on distance in-
formation, i.e., judging whether the distance exceeds the allowable dis-
tance in space to determinewhether a fault occurs. However, the distance
information is determined using all variables. That is, several consecutive
statistics exceeding the allowable distancemay not be caused by the same
variable, as shown in Fig. 2. Fig. 2(a) and (b) show that the fourth point of
x and the third point of y are out of control. Only one point exceeds its
control limit, which is usually considered a false alarm because a certain
degree of false alarm is allowed in an actual industrial process. Never-
theless, when distance information is used to represent process infor-
mation, misdiagnosis may occur. As shown in Fig. 2(c), the distance
information presents that the blue dot in the box indicates that it is under
control, and the red dot outside the box indicates that it is out of control.
The third and fourth points continuously exceed the control limit;
because the probability of multiple points exceeding the control limit is
considerably less than that of one point, we usually think it is a fault
rather than a false alarm. In fact, the third and fourth points are
contributed by y and x, respectively. From Fig. 2(a) and (b), the situation
should be a false alarm, not a fault. One of the objectives of this work is to
prevent this misdiagnosis.

Statement 3: Process variation. When several points are continuously
biased toward one side of the mean value, but these points do not exceed
the control limit, judging whether a fault occurs in accordance with the
distance information is difficult, as shown in Fig. 3. In this figure, the blue
and red dots represent the normal samples and faults, respectively.
Incipient faults are always sufficiently small to be covered by noise and
disturbance. Consequently, they are difficult to be detected using the
control limit obtained through normal condition before they evolve
gradually to be serious faults that exceed the allowed range. That is,
incipient faults are difficult to detect by using distance information. Ac-
cording to Shewhart [37], when faults occur, process variations will



Fig. 2. Example of process information of two variables: (a) change in variable x, (b) change in variable y, (c) distance information of process (red dot: out of control;
blue dot: under control). (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)

Fig. 3. Simple example of process variation.
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occur; hence, incipient faults can be detected by monitoring process
variations. A process variation means that when the condition is normal,
state variables will fluctuate around their steady-state values; when faults
occur, state variables will be continuously biased toward one side of their
steady-state values. Fig. 3 shows an example of process variation.

To trigger an alarm, the point must exceed the control limit, i.e.,
incipient faults can be detected by reducing the control limit. Nonethe-
less, the traditional square statistical method monitors the distance in-
formation at every moment. When the control limit is reduced to detect
incipient faults, the false alarm will increase. Thus, the current work uses
a window as a unit to monitor the variation information of each variable.
When the alarm is triggered, a process variation occurs in the window,
rather than a point is out of control. Misdiagnosis and false alarm will be
reduced. The minimum control limit ensuring that no false alarm occurs
can be obtained by reducing control limit to detect process variations in
fault condition as early as possible.

The detailed contributions are as follows. In Section 2, the details of
traditional CVA monitoring and CVR are revisited. Section 3 focuses on
the situation in which absolute deviations are greater or less than zero in
long or short term. To monitor process variation of each variable and
explore methods with low FAR, a multivariate q-sigma rule is proposed,
and CVR combined with a multivariate q-sigma rule index (CVR-Mq-
sigma) is formed. The motivation behind the index and the methodology
are introduced. Section 4 contains the description of the case, results, and
discussion. The results show that the proposed method is superior to
CVA, CVDA, and generalized canonical correlation analysis (GCCA) [40]
in incipient fault detection; in particular, CVR-Mq-sigma can detect faults
at the earliest with the lowest FAR. Therefore, this method is further
analyzed, such as the distributions of incipient and serious process var-
iations. The conclusion of this paper and the intended future work are
indicated in Section 5.

2. CVA revisited

Similar to PCA, CVA is a linear dimension reduction technique, but it
maximizes the correlation between two data sets. It is widely used in
3

industrial processes. CVDA is based on CVA, and CVR is generated via
CVDA. The details about process monitoring are as follows.
2.1. CVA training

For the observation vector y containing m variables

y 2 Rm (1)

It is expanded at time k, and the past data vectorspkand future data
vectorsfkare expressed as

pk ¼
�
yk�1; yk�2;⋯; yk�p

�T 2 Rmp (2)

fk ¼
�
yk; ykþ1;⋯ykþf�1

�T 2 Rmf (3)

where, p and f are the numbers of lags considered in the past and future
windows of data, respectively. pkandfkare then normalized to zero mean
and unit variance.

For a training data set with N number of samples, the past and future
Hankel matrices are formed bypkandfk, k 2 ½p þ 1;p þ S�.

Yp ¼
�
ppþ1; ppþ2;⋯; ppþS

� 2 Rmp�S (4)

Yf ¼
�
fpþ1; fpþ2;⋯; fpþS

� 2 Rmf�S (5)

where, S ¼ N � p � f þ 1.
Then, the sample covariance and cross covariance of Ypand Yf can be

obtained.

Σpp ¼ 1
S� 1

YpYT
p 2 Rmp�mp (6)

Σ ff ¼ 1
S� 1

Yf YT
f 2 Rmf�mf (7)

Σ fp ¼ 1
S� 1

Yf YT
p 2 Rmf�mp (8)

A singular value decomposition is used to maximize the correlation of
YpandYf .

Σ�1=2
ff Σ fpΣ

�1=2
pp ¼UΣVT; (9)

where, U and V are singular vectors, andΣis the diagonal matrix of
descending singular values. Then, CVs, i.e., XpandXfwith a maximizing
correlation, can be obtained using the projection matrices J and L
fromYpandYf .

J ¼VTΣ�1=2
pp (10)
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L¼UTΣ�1=2
ff (11)
Xp ¼ JYp 2 Rmp�S (12)

Xf ¼ LYf 2 Rmf�S (13)

2.2. CVA monitoring

When CVA is used for online monitoring, T2 and Q statistics are two
widely used indices. In fact, most system dynamic behavior is explained
using only n strongly correlated CVs [34]. At time k, the index T2 is
expressed as

T2
k ¼ pTk J

T
n Jnpk ; (14)

where, Jn contains the first n rows of J.
The residual vector index Q at time k is expressed as

Qk ¼ pTk F
TFpk; (15)

where, F ¼ ðI�VnVT
n ÞΣ�1=2

pp (Vncontains the first n columns of V).
The kernel density estimation (KDE) is used to estimate the UCLs of

the above mentioned two indices. The radial basis function is chosen as
the kernel in this paper

KðgÞ¼ 1ffiffiffiffiffi
2π

p exp
�
�g2

2

�
; (16)

Given a specific confidence levelα, UCLs (T2
UCLandQUCL) can be ob-

tained using PðT2 < T2
UCLÞ ¼ α andPðQ< QUCLÞ ¼ α, with

Pðx< bÞ¼
Z b

�∞

1
Sh

XS

k¼1

K
�x� xk

h

�
dx; (17)

wherexk, k ¼ 1, 2, …, S are the samples of x, and h is the kernel band-
width. Additional details on KDE can be found in Ref. [13].

The indices are calculated using Eqs. (14) and (15) from real-time
data and compared with corresponding UCLs to detect whether faults
occur.

2.3. CVR

In traditional CVA, past and future-projected CVs are generated in the
monitoring process. However, only past-projected CVs are used for pro-
cess monitoring, whereas future-projected CVs are always ignored. Thus,
the concept in which the dissimilarity between past- and future-projected
CVs is applied for indicating process health is introduced. Larimore
suggested a statistical index that quantifies model residuals between the
past- and future-projected CVs in the CVA state subspace [41]. The CVR, z
is shown as follows

zk ¼ Lnfk � ΣnJnpk 2 Rn; (18)

where, zk denotes the CVR at time k, Ln contains the first n rows of L, and
Σn contains the first n rows and n columns of Σ. When no fault occurs, the
expectation of CVR is:

EðzkÞ¼ LnEðfkÞ � ΣnJnEðpkÞ ¼ 0 (19)

In the opinion of Pilario and Cao [34], CVRs can be regarded as the
dissimilarity features that could measure the departure of past-projected
CVs from future-projected CVs. On this basis, the CVDA index is formed
and tested in a continuous stirred tank reactor. The results show that CVR
is an effective feature for dynamic process monitoring. Thus, it is used to
handle dynamic process and generate residual in this work.
4

3. Multivariate q-sigma rule-based monitoring strategy

The three-sigma rule has been used to monitor a single variable
subject to normal distribution. When the condition is normal, almost all
samples of the variable are within UCL (μþ3σ) and LCL (μ-3σ); this
condition can be expressed as

Pðμ� σ � x � μþ σÞ � 0:6827
Pðμ� 2σ � x � μþ 2σÞ � 0:9545
Pðμ� 3σ � x � μþ 3σÞ � 0:9973;

(20)

where, x denotes the observed value, μ denotes the mean value, and σ
denotes the standard deviation.

Eq. (20) shows that approximately 68.27% of the samples fall within
the first control limit; 95.45% of the samples fall within the second
control limit; and 99.73% of the samples fall within the third control
limit. The third control limit is typically used to monitor product quality.
However, the three-sigma rule will be inadequately sensitive to it
because incipient faults always have small magnitudes. DT is critical to
incipient fault detection [34]; under the condition of ensuring FAR, the
shorter the DT is, the better. To decrease DT, the control limit should be
narrowed to make incipient fault points trigger the alarm, such as the
two-sigma rule, which can be explained by Fig. 4. From Fig. 4, when
control limits are narrowed, increasing points (whether normal or fault)
are out of control and trigger the alarm. However, only the point under
fault condition will trigger the alarm continuously, i.e., when continuous
alarm is given, a process variation occurs, it is also the biggest difference
between fault condition and normal condition. On this basis, several
consecutive points in a window are monitored. If they all trigger the
alarm, then a fault has occurred; otherwise, the condition is normal.
Meanwhile, a window is used as a unit to observe the process variation
will also reduce FAR. The detail of the proposed method is as follows.

Traditional methods set only the control limit for the last statistics. On
the contrary, control limits are considered for each variable here. When a
sample exceeds the control limit, the sample is out of control.

In math, when x > 0, it equals its absolute value, then we have

x� jxj ¼ 0 (21)

Thus, for UCL, when one point is out of control, the following equa-
tion must exist:

	
zij �ðμi þ qσiÞ


� ��zij �ðμi þ qσiÞ
��¼ 0; (22)

where, zij is the jth sample of the ith CVR; μi is the mean value of the ith
CVR, which equals zero here; σi is the standard deviation of the ith CVR;
and 0 � q � 3.

For each variable, at time k, w samples in a window exceed the UCL;
we have

Xwþk�1

j¼k

		
zij �ðμi þ qσiÞ


� ��zij �ðμi þ qσiÞ
��
¼ 0 (23)

For MSPM, the information of each variable should be linked. Given
any variable out of control, the index is equal to zero, which indicates
that process variations occur. Thus, for UCL, at time k, the index M1 of n
variables is

M1k ¼
Yn
i¼1

Xwþk�1

j¼k

		
zij �ðμi þ qσiÞ


� ��zij �ðμi þ qσiÞ
��
 (24)

For LCL, at time k, index M2 can be obtained.

M2k ¼
Yn
i¼1

Xwþk�1

j¼k

		
zij �ðμi � qσiÞ


þ ��zij �ðμi � qσiÞ
��
 (25)

Two indices are combined into one index M.



Fig. 4. Detection of an incipient fault by using μ�qσ with a moving window, 0 � q � 3.
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Mk ¼M1kM2k (26)
When Mk is equal to zero, w consecutive samples of at least one
variable exceed the UCL or LCL, which indicates that a process variation
occurs at time k; thus, the alarm value ofM is zero. For traditional indices,
when several consecutive points exceed the UCL, determining whether
they belong to the same variable is difficult. For example, if six points are
considered, and the first three points that exceed the UCL may be
contributed by the first variable, but the last three that exceed the UCL
Fig. 5. CVR-Mq-sigma procedure

5

may be contributed by the second variable; thus, a fault may not occur, as
described in Fig. 2.

To apply the CVR-Mq-sigma to process monitoring, the mean value
(zero here) and the standard deviation of each CVR should be computed
off-line. The online monitoring computes Mk in real time to check
whether the system is normal or faulty. The CVR-Mq-sigma procedure for
incipient fault detection is provided in Fig. 5.

In this study, the monitoring performance of CVR-Mq-sigma is eval-
uated in accordance with DD, FAR, and FDR. DD is the time period
for incipient fault detection.
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between the start of a fault and DT. Here, DT is the first time that indexM
equals zero (Fig. 4). This method considers w consecutive samples not
one, its FAR and FDR will be low. FAR and FDR are computed as follows:

FAR¼ no: of samples ðM ¼ 0 j fault� freeÞ
total samples ðfault� freeÞ � 100%; (27)

FDR¼ no: of samples ðM ¼ 0j faultÞ
total samples ðfaultÞ � 100% (28)

4. Case study

In this section, the performance of the proposed CVR-Mq-sigma
method is illustrated with a simulated process (i.e., Tennessee Eastman
[TE] process). We also test the proposed method on a real industrial
process (i.e., multiphase flow process), but due to length limitations, this
case study can be seen in the supporting information, the results also
support our point of view. The CVA, CVDA, and GCCA methods are
compared with the proposed method. Their performance are analyzed
and discussed. For CVA, CVDA, and GCCA, DD is the time period between
the start of a fault and DT. DT is the first time after w consecutive alarms
are raised, and its objective is to avoid short false alarms produced by an
indicator before the actual detection of the fault. The FAR and FDR of
CVA, CVDA, and GCCA differ from those of CVR-Mq-sigma and are
computed as follows.

FAR¼ no: of samples ðI > IUCLj fault� freeÞ
total samples ðfault� freeÞ � 100%; (29)

FDR¼ no: of samples ðI > IUCLj faultÞ
total samples ðfaultÞ � 100%; (30)

where, I ¼ {T2, Q, D}.

4.1. Process description

TE process was proposed in accordance with an actual chemical plant
of Eastman Company by Downs and Vogel [42] in 1993; it has been
widely used as a test problem for process monitoring, fault diagnosis, and
process control technology. The process includes five major units: a
reactor, a condenser, a separator, a recycle compressor, and a product
stripper. Two products are created from four exothermic reactants. TE
has 41 measured variables and 12 manipulated variables. Readers can
refer to Reference [42] for further details. In this work, only 50 variables
are used to reflect the state of TE process because the compressor recycle
valve, stripper steam valve, and agitator speed are constant under the
control strategy. The first 13 faults of TE process, including step change
faults (faults 1–7), random variation faults (faults 8–12), and slow drift
faults (fault 13), are used to evaluate the monitoring performance of
proposed index. Original fault data of TE process are used in most papers,
and many methods have good monitoring performance. One of the fea-
tures of incipient faults is small magnitude. Thus the magnitudes of these
faults are reduced to 10% of original values in this work. Then, the data
are generated. For process monitoring, each run for each fault lasts 48 h,
and the sampling period is 0.05 h. A fault is introduced after 8 h of
simulation, i.e., 960 samples exist for each fault. The first 160 samples are
normal data, and the last 800 samples are fault data. They are considered
the test data. For training data, 960 samples are also available, but no
faults are introduced. The MATLAB code can be downloaded from the
following website: http://depts.washington.edu/control/LARR
Y/TE/download.html.

5. Results and discussion

The performance of CVA, CVDA, GCCA, and CVR-Mq-sigma is
compared. According to Rato [43,44], contrary to the FDR, the FAR
6

should not be dependent upon the method; all methods should have the
same FAR to start with. Only then the detections results can be compared.
Because the proposed method must satisfy that there is no process vari-
ation in normal condition, i.e., its FAR is 0. Thus, for fair comparison, all
UCLs of CVA, CVDA, and GCCA are adjusted to make their FARs equal
0 exactly. In accordance with the research on TE in Reference [45], the
window width is 6, i.e., six consecutive points are considered.

The number of past and future lags (p and f) and the number of states
(n) must be chosen because the proposed index is based on CVA. The lags
are determined using the autocorrelation function of the summed squares
of all measurements [13]; p and f are both set to 5, which is the maximum
number of significant lags based on the autocorrelation analysis on
training data. Then, n is determined using FAR, which minimizes FAR of
CVA [46], thus, n is set to 15. The Akaike information criterion [45] can
be also used to select n. For comparison, the parameters of GCCA are used
as defined in Reference [40], and CVA-based methods have the same p, f,
and n.

The Jarque–Bera (JB) test can be used to check the Gaussianity [47].
It is defined as follows:

JB¼ n
6

�
s2 þðk � 3Þ2

4

�
; (31)

where, n is the sample size, s is the sample skewness, and k is the sample
kurtosis. In this case study, the logical values of CVR JB test equal 0 at the
5% significance level, which indicates that all CVRs of training set obey a
normal distribution. Therefore, the q-sigma rule can be used here.

When the condition is normal, the CVRs are distributed around zero
mean. When faults occur, some of them will change, as shown in Fig. 6.
Fault 1 occurs, the fourth CVR changes seriously (long term), and Fault 3
occurs, and changes slightly (short term, difficult to see by humans). This
work focuses on these process variations.

The performance comparison of Fault 3 is shown in Fig. 7. The UCL
and alarm value are marked; if the fault is detected, the DT is also
marked, and the first point of six consecutive alarms is marked using
black dot. The fault is introduced at 8 h. Fig. 7 shows that the four
methods hardly detect this incipient fault. Some points exceed the control
limit, but they are not continuous; thus, DT is large. In terms of DT, T2 of
CVA detects the fault at 36.85 h, T2

r1of GCCA detects the fault at 34.95 h,
and the Q of CVA, CVDA, and Mq-sigma (q ¼ 3) fail to detect Fault 3 (no
six consecutive points). Fig. 7(e) and (f) show that for CVR-Mq-sigma,
when q ¼ 3, the index is far away from the alarm value 0, and Fault 3 is
almost the same as the normal condition; when q is reduced to 1, the fault
is detected, i.e., six consecutive points of at least one variable exceeding
1σ exist, and a process variation is detected at 10.2 h. No any false alarm
occurs for CVR-Mq-sigma, which indicates that even in the range of 1σ to
3σ, no process variation occurs in normal condition.

Horizontal dashed line: UCL or alarm value; vertical dashed line: start
of fault; solid line: detection index.

Table 1 shows the monitoring performance of the four methods.
Although the fault magnitudes are reduced to 10% of original values,
Faults 1, 2, 6, 7, 8, and 13 still have strong influences on the system, they
can be regarded as serious faults. The four methods can easily detect
them and have high FDR. For the remaining faults, some methods fail to
detect them. They can be regarded as incipient faults, such as Fault 5, and
only T2 of CVA, T2

r1of GCCA, and CVR-Mq-sigma (q ¼ 1) are effective. In
terms of FDR of some faults, GCCA can detect more points exceeding the
UCL than others, but it is not the index that detects faults first. The
proposed method has better performance than others in terms of DD.
Table 1 also indicates the influence of q on the DD and FDR of CVR-Mq-
sigma, i.e., when q is smaller, DD is short and FDR is higher. CVR-Mq-
sigma has the best performance, especially in DD, when q equals 1.
However, regardless of whether q is 3 or 1, its FAR always equals
0 because six consecutive points must be beyond the UCL or LCL to
consider a fault. No six consecutive points exceed the control limit under
normal condition, although q equals 1, i.e., no process variation occurs

http://depts.washington.edu/control/LARRY/TE/download.html
http://depts.washington.edu/control/LARRY/TE/download.html


Fig. 6. Change in the fourth CVR when (a) Fault 1 occurs and (b) Fault 3 occurs.

Fig. 7. Monitoring charts for Fault 3 by using.
(a) and (b) CVA, (c) CVDA, (d)T2

r1of GCCA, (e) and (f) CVR-Mq-sigma, in which q ¼ 1 and q ¼ 3.
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under normal condition. On this basis, q can be further reduced. Fig. 8
shows the relationship between its FAR and q under normal condition.

As shown in Fig. 8, a false alarm occurs when q is less than 0.82. Thus
the q is reduced to 0.82, and it represents the minimum control limit
under the condition that no process variation occurs under normal con-
dition. The performance is shown in the last column of Table 1. The re-
sults show that DD is further reduced for Fault 3. For other faults, FDRs
are also increased, but the performance improvement is generally
inconsiderable. In an actual industrial process, faults should be detected
as early as possible to prevent them from becoming serious accidents, i.e.,
DD is particularly important for incipient fault detection. FDR is suitable
for assessing the sensitivity of a detection index off-line not in real time.
When faults are detected, the system should be shut down, instead of
waiting for FDR to reach a certain value. Determining how many fault
points exist in total in real time is also difficult. In general, CVR-Mq-sigma
is a highly effective tool that can detect faults at an early stage from the
perspective of process variation.

Table 1 also presents that for incipient faults (Faults 3, 4, 5, 9, 11, 12),
7

the change of q has strong influence on the detection performance, by
reducing q, it can even detect the fault that is difficult to detect, and 3σ is
ineffective. For other serious faults, even if q is reduced from 3 to 1, there
is no significant change in the detection performance, especially in DD;
process variation can be detected when q equals 3. The process variations
for incipient faults are mainly distributed between 1σ and 3σ, and 1σ
should be used to detect them; the process variations for serious faults are
distributed outside 3σ, and q equals to 3 will be fine.

From another point of view, the confidence level for traditional fault
detection methods for setting a threshold is excessively large because
their first consideration is low FAR. As Chen et al. indicated in their work
[40], the main objective for introducing a threshold is to reduce FAR to
an acceptable level, and a threshold that leads to zero FAR is the best. A
large threshold will usually cause considerable points to be below the
threshold; thus, low FAR will also lead to low FDR. Then, DD will in-
crease, which will result in insensitivity to incipient faults, and faults
cannot be detected at the early stage. Fault 3 is regarded as an example,
and the confidence level and q are reduced. The relationship between



Table 1
Monitoring performance for TE incipient faults.

Fault Index CVA CVDA GCCA Proposed CVR-Mq-sigma

T2 Q D T2
r1 T2

r2 q ¼ 3 q ¼ 2 q¼ 1 q¼ 0.82

M

Free FAR 0 0 0 0 0 0 0 0 0

1 DD 0.55 0.45 0.55 0.55 0.55 0.65 0.20 0.15 0.15
FDR 98.62 99.12 98.62 98.62 98.62 97.60 99.49 99.62 99.62

2 DD 4.75 3.95 14.20 5.85 6.35 2.00 0.65 0.20 0.20
FDR 86.95 90.34 53.32 88.62 83.63 18.06 63.01 95.33 97.60

3 DD 28.85 ND ND 26.95 ND ND ND 2.20 2.15
FDR 11.54 5.90 4.89 12.25 0 0 0 1.64 3.66

4 DD 36.75 16.40 ND 26.95 ND ND ND 2.15 2.15
FDR 11.29 27.60 5.77 29.00 0.25 0 0 1.39 5.43

5 DD 36.75 ND ND 36.85 ND ND ND 2.15 2.15
FDR 10.92 4.64 5.27 6.00 0 0 0 1.52 3.91

6 DD 0 0 0.35 0 0 0.30 0 0 0
FDR 100 100 95.61 100 100 15.91 93.60 100 100

7 DD 0 0 0 0 0 0 0 0 0
FDR 100 100 100 100 100 100 100 100 100

8 DD 1.65 1.75 2.55 1.90 2.65 2.45 1.50 0.90 0.90
FDR 79.17 67.25 28.11 63.00 45.12 7.95 25.63 64.39 69.70

9 DD 28.65 ND ND 36.85 ND ND ND 2.15 2.15
FDR 11.04 4.89 5.14 6.12 0 0 0 1.64 4.17

10 DD 14.95 1.05 14.80 24.35 1.20 0.85 0.80 0.75 0.75
FDR 20.45 43.16 42.41 13.13 31.62 14.77 34.34 55.05 60.48

11 DD 28.65 11.05 ND 24.65 ND 5.15 3.75 0.40 0.40
FDR 12.55 33.75 12.92 28.00 2.13 0.63 3.41 12.25 16.92

12 DD ND ND ND 36.85 ND ND ND 2.15 2.15
FDR 10.79 5.02 5.27 6.50 0 0 0 1.64 4.17

13 DD 8.85 8.05 8.50 8.75 11.50 3.60 3.10 2.15 2.15
FDR 70.51 73.15 54.58 70.37 51.50 49.62 58.33 73.23 77.02

DD: detection delay (hours); FDR: fault detection rate (%); FAR: false alarm rate (%); ND: not detected (consistently for six consecutive sampling times).

Fig. 8. Influence of q on FAR of CVR-Mq-sigma.

Fig. 9. Relationship between FAR and DD when confidence level and q are
reduced in consideration of Fault 3 as an example. Black dashed box represents
the low FAR.
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FAR and DD for the four methods is shown in Fig. 9. When the confidence
level and q are reduced, FARs are increased, whereas DDs are reduced
(six sample points must be considered for DD; hence, DD may not be
continuously reduced). For process control systems, the accuracy and
rapidity of are difficult to guarantee at the same time. The aspects to
consider are first stability, then accuracy, and finally rapidity. For fault
detection, we always focus on low FAR, (the black dashed box in Fig. 9),
resulting in a delay in fault detection. Unlike in process control systems,
rapidity should be a priority in incipient fault detection because only
when faults are detected and controlled in time can process control
systems be stable.

Fig. 9 depicts that in terms of CVA, CVDA, and GCCA, when FAR is
8

small, T2
r1of GCCA is the first index to find the fault; when FARs are

increased to approximately 10%, their DDs are suddenly reduced and
indices are sensitive to the fault. The results also indicate that if the faults
are aimed to be detected in time, it needs to be at the cost of high FAR.
However, frequent false alarms are not what we want, and traditional
methods consider a fault when several consecutive points exceed the
threshold. Thus, CVR-Mq-sigma uses the concept of process variation in
FAR and FDR because the probability of several consecutive points
exceeding the threshold value is much smaller than that of one point. Its
FAR is lower than those of traditional methods at the cost of less
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important FDR in real-time monitoring. The star line in Fig. 9 shows low
DD and low FAR, because CVR-Mq-sigma considers control limits for
each variable; it is also highly sensitive to incipient faults. CVR-Mq-sigma
generally has lower DD at low FAR than traditional methods with higher
DD at low FAR.

6. Conclusion

In this work, CVR-Mq-sigma is proposed for MSPM to address the
issue that process variations appear when incipient faults occur. To
prevent misdiagnosis, the proposed method considers control limits for
each CVR. Focusing on process variations in each CVR, the proposed
method observes several continuous points in a window, and the mini-
mum control limit of each fault is obtained to detect faults as early as
possible and prevent false alarms. When tested on TE process, the pro-
posedmethod can detect incipient faults earliest and with the lowest false
alarm, i.e., 0 false alarm, compared with CVA, CVDA, and GCCA. The
results also show that (1) process variations for incipient faults are
mainly distributed between 1σ and 3σ or �1σ and �3σ, and serious
process variations are distributed outside 3σ or �3σ. (2) Traditional
methods focus on low FAR, resulting in a large threshold, which will be
insensitive to incipient faults. DD can be reduced at the cost of high FAR.
(3) CVR-Mq-sigma considers control limits for each variable and the
change in several continuous points. It can detect faults early with a low
FAR. It is identical to method 4 in Fig. 1. Another important target for
chemical processes is to eliminate faults to ensure the stable operation of
systems. Thus, a self-recovery control method that will eliminate faults
and does not need human intervention will be studied in the future work.
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