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A B S T R A C T   

The total organic carbon content (TOC) is one of the key parameters for evaluating the hydrocarbon generation 
potential of source rocks. Petroleum geochemists and geologists usually use conventional logging curves to 
predict TOC content in order to reduce the errors caused by limited TOC content data. The ΔlogR method is the 
most widely used TOC prediction method. However, it is not applicable to organic-rich mudstone interlayers, due 
to the rapidly changing lithology and the difficulty in determining a baseline. Some improved ΔlogR methods and 
artificial neural network techniques have also been proposed by previous authors. In this paper, a 3D surface 
fitting technique based on biharmonic interpolation is proposed to optimize an improved ΔlogR method. A total 
of 76 samples were divided into pure mudstone and mudstone interlayers. The correlation coefficient (R) and the 
root mean square error (RMSE) between the measured TOC and the predicted TOC obtained using the improved 
ΔlogR method, the artificial neural network method, and the 3D surface fitting method were calculated. These 
methods were applied to assess the source rocks of the Eocene Liushagang Formation in the Fushan Depression, 
South China Sea. The results show that the 3D surface fitting method can effectively distinguish source rocks 
from non-source rocks and has a higher accuracy, which makes it the most suitable method for assessing the TOC 
content of organic-rich source rocks with alternating mudstone layers.   

1. Introduction 

Source rock assessment is a key step in hydrocarbon exploration, and 
the TOC content is one of the most important parameters for source rock 
assessment (He et al., 2019; Vega-Ortiz et al., 2020; Lai et al., 2020a). 
Generally, the most reliable method of obtaining TOC data is to measure 
core samples in the laboratory. However, the limited number of avail-
able core samples and high experimental costs hinder organic matter 
abundance assessment. Due to their continuous record of the petro-
physical properties of rocks and easy accessibility, conventional well 
logs have been widely applied in the estimation of TOC contents 
(Schmoker, 1979; Fertl and Chilingar, 1988; Passey et al., 1990; Bodin 
et al., 2011; Wang et al., 2016; Rui et al., 2019; Li et al., 2020). 

Simple linear fitting or empirical formulas were used for TOC content 
estimation before the 1990s (Schmoker, 1979; Fertl and Chilingar, 
1988). For instance, the Schomoker density log based technique 

(Schmoker, 1979) has been widely used in previous studies. Equation (1) 
is the Schomoker model for the Devonian shale. 

TOC  (vol%)= (ρB − ρ) / 1.378 (1)  

where ρB represents the density of the stratum without organic matter 
(g/cm3); and ρ represents the stratum bulk density (g/cm3). 

Although this method is convenient, the accuracy of the prediction 
results is not high. Passey et al. (1990) proposed the ΔlogR method to 
greatly improve the prediction accuracy, which is still used today. This 
method superimposes the resistivity and porosity curves (i.e., sonic, 
density, or neutron) of the non-source rock and calculates the TOC 
content based on the separation of the two curves, as is described in Eqs. 
(2) and (3). 

ΔlogR= log10

(
R

Rbaseline

)

+ 0.02 × (Δt − Δtbaseline) (2) 
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TOC=ΔlogR × 10(2.2297− 0.1688×LOM) (3)  

where ΔlogR is the separation between the resistivity curve and the 
porosity curve; and R and Δt are the apparent resistivity (Ω⋅m) and the 
sonic transit time (μs/ft) of the target stratum, respectively. Rbaseline and 
Δtbaseline are the resistivity (Ω⋅m) and sonic transit time (μs/ft) of the 
base stratum without organic matter, respectively. LOM is the level of 
maturation. 

However, the accuracy of the Passey model largely depends on the 
selection of two key parameters, the baseline and LOM, which limits its 
widespread application. Unlike marine strata, lacustrine sedimentary 

successions are usually characterized by the extensive occurrence of 
alternating sandstone and organic-rich mudstone layers (Jiang et al., 
2017). Due to these drastic changes in lithology, it is difficult to deter-
mine a baseline for the formation, and the logging response is readily 
influenced by the surrounding rocks. Therefore, the Passey model is not 
suitable for frequently interbedded sandstone and mudstone strata. 

With the development of contemporary computer technology, neural 
network technology and machine deep learning have been successfully 
applied in TOC content estimation in previous studies (Tan et al., 2013; 
Shi et al., 2016; Mahmoud et al., 2017; Yu et al., 2017; Wang et al., 
2016; Bai and Tan, 2020). These methods effectively solve the param-
eter selection problem. However, the research conducted on these 

Fig. 1. (a) Location of the Beibuwan Basin. (b) Location of the Fushan Depression (modified after Li et al., 2019). (c) Location of the sampling wells in the Fushan 
Depression (modified after Liu et al., 2014). 
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methods focuses more on principles, algorithms, and accuracy and lack 
significant investigation of practical applications in petroleum geology. 
These mathematics-based methods are not closely combined with the 
geological background, and the applicable geological conditions are not 
definitely constrained, resulting in large prediction errors in many cases. 

The Fushan Depression in the Beibuwan Basin is a typical lacustrine 
basin in southern China. The organic-rich mudstone interlayers occur-
ring in the delta front, turbidite fans, and coastal shallow lakes have a 
good hydrocarbon generation potential and they form a complete 
source-reservoir-cap combination with the upper and lower sandstones. 
However, thus far, TOC prediction and source rock assessment of these 
mudstone interlayers has not been systematically carried out. Therefore, 
it is necessary to use conventional logging data to accurately predict the 
TOC content of this part of the source rock, which is of great significance 

to hydrocarbon exploration in this region. In this study the Fushan 
Depression was used as a case study. The improved ΔlogR, artificial 
neural network, and three-dimensional (3D) surface fitting methods 
were used to determine the most effective method for TOC content 
prediction of source rocks with frequently alternating sandstone and 
organic-rich mudstone formations. 

2. Geologic settings 

The Beibuwan Basin is a typical Cenozoic rift basin locating in the 
South China Sea (Fig. 1a) (Li et al., 2014). The Fushan Depression is a 
secondary tectonic unit on the southeastern margin of the Beibuwan 
Basin (Fig. 1b), with a total area of 2920 km2. This basin is surrounded 
by the Linggao, Changliu, and Dingan faults to the northwest, northeast, 

Fig. 2. Stratigraphic histogram of the Fushan Depression (modified after Gan et al., 2020). Els1, Els2, Els3 are Member 1, 2, and 3 of the Eocne Liushagang Formation; 
Ewz1, Ewz2, Ewz3 are Member 1, 2, and 3 of the Eocene Weizhou Formation. 
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and south, respectively (Fig. 1a). The sediments in the depression were 
supplied from three positive tectonic units: the northwestern Lingao 
Uplift, the northeastern Yunlong Uplift, and the southern Hainan base-
ment (Cao et al., 2016). 

Based on the major tectonic movements and unconformities, the 
Paleogene strata in the Fushan Depression can be divided into three 
formations: the Changliu Formation (Ech), the Liushagang Formation 
(Els), and the Weizhou Formation (Ewz) (Fig. 2). The Liushagang For-
mation contains the most important oil-generating strata in the Fushan 
Depression. It is composed of braided river delta, fan delta, turbidite fan, 
and lacustrine facies and deposits of dark gray mudstone frequently 
intercalated with sandstone and gravel sandstone (Gan et al., 2020; Liu 
et al., 2014, 2015). Therefore, this study attempts to choose an optimal 
method for accurately predicting the TOC content of this type of the 
source rock based on conventional well logs. 

3. Materials and methods 

The methods used to predict the TOC in this study include the 
improved ΔlogR, artificial neural network, and 3D surface fitting. TOC 
data was obtained by a LECO CS-230 carbon analyzer. EXCEL 2019, 
SPSS 26 and MATLAB 2016a were used for data acquisition and chart 
drawing. Data processing mainly includes regression and fitting. The 
correlation coefficient (R) and the root mean square error (RMSE) were 
used as evaluation criteria. 

3.1. Materials 

A total of 76 core samples from 11 wells were collected from the 
Liushagang Formation in the Fushan Depression in order to build a TOC 
prediction model. 8, 15, 16, and 37 samples were collected from the 
delta front subfacies, fan delta front subfacies, turbidite fan subfacies, 
and semi-deep lake subfacies, respectively (Table 1). A total of 136 
cutting samples were collected to evaluate the TOC prediction model. 
The logging response values of the depth-corrected core samples are 
presented in Table 1. Note that the density of three samples is less than 
2.0 g/cm3, which is mainly due to the sampling location that is close to 
the bottom of the well, where the logging curve may be slightly inac-
curate. In addition, conventional well logs for 11 sampling wells were 
also collected for this study. The locations of the sampling wells are 
shown in Fig. 1c. 

3.2. Methods 

3.2.1. Laboratory experiments 
All of the mudstone samples used for the total organic carbon (TOC) 

analysis were crushed and ground to a diameter of less than 0.2 mm (80 
mesh). Then, the carbonates were removed using dilute hydrochloric 
acid (1.5 mol/L). Finally, all of the samples were washed with deionized 
water to remove any possible residual contamination. The TOC contents 
were measured using a LECO CS-230 carbon analyzer. 

3.2.2. Improved ΔlogR method 
In order to solve the problem of the difficulty to determine baseline, 

Huo et al. (2011) and Lai et al. (2018) proposed an improved ΔlogR 
method. The principle of this method is similar to that of the Passey 
method, and the details of the procedure are as follows. First, Eq. (2) is 
transformed into Eq. (4). 

ΔlogR= [log10(R)+ (0.02×Δt)] − [log10(Rbaseline)+ (0.02×Δtbaseline)]. (4) 

Second, a new parameter called ΔlogR′ is defined using Eq. (5), and 
then, Eq. (4) is transformed into Eq. (6). 

ΔlogR
′

= log10(R) + (0.02×Δt) (5)  

ΔlogR=ΔlogR
′

− ΔlogR
′

baseline (6) 

Third, Eq. (5) is transformed into Eq. (7). The value of ΔlogR′ is the 
intercept of the straight line with a gradient of − 0.02 on the plot of Δt 
versus log10(R). ΔlogR’baseline is the minimum intercept of such a straight 
line. 

log10(R)= − 0.02 × Δt + ΔlogR
′ (7) 

Finally, the numerical relationship between the measured TOC 
content and ΔlogR is obtained using Eq. (3) (if the data contain non- 
source rocks) or by mathematical fitting (if the data do not contain 
non-source rocks). 

3.2.3. The principle of the artificial neural network (ANN) 
An artificial neural network is a mathematical model that simulates 

the behavior of animal neural networks and processes information by 
adjusting the relationships between a large number of internal nodes 
(Lim, 2003). It consists of different algorithms and structures. In this 
study, an artificial neural network (ANN) was used to estimate the TOC 
content. All of the data processing was carried out using SPSS 26 and 
MATLAB 2016a. 

A back propagation artificial neural network (BPANN) is a multi- 
layer feedforward network trained using an error back propagation al-
gorithm (Kumar et al., 2012). BPANNs have been widely used in data 
classification and prediction studies (Fath et al., 2020; Urang et al., 
2020; Lim, 2003). A BPANN consists of one input layer, one hidden 
layer, and one output layer (Fig. 3a). Each layer has one or more 
interconnected neurons. The process of the BPANN is to assign weights 
and thresholds to the hidden layer neurons, to adjust the weights and 
thresholds according to the back propagation error calculated by the 
error function, and to complete the training until the expected output is 
obtained (Fig. 3a). 

Strictly speaking, the multilayer perceptron neural network is a back 
propagation artificial neural network with one or more hidden layers. In 
this study, in order to distinguish between artificial neural networks 
with different structures, a neural network with one hidden layer is 
called a back propagation artificial neural network (BPANN), and a 
neural network with two hidden layers is called a multilayer perceptron 
neural network (MLPNN). The MLPNN includes four layers: the input 
layer, hidden layer one, hidden layer two, and the output layer (Fig. 3b). 
The specific training process is the same as that for the BPANN. 

3.2.4. 3D surface fitting 
3D surface fitting is the use of interpolation to fit discrete points in 

space onto a surface in order to predict unknown data using known data. 
Commonly used interpolation methods include the nearest neighbor, 
linear, and biharmonic methods. Though the former two methods are 
relatively faster, the surfaces produced by biharmonic interpolation are 
smoother and are more conducive to obtaining accurate predictions. 

The biharmonic interpolation technique was proposed by Sandwell 
(1987) and has been widely applied in meteorology, marine currents, 
and manufacturing technology (Adhikari and Marshall, 2013; Sandwell 
and Smith, 2009; Chen and Wang, 2018). Discrete points in space are 
interpolated by the biharmonic surface using the Green function (Chen 
and Wang, 2018). The surface has the characteristic of minimum cur-
vature. In this study, all of the steps of the 3D surface fitting were 
implemented in MATLAB 2016a. 

4. Results 

4.1. Evaluation criteria 

In order to consider the fitting effect and accuracy, the correlation 
coefficient (R) and the root mean square error (RMSE) were used as 
evaluation parameters (Fath et al., 2020). These parameters can be 
calculated using Eqs. (8) and (9). 
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Table 1 
Types and TOC content of the core samples and their logging response values.  

No. Well Depth TOC AC GR RILD RILM CNL DEN Types 

(m) (wt%) (μs/ft) (API) (Ω⋅m) (Ω⋅m) (%) (g/cm3) 

1 M1 2827.1 1.64 79.73 150.18 8.79 10.72 19.26 2.41 semi-deep lake mudstone 
2 M1 3108.4 2.89 101.40 113.12 9.00 6.46 20.17 1.65 delta front mudstone 
3 M1 3112.9 1.12 77.37 63.65 28.46 19.75 12.96 2.32 delta front mudstone 
4 M1 3169.5 1.51 123.58 116.87 2.22 2.06 60.51 1.30 delta front mudstone 
5 M3 2741.5 0.84 75.81 137.99 7.05 6.70 23.24 2.47 delta front mudstone 
6 M3 2743.3 0.05 72.59 132.46 7.79 7.85 18.14 2.53 delta front mudstone 
7 M4 3218.5 1.15 74.33 166.08 9.31 12.30 20.77 2.18 semi-deep lake mudstone 
8 M4 3221.0 1.12 88.38 156.49 5.75 6.02 45.79 2.20 semi-deep lake mudstone 
9 M4 3222.5 1.18 91.95 168.65 7.08 7.60 37.41 2.16 semi-deep lake mudstone 
10 M4 3223.5 1.57 75.03 101.91 11.62 17.39 13.60 2.38 semi-deep lake mudstone 
11 M4 3228.5 1.16 75.47 119.48 9.56 9.96 23.07 2.41 semi-deep lake mudstone 
12 M5-6 2347.0 0.57 76.24 125.98 5.27 6.09 39.13 2.477 delta front mudstone 
13 M5-6 2519.0 1.68 85.87 132.12 5.49 4.81 45.65 2.20 delta front mudstone 
14 M5-6 2624.0 2.82 75.73 146.76 14.10 11.19 47.82 2.51 delta front mudstone 
15 M5-6 2671.0 1.47 61.74 156.38 23.15 21.23 43.17 2.43 semi-deep lake mudstone 
16 M5-6 2693.0 1.79 73.82 147.31 10.31 10.11 52.89 2.33 semi-deep lake mudstone 
17 M5-6 2785.0 1.84 72.05 143.02 13.23 11.30 49.46 2.55 semi-deep lake mudstone 
18 M5-6 2918.5 1.92 74.09 159.41 10.71 11.41 40.48 2.49 semi-deep lake mudstone 
19 M5-6 3009.5 1.68 74.80 135.34 12.76 10.92 39.23 2.34 semi-deep lake mudstone 
20 M5-6 3080.5 1.72 80.35 147.82 6.53 6.20 37.85 2.09 semi-deep lake mudstone 
21 M5-6 3147.5 1.77 69.97 131.45 18.97 14.89 55.87 2.52 semi-deep lake mudstone 
22 M5-6 3318.5 1.69 65.51 141.60 28.89 17.21 56.01 2.35 semi-deep lake mudstone 
23 M5-6 3331.5 1.61 80.72 150.42 7.97 7.62 41.97 2.59 semi-deep lake mudstone 
24 M5-6 3395.5 1.69 80.62 141.11 9.43 8.93 36.90 2.46 semi-deep lake mudstone 
25 M5-6 3504.0 1.13 81.74 121.39 10.55 7.69 49.71 2.66 semi-deep lake mudstone 
26 CH2 2493.5 1.24 80.82 108.49 6.22 6.45 22.29 2.54 fan delta front mudstone 
27 CH2 2621.2 0.83 94.16 125.87 5.95 6.31 21.21 2.38 fan delta front mudstone 
28 CH2 2622.5 1.26 106.25 120.58 4.69 4.81 23.90 2.34 fan delta front mudstone 
29 CH12 2544.3 0.82 72.45 98.59 9.49 9.30 20.20 2.54 fan delta front mudstone 
30 CH12 2545.2 1.38 81.51 106.12 7.41 7.25 25.75 2.43 fan delta front mudstone 
31 CH12 3473.5 1.86 75.52 109.20 19.18 19.50 18.26 2.62 fan delta front mudstone 
32 CH12 3476.0 1.30 75.26 109.37 13.07 14.13 18.97 2.51 fan delta front mudstone 
33 CH12 3512.2 1.49 69.10 94.26 20.10 19.52 13.92 2.63 fan delta front mudstone 
34 CH12 3513.6 1.23 74.70 127.62 12.30 12.29 24.26 2.60 fan delta front mudstone 
35 FC1 2513.0 0.83 93.08 124.04 4.68 3.99 36.77 2.17 fan delta front mudstone 
36 FC1 2536.0 0.52 79.63 118.34 6.68 5.89 33.42 2.24 fan delta front mudstone 
37 FC1 2694.5 1.14 74.06 135.66 7.14 7.29 23.43 2.29 fan delta front mudstone 
38 FC1 3186.5 1.83 56.01 108.46 24.19 16.87 15.73 2.35 fan delta front mudstone 
39 FC1 3190.3 1.80 73.59 136.55 8.70 6.03 40.12 2.12 fan delta front mudstone 
40 FC1 3373.0 2.03 88.32 118.04 15.96 11.70 36.40 2.38 fan delta front mudstone 
41 Y1 2994.0 1.05 77.93 131.55 7.12 7.90 23.67 2.31 semi-deep lake mudstone 
42 Y1 2996.0 1.02 94.23 155.89 2.97 3.39 42.17 2.22 semi-deep lake mudstone 
43 Y1 3037.0 0.92 96.62 77.92 8.10 13.10 16.99 1.92 turbidite mudstone 
44 Y1 3800.1 1.39 88.21 199.56 11.54 10.25 23.32 2.05 turbidite mudstone 
45 Y2 2946.8 0.98 75.85 121.81 8.85 8.44 14.96 2.49 turbidite mudstone 
46 Y2 2951.8 0.86 74.70 117.07 11.77 11.17 18.61 2.47 turbidite mudstone 
47 Y8 2898.3 0.90 78.30 96.71 4.75 5.36 17.74 2.46 semi-deep lake mudstone 
48 Y8 2899.4 0.96 89.64 152.43 4.71 4.10 42.95 2.53 semi-deep lake mudstone 
49 Y8 2903.0 0.91 73.14 81.83 6.26 6.65 15.27 2.50 semi-deep lake mudstone 
50 Y8 2904.0 0.85 80.20 148.53 5.88 5.07 29.07 2.53 semi-deep lake mudstone 
51 Y8 2905.0 0.90 85.49 160.53 4.96 4.53 31.09 2.56 semi-deep lake mudstone 
52 Y8 3056.3 0.79 76.51 48.05 10.93 10.76 9.00 2.52 turbidite mudstone 
53 Y8 3057.3 0.77 78.30 153.32 8.35 6.67 26.39 2.43 turbidite mudstone 
54 Y8 3061.8 1.06 73.77 146.80 7.33 7.38 20.40 2.62 turbidite mudstone 
55 Y8 3068.8 0.58 63.63 97.16 3.97 4.62 15.15 2.58 turbidite mudstone 
56 Y10 3013.8 1.24 89.00 166.44 7.87 5.83 24.91 2.31 turbidite mudstone 
57 Y10 3278.2 1.87 73.11 139.88 10.51 9.38 20.86 2.51 turbidite mudstone 
58 Y10 3540.5 1.28 82.83 162.38 11.81 8.35 18.84 2.49 turbidite mudstone 
59 Y11 3291.5 1.51 68.48 122.56 15.67 10.26 22.41 2.54 semi-deep lake mudstone 
60 Y11 3548.5 1.61 70.01 98.06 18.00 14.82 15.38 2.61 semi-deep lake mudstone 
61 Y11 3552.0 1.73 71.45 118.19 21.83 16.84 21.67 2.40 semi-deep lake mudstone 
62 Y11 3567.4 2.00 74.17 136.29 16.15 13.11 19.05 2.41 semi-deep lake mudstone 
63 Y11 3644.3 1.85 71.17 135.86 12.04 11.28 25.17 2.42 turbidite mudstone 
64 Y11 3654.9 1.74 84.61 127.33 17.19 15.77 27.48 2.26 turbidite mudstone 
65 Y11 3659.5 1.62 63.70 89.11 23.01 15.16 10.31 2.42 turbidite mudstone 
66 Y11 3672.6 1.36 80.04 160.75 10.39 10.98 33.42 2.62 semi-deep lake mudstone 
67 Y11 3674.3 1.52 82.64 157.78 13.23 12.34 24.30 2.69 semi-deep lake mudstone 
68 Y11 3695.0 1.30 81.68 177.23 10.27 9.61 39.56 2.57 semi-deep lake mudstone 
69 Y11 3705.5 1.38 65.62 109.71 15.93 14.01 20.91 2.41 semi-deep lake mudstone 
70 Y11 3707.8 1.46 75.02 129.76 11.39 11.87 34.11 2.14 semi-deep lake mudstone 
71 Y11 3710.2 1.25 76.76 125.78 10.54 9.63 36.64 2.56 semi-deep lake mudstone 
72 Y11 3716.0 1.87 81.83 124.27 13.27 8.70 29.96 2.25 semi-deep lake mudstone 
73 Y11 3722.0 1.27 82.34 167.01 9.90 8.69 43.03 2.51 turbidite mudstone 

(continued on next page) 
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R=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 −

∑n
i=1

(
xiexp − xipre

)2

∑n
i=1

(
xipre − x

)2

√
√
√
√ (8)  

RMSE=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n

∑n

i=1

(
xiexp − xipre

)2

√

(9)  

where xiexp is the target value; xipre is the predicted value; x is the average 
experimental value; and n is the number of samples. 

In addition, all source rock samples were divided into two groups: 
pure mudstone and mudstone interlayers, respectively. Semi-deep lake 
mudstone was considered as pure mudstone, where the ratio of the 
mudstone to the formation thickness is greater than 90%. Delta front 
mudstone, fan delta front mudstone and turbidite mudstone with a ratio 
of mudstone to formation thickness of 50–70% were classified as 
mudstone interlayers. 

4.2. Initial data analysis 

Previous studies have demonstrated that the organic-sensitive log-
ging parameters mainly include the sonic transit time (AC), natural 
gamma (GR), deep induction resistivity (RILD), medium induction re-
sistivity (RILM), neutron (CNL), and density (DEN), which change as the 
TOC content changes (Schmoker, 1979; Passey et al., 1990; He et al., 
2016; Wang et al., 2016). Generally, minerals, fluids, organic matter, 
and pressure are the factors that affect the logging response character-
istics. In this study, correlation coefficients (R) were used to express the 
relationship between the TOC and the different log values (Mahmoud 
et al., 2017). 

The results show that for all of the samples, the TOC is positively 
correlated with GR, CNL, RILM, and RILD, is weakly negatively correlated 
with DEN, and is not correlated with AC. For the pure mudstone, RILD, 
RILM, and AC are more strongly correlated with TOC, while for the 
mudstone interlayers, all of the well logging correlations are much lower 
(Fig. 4). 

4.3. Performance of the improved ΔlogR method 

The Liushagang Formation widely occurs throughout the Fushan 
Depression, with a stable formation thickness. Although the burial depth 
varies greatly in the different structural blocks, the sediment supplies 
and sedimentary backgrounds are similar, and the logging response 
characteristic value has a small variation range. Therefore, a unified 
TOC content estimation model can be established for the Liushagang 
Formation (Lai et al., 2018, 2020a, 2020b). 

Overall, the TOC contents of all of the core samples are greater than 
0.5%. Mathematical fitting was used to calculate the numerical rela-
tionship between the measured TOC content and ΔlogR. The ΔlogR′

obtained from the plot is 1.87 (Fig. 5a), and the quadratic polynomial 
regression equation for measured TOC content value and ΔlogR is 

TOC= − 1.9908×(ΔlogR)2
+ 4.3282×ΔlogR − 0.6322 (10) 

Eq. (10) is the TOC prediction model obtained using the improved 
ΔlogR method. The R and RMSE values are 0.5315 and 0.3965, 

Table 1 (continued ) 

No. Well Depth TOC AC GR RILD RILM CNL DEN Types 

(m) (wt%) (μs/ft) (API) (Ω⋅m) (Ω⋅m) (%) (g/cm3) 

74 Y11 3724.5 1.94 80.93 149.82 9.19 9.67 38.12 2.38 turbidite mudstone 
75 Y11 3727.0 1.28 84.98 172.82 9.85 10.20 33.80 2.66 semi-deep lake mudstone 
76 Y11 3731.0 1.34 65.02 112.58 17.95 15.90 17.46 2.49 semi-deep lake mudstone  

Fig. 3. (a) Diagram of the BPANN algorithm structure. (b) Diagram of the 
MLPNN algorithm structure. 

Fig. 4. Correlations between the different well logs and the measured TOC.  
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Fig. 5. (a) Plot of Δt versus log10(R). (b) The numerical relationship between the measured TOC content and ΔlogR.  

Fig. 6. Comparison of the TOCs calculated using the BPANN and MLPNN. The orange symbols represent the BPANN, and the green symbols represent the MLPNN.  
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respectively (Fig. 5b). 

4.4. Performance of the artificial neural network (ANN) 

The selection of the training samples and the input layer is the key 
issue for artificial neural networks. In this study, 80% of the core TOC 
data were selected for the training, and 20% of the data were randomly 
selected for testing using the Bernoulli distribution. Since there was no 
strong functional relationship with TOC, all of the well logs were 
considered as the input layer. 

The number of hidden layer neurons was determined through 
extensive experiments. It was found that the prediction accuracy was the 
highest when 10 neurons were set in the BPANN hidden layer, 6 neurons 
were set in MLPNN hidden layer one, and 5 neurons were set in MLPNN 
hidden layer two. For the BPANN training model, the test model, and all 
of the samples, the R values are 0.7014, 0.5444, and 0.6672 and the 
RMSE values are 0.4347, 0.6234, and 0.4779, respectively. For the 
MLPNN training model, the test model, and all of the samples the R 
values are 0.9117, 0.9049, and 0.9114 and the RMSE values are 0.2056, 
0.1573, and 0.1970, respectively (Fig. 6). Since individual samples with 
abnormal density may affect the accuracy of the model, we removed the 

samples with a density less than 2.0 g/cm3 and rebuilt the neural 
network model. The results show that those samples did not affect the 
accuracy of the model, which is mainly due to the weak correlation 
between TOC and DEN. Therefore, we preserved these samples in the 
neural network model. 

4.5. Performance of the 3D surface fitting method 

As can be seen from Fig. 5, the prediction accuracy of the improved 
ΔlogR method is not high. The first reason for this is that the logging 
response value may be seriously affected by the surrounding rocks due 
to the frequently changing lithology. Furthermore, the content and type 
of clay minerals change with increasing maturity, affecting the pores 
and structure of the mudstone, changing the pore accommodation space, 
and thus, affecting the adsorption equilibrium state of the organic 
matter (Lu et al., 2013), causing the poor mathematical relationship 
between ΔlogR and the measured TOC. 

The natural gamma (GR) logging curve, which generally indicates 
the characteristics of the lithology, clay content, and organic matter, has 
been used to estimate the TOC content in previous studies (Wang et al., 
2016; Heslop, 2010). The apparent clay content was obtained using Eqs. 

Fig. 7. The numerical relationship between the measured TOC content and ΔlogR of samples with apparent clay contents of (a) 0–10%, (b) 10–20%, (c) 20–30%, (d) 
30–40%, (e) 40–50%, and (f) 50–100%. 
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(11) and (12). The core samples were divided into 6 groups with 
apparent clay contents of 0–10%, 10–20%, 20–30%, 30–40%, 40–50% 
and 50–100%. It was found that there is a significant difference in the 
gradient of the fitted line between ΔlogR and TOC for these 6 groups, 
which have gradients of 0.6901, 1.76, 2.3389, 2.6377, 5.1429, and 
0.9476, respectively (Fig. 7). Therefore, one simple mathematical fitting 
of ΔlogR and TOC cannot accurately predict the TOC contents of samples 
with different clay contents. 

Vsh =
2GcuR×V ′

sh − 1
2GcuR − 1

(11)  

V
′

sh =
GR − GRmin

GRmax − GRmin
(12)  

where Vsh is the apparent clay content. GcuR is an empirical coefficient 
related to the formation, and the value of GcuR is 3.7 for the Paleogene 
stratum. The GRmax of the Liushagang Formation is 200.1 API, and the 
GRmin is 37.9 API. 

This study adds GR as a parameter to improve the ΔlogR model of 
Huo et al. (2011) and Lai et al. (2018). Using ΔlogR, GR, and TOC as the 
coordinates to establish a spatial rectangular coordinate system, a 3D 
surface was obtained after the biharmonic interpolation (Fig. 8a). The 
TOC value was determined from GR and ΔlogR using this surface. The 
ranges of the GR and ΔlogR from low to high TOC content is shown in 
Fig. 8b. The R and RMSE between measured TOC and the predicted TOC 
are 0.9656 and 0.1232, respectively (Fig. 9). 

5. Discussion 

5.1. Comparison of the TOC estimation results 

Figs. 10 and 11 show the R and RMSE values of the pure mudstone 
and mudstone interlayers for the different methods. The R values of the 
pure mudstone and the mudstone interlayers for the 3D surface fitting 
method (0.9622 and 0.9716, respectively) are much higher than those 
for the improved ΔlogR method (0.6757 and 0.4884, respectively), the 
BPANN (0.5622 and 0.7054, respectively), and the MLPNN (0.9028 and 
0.9159, respectively). Moreover, the RMSE values of the pure mudstone 
and mudstone interlayers for the 3D surface fitting method (0.1038 and 
0.1392, respectively) are also lower than those for the improved ΔlogR 
method (0.2443 and 0.5022, respectively), the BPANN (0.4551 and 
0.4986, respectively), and the MLPNN (0.1520 and 0.2319, respec-
tively). All of these facts demonstrate that the 3D surface fitting method 
has the highest prediction accuracy. 

The improved ΔlogR method has the lowest accuracy. Note that the R 
of the pure mudstone is higher than that of the mudstone interlayers, 
and the RMSE is much lower. This is probably because the well logs are 
less affected by the surrounding rocks of the pure mudstone, and the 
TOC has a higher correlation with AC and RILD (Fig. 4). In contrast, for 
the mudstone interlayers, the TOC is weakly correlated with AC and 
RILD. Therefore, the improved ΔlogR method is more suitable for pure 
mudstone formations. 

The artificial neural network method has a higher accuracy than the 
improved ΔlogR method. As can be seen from Fig. 10, the BPANN 
accurately predicts the TOC contents of most of the samples, but a few 
have large errors; while the MLPNN has a better prediction effect for 
both the pure mudstone samples and the mudstone interlayer samples. 
This is mainly due to the different structures of the neural networks, that 
is, the second hidden layer corrects the prediction results of the first 
hidden layer, which has larger errors. Moreover, for the MLPNN, the 
RMSE of the mudstone interlayers is higher than that of the pure 
mudstone, which demonstrates that the MLPNN method has larger er-
rors in the mudstone interlayers. 

Through biharmonic interpolation, the nonlinear relationship be-
tween the TOC and ΔlogR of the formations with different natural 
gamma values was established using the 3D surface fitting method, 
which greatly broadens the application range of this method and makes 
it suitable for both pure mudstone and mudstone interlayers. 

Fig. 8. (a) The biharmonic interpolation surface based on the GR, ΔlogR, and 
measured TOC. (b) The range of the GR and ΔlogR from low to high 
TOC content. 

Fig. 9. Prediction results of the 3D surface fitting method.  
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5.2. Application for TOC content assessment 

The Liushagang Formation in well Y11 contains turbidite fan subf-
acies and semi-deep lake subfacies, and the ratio of the mudstone 
thickness to the formation thickness is about 80%. The above-mentioned 
methods were used to process logging data for well Y11 for source rock 
assessment (Fig. 12). The assessment criteria are described by Peters and 
Cassa (1994) and Lai et al. (2020a, 2020b). TOC contents of 0%, 0–1%, 
1–2%, and >2% represent non-source rocks, poor–fair, good, and very 
good source rocks, respectively. 

The TOC contents of 23 cutting samples were used to evaluate the 
effects of the various methods (Fig. 12). The results show that the 
improved ΔlogR and BPANN methods produced large errors and over-
estimated the TOC content. The accuracies of the MLPNN and 3D surface 
fitting are relatively high in the depth ranges of 3100–3300 m and 
3500–3800 m, which contain pure mudstone. In contrast, in the 
mudstone interlayers at depths of 3000–3100 m and 3300–3500 m, the 
prediction precision of the MLPNN method was not very high, while the 
accuracy of the 3D surface fitting method was not affected by the 
frequent changes in lithology. Fig. 13 shows the thickness percentages of 
the non-source rocks to the very good source rocks of the Liushagang 
Formation in well Y11 obtained using the different methods. According 
to the MLPNN method, only 3% of the Liushagang Formation is 
composed of non-source rocks, while the 3D surface fitting result shows 
that 15% of the formation is composed of non-source rocks, which is 
similar to the actual sandstone to formation thickness ratio. This is 

Fig. 10. A comparison of the predicted TOC and measured TOC for the different methods.  

Fig. 11. Root mean square errors (RMSEs) of the different methods.  
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mainly due to the lack of training for the non-source rock samples in the 
MLPNN. The TOC estimation results for the other wells are similar to 
those for well Y11. Therefore, we conclude that the 3D surface fitting 
method performs better than the other methods in both pure mudstone 
formations and mudstone interlayer formations. 

6. Conclusions 

By comparing the above four methods, the following conclusions can 
be drawn:  

(1) The improved ΔlogR method is not suitable for TOC prediction of 
mudstone interlayers, because mudstone frequently punctuated 
by sandstone causes the complex mathematical relationship be-
tween ΔlogR and the TOC.  

(2) Compared to the single hidden layer artificial neural network 
(BPANN), the double hidden layer neural network (MLPNN) has 
higher R and lower RMSE and provides more accurate prediction. 
But this method has poor predictive ability for mudstone in-
terlayers due to the absence of training for the non-source rock 
samples.  

(3) The 3D surface fitting method has R values of higher than 0.96 
and RMSE values of lower than 0.14 in both pure mudstone and 
mudstone interlayers. It can effectively eliminate the errors 
caused by the frequent lithological changes and provide the best 
TOC estimation of the mudstone interlayers. 

(4) In addition, the 3D surface fitting method can effectively distin-
guish source rocks from non-source rocks, which has a great 
significance for source rock assessment and the prioritization of 
favorable source-reservoir-cap combinations. 
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