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Abstract
The task of crowd counting and density map estimation is riddled with many challenges, such as occlusions, non-uniform

density, intra-scene and inter-scene variations in scale and perspective. Due to the development of deep learning and large

crowd datasets in recent years, most crowd counting methods have achieved notable success. This paper aims to solve

crowd density estimation problem for both sparse and dense conditions. To this end, we make two contributions: (1) a

network named Patch Scale Discriminant Regression Network (PSDR). Given an input crowd image, it divides the image

into patches and sends image patches of different density levels into different regression networks to get the corresponding

density maps. It combines all patch density maps to predict the entire density map as the output. (2) A person classification

activation map (CAM) method. CAM provides person location information and guides the generation of the entire density

map in the final stage. Experiment confirms that CAM allows PSDR to gain another round of performance boost. For

instance, on the SmartCity dataset, we achieve (8.6–1.1) MAE and (11.6–1.4) MSE. Our method combining above two

methods performs better than state-of-the-art methods.

Keywords Crowd density estimation � Image patch � Density level � Attention mechanism � Classification activation map

1 Introduction

The stampede is easy to happen in various public places,

such as supermarkets, subways, train stations and other

public places. Thus, it is of great value to carry out

effective crowd density estimation and crowd aggregation

detection. The automatic detection of crowd density and

distribution in public places by video plays an important

role in the prevention of potential security risks. The

monitoring video cameras in the natural scene for specific

applications are generally high and far away. This will lead

great challenges to effective crowd density estimation, due

to large perspective effects, large light changes, big noise

and so on.

There is a certain inclination angle between the moni-

toring camera and the horizontal plane in the monitoring

scene. The captured images have the following phe-

nomenon due to the perspective effects: (1) The effect of

‘‘Small in the distance, large in the vicinity’’ is formed, as

shown in Fig. 1. The distance to cameras is inversely

related to person pixels occupying the image; (2) the crowd

in the distance is gathered, leading to high concentration.
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This will increase the difficulty of crowd density estima-

tion. The existing algorithms mainly deal with the above

problems based on detection and regression, but they are

not satisfactory in accuracy. Detectors [1, 2] perform

poorly in sparse street scenes, due to few person pixels and

serious occlusion. (3) The existing mass density estimation

algorithms [3–5] based on regression are not accurate in

20–50 people scenes. In some real scenes, such as eleva-

tors, streets and flyovers, crowd density must be mastered.

It can provide information of crowd distribution and

abnormal crowd flow in time. In summary, crowd density

estimation for sparse scenes is a hot topic and difficult

problem.

In this paper, we aim to conduct accurate crowd

counting from an arbitrary image, with an arbitrary camera

perspective and crowd density. To overcome above chal-

lenges, we propose Patch Scale Discriminant Regression

Network (PSDR) with person classification activation map

(CAM), as shown in Fig. 2. Contributions of this paper are

summarized as follows:

1. First, we propose a network named Patch Scale

Discriminant Regression Network (PSDR). PSDR

takes a whole image as the input and outputs a density

map whose integral gives the overall crowd count.

When designing density levels, we use a density

classification strategy which is closest to the real

situation. The experiment shows that using image

patches for scales has better performance than the

whole image.

2. Second, we propose a person classification activation

map (CAM) method to improve the entire density map

prediction. The motivation is that the information of

person heads at the image patch’s edge is missing

because of image patch segmentation. Therefore, we

add the person CAM into our model. The person CAM

makes the model focus on the human head area.

Experiments prove that the person CAM can improve

the performance of PSDR.

The rest of our paper is structured as follows. Section 2

presents previous works of crowd density prediction,

switch-based CNN structure and classification activation

map. Section 3 introduces our proposed method, while

Sect. 4 presents the experimental results of different data-

sets. In Sect. 5, we make a conclusion of the paper.

2 Related work

2.1 Crowd density estimation

Crowd density estimation is the estimation of crowd dis-

tribution and specific person number. The density map

provides crowd distribution information and statistical

characteristics in the picture, which is as important as total

person number. The CNN structure has achieved great

success in image processing [6, 7], as is the crowd density

prediction [8–14]. Current crowd density estimation

methods are mainly based on detection or regression.

Detection methods are applicable to scenarios which have

less people and no occlusion, such as detectors based on

Fig. 1 Persons at different shooting distances

Fig. 2 The framework of Patch Scale Discriminant Regression Network and CAM
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adjacent frames. Other methods based on regression can be

divided into two categories. One is to detect handmade

characters in the image, such as edge feature and texture

feature. Then, regression function is chosen to estimate

total person number. The other is based on density map

regression and deep neural networks, which has become

the current best method of crowd density estimation.

Multi-column CNN used by references [5, 15] fuses

features from different CNN columns to regress the crowd

density map. Several CNN columns [5] with different

receptive fields are used to capture the large variation in

scale and perspective in crowd scenes. CrowdNet [15] uses

a VGG network employing dilated layers complemented

by a shallow network with different receptive field and

field of view. Both models fuse the feature maps from the

CNN columns by entering a 1*1 convolutional layer to

predict the crowd density map. However, the weighted

averaging technique is global and does not take local

density variation into account. Therefore, we use image

patches for training to learn local information, not the

whole image. Image patches provide richer local infor-

mation and obtain a more accurate density map by

regression.

2.2 Switch-based CNN

Switch-based CNN is first used in object recognition. To

improve single-object image classification, Surva et al. [16]

present SwiDeN, a CNN structure which recognizes

objects regardless of how they are visually depicted. In

SwiDeN, a novel deep depictive style-based switching

mechanism is utilized. It appropriately addresses the

depiction-specific and depiction-invariant aspects of the

problem. The switch-based design not only reduces the

overall burden of the generalized object recognition task,

but also enables the system to address depiction-specific

and depiction-invariant aspects of the problem.

Similarly, this idea can be extended to density map

prediction. Switch-CNN [3] consists of three CNN

regressors with different architectures and a switching

classifier. It selects the optimal regressor for an input crowd

scene patch. Though local information can be obtained by

patches, the connection between each image patch is

weakened. Also, image patches in Switch-CNN are simply

divided into three categories, without explaining the

specific classification method and basis. Bad image patch

classification may lead to learn redundant information by

networks. Therefore, we propose a more sophisticated

Patch Scale Discriminant Network which divides patches

into six levels according to person number in patches. All

density maps obtained from regression networks are

merged into the whole predicted density map. It finally

combines the global person classification activation map to

make up for the missing correlation between image

patches.

2.3 Classification activation map

In computer vision, attention mechanism is applied to a

variety of problems, including image classification, seg-

mentation, action recognition, image captioning and visual

question answering. For example, in the context of medical

image analysis, attention models have been exploited for

medical report generation as well as joint image and text

classification.

Zeiler & Fergus presents what a CNN learns in [17].

However, their method only involves significant compu-

tations to generate this understanding. Zhou et al. [18]

showed that various layers of CNN behave as unsupervised

object detectors by a new technique called CAM (class

activation mapping). By using global average pooling [19]

layer and visualizing the weighted combination of the

resulting feature maps at the penultimate (pre-softmax)

layer, they were able to obtain heatmaps that explain which

parts of an input image were looked at by CNN for

assigning a label. Yet, this technique involves retraining a

linear classifier for each class. Selvaraju et al. [20] came up

with an efficient generalization of CAM, known as Grad-

CAM, which fuses the class discriminative property of

CAM with existing pixel-space gradient visualization

techniques such as Guided Backpropagation [21] and

Deconvolution [17] to highlight fine-grained details on the

image. Therefore, Grad-CAM makes CNN-based models

more transparent by visualizing input regions with high-

resolution details that are important for predictions.

CAM based on attention mechanisms allows the model

to focus on the most relevant features and locations as

needed. Crowd density estimation is similar to semantic

segmentation [22]. Therefore, in view of the outstanding

performance of attention models in semantic segmentation,

we introduce person CAM in the proposed method. It can

improve the performance of density maps by providing

person characteristics and location.

3 Proposed method

Using crowd density estimation algorithm for reference, we

design a crowd density estimation algorithm based on

image patch and regression. The proposed method regres-

ses the image to the crowd density distribution and then

estimates the person number in the density map. The crowd

density distribution map is learned from several labeled

crowd images, and the person number of crowds is

obtained through summing all pixel values.
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3.1 Crowd density map ground truth

Person pixels corresponding to different samples have

different sizes in 3D scenes, due to perspective and dis-

tortion. To accurately estimate crowd density, we need to

consider the distortion caused by the angle between the

ground plane and the image plane. This perspective angle

is difficult to obtain. Therefore, the average distance to k-

nearest neighbors can be used as an assessment of geo-

metric distortion. Specifically, for each person’s head xi,

the distance between the head and other k-nearest neigh-

bors is calculated to be di1; d
i
2; . . .; d

i
k

� �
; then, the mean

distance �di ¼ 1
k

Pk
j¼1 d

i
j is obtained. Final crowd density

map F xð Þ is produced, as shown in formula 1.

F xð Þ ¼
XN

i¼1

d x� xið Þ � Gri xð Þ; ri ¼ b�di ð1Þ

Here, d x� xið Þ is the delta function, Gri xð Þ is the Gauss
function whose variance is ri, and the empirical value b is

set to be 0.3. The density map ground truth is generated

based on the whole graph, using the empirical parameters.

One sample is shown in Fig. 3.

3.2 Image patch

In the direction of the camera, pixel number of human body

or head occupying the image is different, as shown in

Fig. 4. The camera angle is difficult to obtain, so it is

difficult to calculate perspective. The method using per-

spective cannot solve the problem of human body size

disagreement. The whole image has a large perspective

angle, but for the local parts of an image, the corresponding

perspective can be determined by the person number.

In the theory of image classification, the object itself

constitutes a hierarchical structure in the image. It is dif-

ficult to find all information on one scale. Therefore, image

patches are hierarchically organized. Accuracy can be

effectively improved by learning information at image

patches of each scale. Small patches can capture more

image details, but lose the details of patches. Large patches

can describe a wider range of image details.

Considering all above, the whole image is cut into

several patches of 128*128 pixels. Each patch can be

considered at the same perspective level. There is a certain

overlap area between image patches, in order not to cause

missing of human head features at the edge position. Thus,

it can reduce the influence caused by the perspective of the

camera. It also ensures that there is no obvious difference

in size of each person in each image patch. Image patches

are shown in Fig. 5.

Many studies take the scale of crowd density into

account, that is, different crowd density should be based on

different regression models. Each image patch corresponds

to different crowd distribution. The better the image patch

is divided, the more easily the relationship between person

pixels and person number in each image patch performs. A

more refined density estimation structure can be obtained

by training regression models separately for different

crowd levels.

Fig. 3 The original image and generated ground truth

Fig. 4 Person heads under different shooting angle

Fig. 5 Image patches of different density levels
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3.3 Patch Scale Discriminant Network

After obtaining image patches, the crowd density is divided

into six levels [23]: extremely sparse, very sparse, sparse,

medium, dense and very dense. Different levels have dif-

ferent person number per image, as shown in Table 1.

In many studies [3, 24, 25], they take the scale of crowd

density as an important consideration. The main approach

is to use convolution kernels of different scales. This can

achieve the crowd density response of different scales.

Local patch level in our proposed method not only effec-

tively overcomes the perspective problem of cameras, but

also reduces the dependence on training samples. Patch

Scale Discriminant Network is trained, whose input is

image patches of 128*128 pixels. Its output is six different

levels, respectively, corresponding to crowd density dis-

tribution under different scenes. The higher crowd density

distribution is, the fewer pixels a single human body

occupies. Patch Scale Discriminant Network is based on a

VGG16 model. We ensure that the size of human body in

each image patch is maintained on the same scale. Dif-

ferent image patches can obtain more accurate and more

detailed density maps. The prediction results are shown in

Fig. 6.

Image patches at bottom of the image have the lowest

level, as shown in Fig. 6. The higher image patch is, the

higher density level is. The perspective angle causes the

crowd population to be very different. Similarly, the dis-

tribution of the corresponding density maps is also differ-

ent. Therefore, it is feasible to deal with the image patches

of each density level separately.

3.4 Global person CAM

Convolutional features naturally retain spatial information

which is lost in fully connected layers, so the last convo-

lutional layers can be expected to have the best compro-

mise between high-level semantics and detailed spatial

information. The neurons in these layers look for semantic

class-specific information in the image. A CAM sensitive

to person characteristics stands for crowd density heatmap

to some extent. Referring to the research [18], person CAM

can be used as the heatmap of person distribution. Grad-

CAM [20] uses the gradient information flowing into the

last convolutional layer of the CNN to understand the

importance of each neuron for a decision of the interest.

Therefore, we use this method to obtain person localization

heatmap.

Firstly, the gradients yperson of the score for class person

are first computed. Then, the gradients of Ak are computed

through back propagation, i.e., oyperson

oAk .

Here, Ak represents feature maps of a k-channel con-

volutional layer. Next, these gradients are global average

pooled to obtain the neuron importance weights apersonk , as

shown in formula 2. This weight apersonk represents a partial

linearization of the deep network downstream from A and

captures the importance of feature map k for class person.

Finally, person CAM is obtained by combining activation

maps with weights.

CAMperson ¼
X

k

apersonk Ak ð2Þ

In this paper, we first train Patch Scale Discriminant

Network (Sect. 3.3) to convergence, which can divide

image patches into six different levels. This model includes

two stages: feature extraction and classification. Then,

based on the extracted feature by network, the heatmap is

obtained by visualizing the last convolutional layer. Some

of the results are shown in Fig. 7. It indicates that CAM

outputs a weighted map which weights features pixel by

pixel. In both sparse and dense scenes, most of the human

body can be highlighted in the image, regardless of human

body’s size. In addition, the boundaries of highlighting

subregions are distinct, which fully indicates that the global

features of human body can be introduced by

Table 1 Density levels of

image patches
Crowd density (person/pixel) Density level Density level (person number) Level number

0 Extremely sparse 0 0

2/128*128 Very sparse (1, 2] 1

5/128*128 Sparse (2, 5] 2

10/128*128 Medium (5, 10] 3

20/128*128 Dense (10, 30] 4

60/128*128 Very dense (30, ?!) 5

Fig. 6 Density level predictions of each image patch in sparse and

dense scene
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CAM. The knowledge learned from Patch Scale Dis-

criminant Network model can be perfectly migrated to the

person response area.

3.5 Crowd density regression

The image patches divided by a single picture get the

corresponding level after the trained Patch Scale Discrim-

inant Network. Then, they enter the corresponding

regression network according to the predicted level to

predict the density map. When the corresponding density

map of all patches is obtained, the whole density map is

obtained by splicing all the density maps. Every regression

network should be pre-trained early.

Since MCNN [5] has great performance in density

prediction, we take it as a reference. Besides, crowd den-

sity map makes a prediction at every pixel, whether it is a

person or not. It can be considered as a pixel-wise task, just

like semantic segmentation. FCN [26] can efficiently learn

to make dense predictions. It also shows that pooling layers

lose pixel information, leading to a bad effect on pixel-wise

segmentation. Therefore, we remove the pooling layers so

that the structure becomes a fully convolutional network, as

shown in Fig. 8.

Above all, we design a crowd density estimation

framework by combining Patch Scale Discriminant Net-

work and global person CAM, as shown in Fig. 2. The

density map ground truth is accumulated by the Gauss

distribution based on the head position and the distribution

distance of the surrounding human head. In the process of

loss calculation, the L2 loss of predicted density map and

original density map is adopted, as shown in formula 3.

LD Hð Þ ¼ 1

2N

XN

i¼1

XP

p¼1

F Xi pð Þ;Hð Þ � Fi pð Þj jj j22 ð3Þ

Here, N is the number of batch training samples, and

Fi pð Þ is the density value of the pixel point p in the

annotation picture i. There is a certain connection between

the crowd density map and the specific number of the

crowd. Therefore, the density map can be converted into

the person number, directly using the integral method.

4 Experiment

4.1 Evaluation metric

The evaluation indexes of crowd density estimation include

MAE (Mean Absolute Error) and MSE (Mean Squared

Error). MAE calculation is shown in formula 4. MSE

calculation is shown in formula 5.

MAE ¼ 1

N

XN

i¼1

y� y0j j ð4Þ

MSE ¼ 1

N

XN

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jy� y0j22

q
ð5Þ

Here, y is the actual person number, while y0 is the

predicted number of people in the experiment. Note that y0

is the sum of the values of all the pixels on the predicted

density map. Roughly speaking, MAE indicates the accu-

racy of the estimation, and MSE indicates the robustness of

the estimation.

We also use the PSNR [27] (Peak Signal-to-Noise

Ratio) and SSIM [28] (Structural Similarity in Image) to

evaluate the quality of the output density map. To calculate

the PSNR and SSIM, we follow the preprocess given by

[29], which includes the density map resizing (same size

Fig. 7 The person CAM, even effective for small and seriously

obscured persons

Fig. 8 The structure of density regression network
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with the original input) with interpolation and normaliza-

tion for both ground truth and predicted density map.

4.2 Dataset

ShanghaiTech dataset The ShanghaiTech dataset [5] is

composed of 1198 images with a total amount of 330,165

persons. The dataset is divided into two parts: PartA and

PartB. Images in PartA are highly congested scenes ran-

domly downloaded from the Internet, while images in

PartB are relatively sparse crowd scenes taken from streets.

In PartA, 300 images are used for training, and 182 images

are used for testing. In PartB, 400 images are used for

training and 316 images are used for testing. Some images

are shown in Fig. 9.

SmartCity dataset The dataset [4] contains 50 images,

mostly collected in urban scenes, such as office entrance,

the sidewalk, atrium, shopping center and so on. These

images are captured by high angle video surveillance

equipment. There are only a few people in SmartCity

dataset. The crowd in the images is very sparse. The

average number of pedestrians in an image is only 7.4, the

minimum value is 1, and the maximum is 14. Therefore,

the SmartCity dataset can be used to test the generalization

ability of the algorithm under the unusual sparse crowd

scene. Some images are shown in Fig. 10.

UCF_CC_50 dataset UCF_CC_50 dataset [30] includes

50 images with different perspective and resolutions. The

number of annotated persons per image ranges from 94 to

4543 with an average of 1280. Fivefold cross-validation is

performed following the standard setting in [30]. Some

images are shown in Fig. 11.

The UCSD dataset The UCSD dataset [31] has 2000

frames captured by surveillance cameras. These scenes

contain sparse crowd varying from 11 to 46 persons per

image. The region of interest (ROI) is also provided. The

resolution of each frame is fixed and small (238*158).

Among the 2000 frames, we use frames 601 through 1400

as training set and the rest of them as testing set according

to [31]. Some images are shown in Fig. 12.

In summary, the details of datasets, including size of

dataset, resolution ration, and minimum, maximum and

average people number, as shown in Table 2. It shows that

SmartCity and UCSD datasets are especially crowd density

estimation for sparse scenes.

4.3 Training process

All images are set to 1024*768, so that they can be cut into

48 patches of 128*128. Similarly, the corresponding den-

sity map is operated in the same way. Training images are

divided into patches randomly. After data preprocessing,

we design a training procedure, as illustrated in Algorithm

1.

1. First, the density level of each image patch is obtained

by the labeled head coordinates. According to image

patches and the corresponding density level, PatchFig. 9 Samples of ShanghaiTech dataset (PartA and PartB)

Fig. 10 Samples of SmartCity dataset

Fig. 11 Samples of UCF_CC_50 dataset

Fig. 12 Samples of The UCSD dataset
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Scale Discriminant Network (PSD) is trained to

convergence.

2. Second, the person CAM of all images is obtained by

the trained PSD model, using Grad-CAM method.

3. Third, each density level corresponds to an indepen-

dent density map regression network. Therefore, the

regression networks are trained by image patches of

each level separately.

4. Finally, the parameters of pre-trained PSD and regres-

sion models of each level are loaded into the proposed

whole network. All the layers are allowed to be

updated. The whole network is fine-tuned for overall

optimization.

Algorithm 1: Training process for PSDR ? CAM

Step 1. Patch Scale Discriminant Network is trained to

convergence with six levels.

Step 2. Person CAM of all training samples is obtained by the

trained PSD model.

Step 3. Six regression networks for six levels are trained until

convergence.

Step 4. The whole network is fine-tuned to convergence for

overall optimization.

We use one NVIDIA Tesla K80 GPU and PyTorch as

the platform. Training samples are from ShanghaiTech

PartA. In Step 1, PSD model is pre-trained on ImageNet

[32]. In Step 3, for each regression network, we set

batchsize to 64. The learning rate is initialized at 1e-3 and

decayed to 1e-5 when loss tends to be constant. Step 4

converges very fast, requiring about 20 epochs in total. The

learning rate of whole model is set to 1e-5.

4.4 Performance evaluation

In order to verify the effectiveness of our proposed method,

we test it on five datasets introduced in Sect. 4.2. We

compare our methods with state-of-the-art methods for

crowd counting.

Using image patches performs better than whole image

Image patches follow the idea of divide-and-conquer in

data structure. First, the original problem of density map

prediction of the whole image is decomposed into several

subproblems of the density map predictions of image pat-

ches. These subproblems are small examples of the original

problem. Then, these subproblems are solved by using

regression networks. Finally, the solutions of these sub-

problems (the predicted density maps of each image patch)

are merged into the solution of the original problem (the

predicted density map of the whole image).

Original image patches and predicted density maps are

shown in Fig. 13. It can be observed that in lower level

image patches, model can learn the contour information of

the person head; in the image patches of higher level, the

model mostly learns the distribution of person heads. By

combining the knowledge learned from different levels of

models, we can better handle the crowd counting problem

in sparse cases. Unlike previous regression models, which

equate sparse crowd (large heads) and dense crowd (small

heads), our method takes these two different situations into

account and obtains more detailed density maps.

Good results are achieved in the patches of Shang-

haiTech Part A/B. The density map of each level patch is

regressed, and the crowd number is obtained based on

density map. The prediction results of some images are

shown in Fig. 14. This indicates that the method makes full

use of the regression model of local image patches and

accurately extracts the more detailed human features. At

the same time, after combining the global person CAM, the

missing of the edges between image patches is compen-

sated. Also, the locations of person in CAM help regression

network to learn in a more precise direction.

Comparison with state-of-the-art methods The compar-

isons of different methods on the five datasets (listed in

Table 2) are shown in Tables 3, 4 and 5. Our method

reduces the MAE error from 8.6 to 7.5 and the MSE error

from 11.6 to 10.2 on SmartCity dataset. Besides, our

Table 2 Statistics information of datasets

Dataset Resolution ratio Image number Minimum people number Maximum people number Average people number

ShanghaiTech

PartA Different 482 33 3139 501.4

PartB 768*1024 716 9 578 123.6

SmartCity 1920*1080 50 1 14 7.4

UCF_CC_50 Different 50 94 4543 1279.5

UCSD 238*158 2000 11 46 25

5112 Neural Computing and Applications (2020) 32:5105–5116
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method achieves (1.04–0.01) MAE on UCSD dataset.

However, our method on dense scenes (ShanghaiTech

PartA and UCF_CC_50) works worse than state-of-the-art

methods, such as ACSCP [33], M-task [34] and D-CNet

[35]. It means our method works better in sparse scenes but

a bit worse in dense scenes. On ShanghaiTech PartB

dataset, the performance of our method is very close to the

best method M-task [34]. From the perspective of dataset

population density distribution, the sparser the crowd is,

the better our method performs. We find that this happens

due to classification activation map (CAM).

The principle of CAM is to visualize the area that the

model notices when it is judged as a category. In sparse

scenes, CAM will give the location and information of

each person’s head. However, CAM may miss some person

information in dense scenes. The comparison is shown in

Fig. 7. When the density level is high, the PSD network

(Sect. 3.3) can make the classification judgment when it

takes attention to the number of heads required for classi-

fication. This may cause the loss of some people’s infor-

mation in the CAM. For example, when discriminating as

the fifth category (greater than 30 people), the model can

make a classification judgment, only finding 30 people.

Fig. 14 The original image, ground truth, predicted density map (from left to right)

Table 3 Density estimation results of different methods on Shang-

haiTech dataset

Method PartA PartB

MAE MSE MAE MSE

MCNN [5] 110.2 1173.2 26.4 41.3

SwitchNet [3] 90.4 135.0 21.6 33.4

SaCNN [4] 86.8 139.2 16.2 25.8

CP-CNN [29] 73.6 106.4 20.1 30.1

ACSCP [33] 75.7 102.7 17.2 27.4

M-task [34] 73.6 112.0 13.7 21.4

D-CNet [35] 73.5 112.3 18.7 26.0

Our method 84.2 128.6 14.3 23.9

Bold values indicate the highest level at present

Fig. 13 Original image patches,

the corresponding ground truth

and density predicted results

(from left to right)
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4.5 Ablation Study on ShanghaiTech PartA

In this subsection, we perform an ablation study to

demonstrate the effects of different modules in the pro-

posed method. Each module is added sequentially to the

network, and results for each configuration are compared

on ShanghaiTech PartA dataset. Due to the presence of

large variations in density, scale and appearance of people

across images in this dataset, estimating the count with

high degree of accuracy is difficult. Thus, this dataset was

chosen for the detailed analysis of performance of the

proposed architecture.

Following three configurations are evaluated: (1)

Regression Network: Only use the regression network

(Fig. 8) in Sect. 3.5. (2) PSDR: Regression network with

Patch Scale Discriminant Network in Sect. 3.3. (3)

PSDR ? CAM: Use classification activation map to guide

the output of PSDR. This is our total structure. MAE, MSE,

PSNR and SSIM are calculated and compared with

MCNN.

Patch Scale Discriminant Regression Network weakens

the perspective effects Without Patch Scale Discriminant

Network, only regression network has high error and pre-

dicts low quality density maps. As shown in Table 6,

PSDR has a huge improvement over it. MAE and MSE

achieve 18.2 and 41.9 lower, respectively. This proves the

effectiveness of Patch Scale Discriminant Network.

CAM improves the quality of Patch Scale Discriminant

Regression Network While Patch Scale Discriminant

Regression Network already has low MAE and MSE, CAM

brings further improvement to it. As shown in Table 6, the

improvement in MAE and MSE is - 1.7 and - 3.8,

Table 5 Density estimation results of different methods on

UCF_CC_50, UCSD datasets

Method UCF_CC_50 UCSD

MAE MSE MAE MSE

MCNN [5] 377.6 509.1 1.07 1.35

SwitchNet [3] 318.1 439.2 1.62 2.10

SaCNN [4] 314.9 424.8 – –

CP-CNN [29] 295.8 320.9 – –

ACSCP [33] 291.0 404.6 1.04 1.35

M-task [34] 279.6 388.9 – –

D-CNet [35] 288.4 404.7 – –

Our method 302.3 411.6 1.03 1.37

Bold values indicate the highest level at present

Table 6 Estimation errors and density map quality for different

configurations on ShanghaiTech PartA dataset

Method MAE MSE PSNR SSIM

MCNN [5] 110.2 173.2 21.4 0.52

Regression network 107.7 180.5 21.1 0.49

PSDR 85.9 132.4 21.5 0.61

PSDR ? CAM 84.2 128.6 21.59 0.64

Fig. 15 Original image, density map ground truth, image predictions of PSDR and PSDR ? CAM (from left to right)

Table 4 Density estimation

results of different methods on

SmartCity dataset

Method SmartCity

MAE MSE

MCNN [5] 40.0 46.2

SwitchNet [3] 23.4 25.2

SaCNN [4] 8.6 11.6

Our method 7.5 10.2

Bold values indicate the highest

level at present
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respectively. Predictions of density map using model which

is added CAM or not are shown in Fig. 15. It shows that

the proposed CAM not only improves performance over

the original model, but also allows us to diagnostically

visualize the importance of features at different positions.

5 Conclusion

This paper makes two contributions to tackling crowd

density map prediction problem. First, we propose Patch

Scale Discriminant Regression Network (PSDR) for

learning local information for six density levels. PSDR

employs a patch scale strategy. Then, it learns the density

map distribution information of six density levels with six

regression networks, respectively. Despite the fact that

PSDR is accurate and effective, it is yet to be improved.

We introduce the person classification activation map

(CAM) into the density map generation process of the

entire image. CAM provides person location information as

global information and improves PSDR considerably.

In the future, in some areas of image research, using

classification activation map as a traditional feature is an

important research direction.
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