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In the process of oil reservoir development, clay minerals in the pores of a reservoir swell because of water absorption, blocking the
pore channels, and decreasing the reservoir permeability. This phenomenon is referred to as reservoir water sensitivity. To develop
and protect oil and gas fields more scientifically and effectively and save development cost, we examine the water sensitivity of the
low-permeability conglomerate reservoir of the Lower Karamay Formation in the 530-well area of District 8 of the Karamay oil
field. Based on multiple linear regression and neural network methods, the quantitative calculation of different types of clay
minerals was performed by comprehensively using natural gamma ray, neutron, density, sonic transit time, and X-ray
diffraction (XRD) analysis data. The water sensitivity experiment was performed in the study area, and the logging
interpretation method of reservoir water sensitivity was established by considering the clay mineral content as the medium;
moreover, the reservoir water sensitivity degree was quantitatively explained.

1. Introduction

Water sensitivity is a phenomenon as per which the perme-
ability of an aqueous medium-containing clay minerals
decreases when extraneous solutions with different mineral
concentrations displace each other from the formation fluid
[1–3]. For developing oil fields, reservoir water sensitivity
can damage reservoirs [4]. This can lead to difficulties in form-
ing energy supplements, such as water injection and gas injec-
tion, and can reduce reservoir productivity, thus indicating it
may have strong negative effects on development. Therefore,
it is necessary to investigate water sensitivity.

In the oil and gas industry, reservoir water sensitivity
damage is an important problem often encountered [5, 6].
In 1950s, researchers used core flow experiments to examine
formation damage because of clay expansion. In the 1970s,
the influence of oil layer protection expanded; since 1974,

the USA has held a conference on preventing formation
damage to discuss important technical issues such as reser-
voir protection [7]. Valdya [8] examined changes in fluid
acidity and basicity, in addition to the effect of ion exchange
on particle migration and the resultant strong formation
damage. Based on results regarding the types and causes of
reservoir damage, Bishop [9] proposed the formation dam-
age index (FDI), which can reflect the degree of formation
sensitivity damage. After 1990s, when multiple technologies
for oil layer protection were developed, a number of
researchers used core analyses such as X-ray diffraction
(XRD) experiments to intuitively obtain clay data [10, 11].
However, in oil field production areas, core data are
extremely limited, and there is a greater amount of log data.
Thus, some scholars have attempted to use log data to exam-
ine the presence of clay minerals and examine the reservoir
water sensitivity [12].
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Previously, experts used the traditional Schlumberger
clay mineral interpretation map, which identifies clay min-
erals based on differences in the levels of U, Th, and K
reported in different types of clay [13]. However, for many
areas, no natural gamma ray spectral data are available.
For cases in which only conventional log curves can be
obtained, researchers previously established a theoretical
model of typical sand and mudstone using a neutron-
density cross plot that can be used to determine both the
content of clay minerals and their distribution [14]. As per
the abovementioned methods, natural gamma ray spectral
data and neutron density log data are related to the content
and type of clay minerals, indicating that a clay mineral log
interpretation model can be established using multiple linear
regression [15–17]. If the linear relation is unideal, a nonlin-
ear NN method can be used to establish an interpretation
model [18–20].

Well log data are the average value of certain physical
quantities in the rock medium detected by the logging
instrument, e.g., the volume density of the rock can be con-
sidered as the average density of the rock medium (rock
solid skeleton and fluid) in the detection range of the density
logging tool. Sonic transit time can be considered as the
average value of the sonic transit time of multiple rock com-
ponents (rock solid skeleton and fluid) on the sound wave
propagation path. Other log data, such as hydrogen index,
rock natural radioactivity intensity, thermal neutron macro-
scopic capture cross section, and photoelectric absorption
cross section, can be similarly approximated. In this study,
we use these log data to establish an approximate mathemat-
ical model on the relation between log measurement results
(physical) and rock geological parameters (relative volume)
to clearly reflect the physical characteristics of reservoirs.
Moreover, this model can be referred to as a logging
response volume model [21].

When only conventional log data are available, the deter-
mination of log values on the tri-porosity (sonic, neutron,
and density) of dry clay as per the sonic, neutron, and den-
sity log response equations is important for forming a rock
volume physical model with other known parameters. For
example, lower dry clay density, higher sonic transit time,
and higher neutron value led to a lower total porosity in
the formation [22]. Water sensitivity refers to the phenome-
non as per which the content of each clay mineral in the res-
ervoir affects changes in the physical properties of the
reservoir. Therefore, we can use tri-porosity log data to
interpret clay minerals to clearly reflect the physical charac-
teristics of water-sensitive reservoirs.

Because clay types vary with depth, the log values of con-
tinuous depth reflect the comprehensive responses of dry
clay, skeleton minerals (such as quartz), and pore fluids.
Therefore, compared with actual values, the final sonic, neu-
tron, and density values of dry clay may have a large error,
which will considerably affect the evaluation accuracy of
porosity and oil and gas saturation, in addition to regional
geological understanding and technical decision-making of
explorers. Therefore, the logging parameters of dry clay tri-
porosity should be obtained by calculation to continue
research and reduce the error of total porosity calculations.

In this study, we applied tri-porosity log interpretation
data to examine clay minerals in the low-permeability con-
glomerate reservoir of the Lower Karamay Formation in
the 530-well area of District 8 of the Karamay oil field for
research verification. We reported that this data have a sig-
nificant level of applicability and provide a method for
improving the log evaluation of clay minerals in reservoirs.

2. Overview of the Study Area

The Lower Karamay Formation in the 530-well area of
District 8 of the Karamay oil field is located in the north-
western margin of Junggar Basin at the footwall of the South
Baijiantan Fault and the Ke-Wu fault (Figure 1; [23]). The
top surface structure of the reservoir is a northwest–south-
east monocline. Under the traction of thrust fault, the dip
angle of strata close to the northwest fault reaches 45°; fur-
thermore, the dip angle of strata in the southeast slope area
is between 3° and 5° (Figure 2).

The area we select to examine is located in the southeast
extended area. Gradually, the plane thickens from northwest
to southeast and can be longitudinally divided into 5 sand
layers and 14 single-sand layers. The lithology of the area
is primarily glutenite and conglomerate with an average
porosity of 10.6% and an average permeability of 6.1mD
[23], thus making it a low-porosity and low-permeability
reservoir. The considerable difference between the coeffi-
cient of variation and the coefficient of burst indicates that
the reservoir is considerably heterogeneous. In this area,
the Lower Karamay Formation is a fan delta facies deposit.
The sedimentary thickness is between 150 and 190m, the
average thickness is 175m [24], the containing area is
2.6 km2, and the geological reserves are 192:7 × 104 t.

Previously, researchers established a complete set of
stratigraphic sequences in the northwest, south, and east of
the Qigar Basin via detailed research on the geological con-
ditions of the basin. The reservoir sedimentary thickness of
the Lower Karamay Formation in District 8 of this oil field
is between 46 and 221m with an average thickness of
165m. Gradually, the plane thickens from northwest to
southeast, and the reservoir has two sets of sand groups, S7
and S6, on the bottom and top, respectively. The primary
sand layer is S7, whereas the sand groups studied are S7

3,
S7

4, and S7
5. Each layer can be subdivided into four to five

smaller layers, and Well K484 is shown as an example
(Figure 3).

Currently, the reservoir has entered the high water-cut
period development stage. Based on the rerecognition of its
geology, the block is suffering from various problems,
including serious underinjection of water wells, poor effi-
ciency of oil wells, rapid rise in water cut, and significant
decline in production. Because of the water sensitivity of
the reservoir, there is a large gap between the daily injection
level and injection allocation, and the formation pressure
continues to decrease, making it difficult to control.
Although the surface pump increases the injection volume,
efforts toward acidification have been made; the number of
under-injection wells is increasing year by year.
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Furthermore, water sensitivity research has been per-
formed at only a few of cored wells in the study area. Cur-
rently, the water sensitivity data are insufficient to
determine the water sensitivity in the area. Moreover, cumu-

lative water injection of 21 wells in the study area revealed
that injection amounts greatly varied among individual
wells. Thus, the reservoir has high heterogeneity, and the dif-
ferences in water sensitivity are not clearly understood.
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Figure 1: Structural location map of the top surface of the study area.
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Figure 2: Cross-sectional view of the oil layer of the reservoir.
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Therefore, it is necessary to perform an evaluation, interpre-
tation, and distribution study of the water sensitivity of indi-
vidual wells in the low-permeability conglomerate reservoir
in this area.

3. Data Preparation

The physical and chemical properties of clay minerals were
summarized according to the book Clay Mineral and Clay
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Figure 3: Comprehensive histogram of Well K484.

Table 1: Physical and chemical properties of clay minerals.

Characteristic Cation exchange capacity (mg/100 g) Expansibility Specific surface area (m2/cm3)
Relative solubility

HCl HF

Kaolinite 3–15 Nothing 8.8 Slight Slight

Illite 10–40 Quite weak 39.6 Slight Slight to moderate

Smectite 76–150 Strong 34.9 Slight Moderate

Chlorite 0–40 Weak 14 High High

Illite/smectite — Relatively strong 34.9~ 39.6 Mutative Mutative
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Mineral Analysis (Table 1). By comparing the properties of
clay minerals, smectite undergoes the most intense swelling
because of water absorption. Therefore, we can infer that
water sensitivity-related damage is primarily caused by smec-
tite. Accordingly, illite and chlorite have a small influence,
and kaolinite should have almost no water sensitivity. As
per XRD experiments, this area contains illite/smectite
mixed-layer rather than only smectite. Therefore, in this area,
the water sensitivity damage is primarily caused by the water
absorption and expansion of the illite/smectite mixed-layer,
while illite affects the water sensitivity to some extent.

Table 3: Water sensitivity test data of three cores of Well Bai 806.

Well
The sample
depth (m)

Sequence
number

Salinity of injected
water (mg/L)

Pore volume
injected (%)

Sample permeability
(formation) (mD)

Sample permeability
(ionic) (mD)

Bai 806

2592.61

1 32661.02 10.1 0.0672 0.05853

Bai 806 2 16330.51 20.1 0.0457 0.0398

Bai 806 3 0 30.2 0.0274 0.02386

Bai 806

2593.79

1 32661.02 10.1 0.0787 0.0657

Bai 806 2 16330.51 20.1 0.0523 0.04364

Bai 806 3 0 30.2 0.0291 0.02428

Bai 806

2595.39

1 32661.02 10.1 0.101 0.0648

Bai 806 2 16330.51 20.1 0.0584 0.0375

Bai 806 3 0 30.2 0.0334 0.0214

Table 2: Statistics on average clay content in each layer.

Stratum Sample number
I/S mixed layer Illite Kaolinite Chlorite

Interval Mean Interval Mean Interval Mean Interval Mean

S7
3 63 6–88 36.4 3–43 17.13 6–66 31.77 3–52 16.31

S7
4 23 1–60 32.04 4–48 23.08 7–52 28.48 7–66 21.15

S7
5 18 13–73 44.33 3–28 15 5–54 26.21 5–35 16.84
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Figure 4: Analysis of clay mineral composition.

Table 4: Evaluation table for water sensitivity index.

Water sensitivity index Iw (%) Intensity of water sensitivity

IW ≤ 5 None

5 < IW ≤ 30 Weak

30 < IW ≤ 50 Medium weak

50 < IW ≤ 70 Medium strong

70 < IW ≤ 90 Strong

90 < IW Extremely strong
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Figure 5: Graphs of relations between various clay minerals and water sensitivity index: (a) illite/smectite mixed-layer–Iw; (b) illite–Iw; (c)
kaolinite–Iw; chlorite–Iw.

Table 5: Water sensitivity test data.

Well
name

The sample
depth (m)

The sample permeability in the formation
water condition (mD)

The sample permeability in the ionic
water condition (mD)

Iw
Intensity of water

sensitivity

T8084

2218.82 5.62 4.93 0.123665 Weak

2224.87 2.52 2.24 0.110317 Weak

2227.02 51.2 50.78 0.008262 None

2229.52 13.2 12.79 0.031667 None

71146

2182.78 1.49 0.97 0.352349 Medium weak

2258.5 1.44 1.18 0.18125 Weak

2260.65 5.62 5.37 0.045018 None

2359.13 1.57 0.74 0.529299 Medium strong

Jian590
2026.36 0.344 0.157 0.543605 Medium strong

2099.11 0.257 0.1838 0.284825 Weak

Bai 806

2592.61 0.0672 0.05853 0.129018 Weak

2593.79 0.0787 0.0657 0.165184 Weak

2595.39 0.101 0.0648 0.358416 Medium weak

T82012

2209.1 0.188 0.07 0.62766 Medium strong

2213.67 1.55 1.389 0.103871 Weak

2244.55 12.6 12.314 0.022698 None
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3.1. XRD Diffraction Analysis. For better scientific under-
standing of the strata in the study area, rock samples were
collected and classified in the drilling site; furthermore, rep-
resentative rock samples were selected for the XRD analysis

of mineral composition, and a large amount of information
reflecting the characteristics of clay minerals can be provided.

Quantitative XRD analysis of clay minerals can be used
to determine the relative content of each mineral in a
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Figure 6: Comparison of measured and calculated clay mineral content predicted by multiple linear regression: (a) measured–calculated I/S;
(b) measured–calculated illite; (c) measured–calculated kaolinite; (d) measured–calculated chlorite.

Table 6: Basic characteristics of conventional clay minerals.

Clay mineral GR (API) U (ppm) Th (ppm) K (%) DEN (g/cm3) AC (μs/ft) HI

Smectite 150–200 4.3–7.7 0.8–2.0 0.0–1.5 2.0–2.5 364.96 12

Illite 250–300 8.7–12.4 10–25 3.51–8.3 2.7–2.9 172.41 12

Kaolinite 90–130 4.4–7.0 6–19 0.0–0.5 2.4–2.7 217.39 36

Chlorite 180–250 17.4–36 0–8 0.0–0.3 2.76 179.86 36

Table 7: Statistical correlations between clay minerals and logging parameters.

R2 φN φD φS Vsh φN /φD φS/φD φS/φN

Illite/smectite 0.3600 0.2611 0.0424 0.1429 0.0059 0.1340 0.2237

Illite 0.4147 0.3069 0.0449 0.1444 0.0262 0.1521 0.2480

Kaolinite 0.2916 0.1417 0.0773 0.1884 0.0123 0.1918 0.1866

Chlorite 0.4083 0.2098 0.0686 0.1815 0.0388 0.1452 0.2873
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mixture. The higher the content of a mineral in a mixed
sample, the stronger the intensity of its diffraction peak will
be. The diffraction intensity of the mineral is directly pro-
portional to its content in the mixed sample (Figure 4) [11].

Through XRD data analysis, a large number of clay
minerals have developed in the reservoir in the study area
(Table 2), and the cementation between particles was loose,
resulting in particle migration and plugging [10]. With
increase in depth, the content of illite/smectite mixed-layer
increases, and the content of kaolinite decreases, resulting
in a strong reservoir water sensitivity.

3.2. Water Sensitivity Test and Water Sensitivity Index. The
water sensitivity index is a quantitative index for evaluating
the water sensitivity of reservoirs. As per this index, a larger
value indicates a higher water sensitivity. To understand the
water sensitivity of the reservoir, a water sensitivity experi-
ment was performed on the core. The specific methods used
are as follows. First, 16 core specimens were labeled and oil-
washed, and their length, diameter, porosity, and permeabil-
ity were measured. Then, ionic water samples at 32,661.02,
16,330.51, and 0mg/L with different salinity flowed through
the core; furthermore, the corresponding permeability values
were measured, considering the following three samples as
examples (Table 3; [25]). Finally, the water sensitivity indices
of different rock samples were calculated, and the water sen-
sitivity of rock samples was classified as per the established
criteria (Table 4):

The calculation formula for water sensitivity index is
listed below:

IW =
K f − Ki

K f
× 100%, ð1Þ

where Iw is the water sensitivity index, Kf is the permeability
of the rock sample under the condition of formation water,
and Ki is the permeability of the rock sample under the con-
dition of ionic water [25].

The water sensitivity test results from 16 cores from five
wells in the study area are presented in Table 5. Overall, the
water sensitivity index ranged from 0.83% to 62.7% and had
an average value of 21.7%. The water sensitivity intensity
was classified from “none” to “medium strong,” while no
strong water sensitivity was observed.

3.3. Clay Mineral Content. Using the core XRD analysis data,
the rock characteristics were analyzed, thus providing a
foundation for the accurate calculation of the contents of
different types of clay minerals. To summarize, the relative
contents of various clay minerals were obtained from XRD
data of 16 cores from five wells. We considered argillaceous
content to be the clay mineral content. Therefore, the abso-
lute clay mineral content could be obtained as per the clay
content in the core intercalation. The absolute clay mineral
contents are the product of argillaceous content and relative
contents of clay minerals.

The correlations between the water sensitivity index and
each clay mineral were fitted (Figure 5). The illite/smectite
mixed-layer had good correlation with the water sensitivity

index. Moreover, the illite content had a positive correlation
with water sensitivity index; however, the correlations
between kaolinite and chlorite and water sensitivity index
were poor.

Iw, clay mineral content,
logging parameters

Training data
(input, output)

Forecast data
(input, output)

Building
neural network

Neural network
parameter configuration

Neural network
training

Neural network
forecast

Figure 8: Neural network flow chart.
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Figure 7: Neural network principles.

Table 8: Multiple linear regression prediction effect.

Illite/smectite Illite Kaolinite Chlorite

R 0.712 0.752 0.675 0.736

R2 0.5078 0.5655 0.4556 0.5417

Error range ±1.2% ±1.2% ±1.2% ±1.2%
Accuracy rate 60.60% 77.27% 62.12% 68.18%
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3.4. Logging Parameter Selection. Using an in-depth study of
the basic characteristics of conventional clay minerals
(Table 6), the four types of clay mineral had considerable
differences in terms of neutrons, density, sonic transit time,
natural gamma ray spectra, cation exchange capacity, and
other characteristics [17].

In multiple oil fields, it is extremely difficult to calculate
the content of clay minerals because most wells do not pro-
vide natural gamma ray spectral data. Therefore, to build
the calculation model, only natural gamma ray (GR) data,
neutrons (CNL), density (DEN), and sonic transit time
(AC) could be used. To mitigate differences caused by dif-
ferent data attributes in the analysis, the abovementioned
data were quantified without rigidity. Note that neutron,
density, and sonic transit time log values were converted
to neutron porosity (φN), density porosity (φD), and sonic
porosity (φS), respectively; furthermore, the natural gamma
ray log values were converted to argillaceous content (Vsh).
Moreover, the variables φN /φD, φS/φD, and φS/φN were
introduced [17].

The neutron, density, and sonic transit time log values
were converted into the corresponding porosities using the
following formulas:

φN = φN − φNma

φN f − φNma
, ð2Þ

φD = ρNma − ρb
ρNma − ρf

, ð3Þ

φS =
△t −△tNma

△tN f −△tNma
: ð4Þ

φN f is the hydrogen index of the fluid, φNma is the skel-
eton hydrogen index, ρf is the fluid density (g/cm3), ρNma is
the skeleton density (g/cm3), △tN f is the fluid sonic transit
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Figure 9: Comparison of measured and calculated clay mineral content predicted by the neural network: (a) measured–calculated I/S; (b)
measured–calculated illite; (c) measured–calculated kaolinite; (d) measured–calculated chlorite.

Table 9: Neural network prediction effect.

Illite/smectite Illite Kaolinite Chlorite

R 0.8780 0.8768 0.8669 0.9170

R2 0.7710 0.7687 0.7516 0.8408

Error range ±1.2% ±1.2% ±1.2% ±1.2%
Accuracy rate 75.76% 93.94% 87.88% 87.88%
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time (μs/m), and △tNma is the skeleton sonic transit time
(μs/m).

The core and clay mineral content data of 66 sample
points in five wells were differentiated and collected for the
following analysis.

4. Methods

4.1. Method for Quantitative Interpretation of Mineral
Content. The core analysis data of 66 sample points from five
wells on the seven logging parameters were analyzed using a
single correlation analysis to form the correlation coefficient
matrix (Table 7). The overall correlation was reported to be
poor using certain data that exhibited good correlation. An
improved correlation can be considered to correspond to
sensitive clay mineral logging parameters.

4.1.1. Multiple Linear Regression Analysis. Regression
analysis measures general relationships between dependent
variables and independent variables correlated as per a cor-
relation analysis [26]. For practical geological problems,
many independent variables often work together to influ-
ence dependent variables. Furthermore, multiple linear
regression uses the best-fitting straight line (regression line)
to establish a relationship between dependent variable (Y)

and multiple independent variables (X1, X2, and X3). We
used herein multiple linear regression to establish a model
of the relationship between clay minerals and their corre-
sponding sensitive logging parameters to quantitatively
explain the clay mineral content.

Using data analysis, the quantitative prediction model of
each clay mineral was gradually regressed as follows:

VI/S = 19:565 × φN + 19:699 × φD – 2:999 × φS

φN
– 3:543, ð5Þ

VI = 13:559 × φN + 13:548 × φD – 1:852 × φS

φN
– 3:027, ð6Þ

VK = 20:697 × φN − 2:033 × φS

φD
+ 1:245 × Vsh – 1:301, ð7Þ

VC = 20:805 × φN + 10:548 × φD – 2:623 × φS

φN
+ 1:415 × Vsh

– 3:523:
ð8Þ

The clay mineral content can be predicted using the
abovementioned formulae. The predicted clay mineral con-
tent was compared with the measured clay mineral content;

(a) (b)

Multiple linear regression prediction results Neural network prediction results

Figure 10: Method comparison: (a) multiple linear regression prediction results; (b) neural network prediction results.

Table 10: Comparison of clay mineral content prediction accuracy.

Accuracy rate Illite/smectite Illite Kaolinite Chlorite

Multiple linear regression 60.60% 77.27% 62.12% 68.18%

Neural network 75.76% 93.94% 87.88% 87.88%
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moreover, a scatter plot was drawn. Considering the straight
line y = x as a standard, the accuracy was determined to be in
the range of a 1.2% fluctuation (Figure 6, Table 8).

4.1.2. Neural Network Analysis. The accuracy of the multiple
linear regression method is not extremely high. Thus, a
method for establishing the relationship between logging
parameters and clay minerals is proposed based on the use
of a neural network (NN).

An NN is an “operation model” [27] that does not
require a mathematical equation stating a mapping relation-
ship between the input and output to be determined in
advance. It instead learns rules or relations through its own
training process to obtain a result closest to the expected
output value when the input value is provided, converting
N input vectors to M component output vectors. The pri-
mary characteristic of NNs is that, during transmission, the
input signal is processed layer by layer. Accordingly, the

input layer passes via the hidden to output layers, and each
layer of neurons only affects the state of the next layer of
neurons. If the output layer does not obtain the expected
output, the network weight along with various other param-
eter configurations will be adjusted to achieve a predicted
output close to the expected output value [28, 29].

Generally, an NN is a nonlinear and adaptive informa-
tion processing system composed of a large number of
processing units. Similar to an intelligent information pro-
cessing system, the core of an artificial neural network is
an algorithm. The basic principle is given below (Figure 7,
[18, 27]).

X1, X2,⋯, Xn is the input value of the neural network,
Y1, Y2,⋯, Ym is the predicted value of the network, both
ωij and ωjk are the weight of the network.

Here, the NN input value was set based on the sensitive
logging parameters of 66 core samples from five standard
wells (T8084, T82012, Bai 806, 71146, and 71116; Table 7),

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 0.2 0.4 0.6 0.8

Th
e p

re
di

ct
ed

 I w

The measured Iw
(a) (b)

Scatter diagram Histogram

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

The measured Iw
The predicted Iw

Figure 12: Comparison diagram of measured Iw and predicted Iw: (a) scatter diagram; (b) histogram.
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Figure 11: Comparison of measured Iw and predicted Iw: (a) scatter diagram; (b) histogram.
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and the output value was the clay mineral content of the cor-
responding depths. The logging parameters of 78 wells in the
study area were used to train the NN, and the quantitative
relationship between the input and output was obtained.
This was then used to predict the content of various clay
minerals in other wells.

The basic process of the NN method is listed below
(Figure 8).

On the basis of depth correction, training and prediction
data are first read. Then, the following processes are
employed:

(1) Network Parameter Configuration. The network
parameters are set as per the actual situation of the
study area, e.g., the samples were randomly divided
as follows: 70% of samples were selected as test data,
15% of samples were selected as validation data, and
15% of samples were selected as testing data. The
number of hidden neurons was 10

(2) NN Training. The input value of the sample is fit to
the output value

(3) NN Prediction. The logging parameter part of the
sample to be predicted is entered to predict the clay
mineral content [27]

Logging curves with good correlation with each mineral
were selected to fit the clay mineral content in turn. The fit-
ting relation obtained by NN during training is used to pre-
dict clay mineral content. Then, the predicted clay mineral
content is compared with the measured content, and a scat-
ter chart is drawn. Considering the straight line y = x as a
standard, the accuracy was determined to be within a range
of a 1.2% fluctuation (Figure 9 and Table 9).

4.1.3. Method Comparison. By comparing the accuracy of
these two methods, multiple linear regression calculation of
clay mineral content was affected by multiple variables,

and its accuracy was low (Figure 10 and Table 10). Further-
more, the NN machine learning method exhibited a strong
correlation and high accuracy between the clay mineral pre-
diction and measured clay minerals. Thus, in the study area,
the NN method can be considered as the preferred method
for clay mineral log interpretation.

4.2. Water Sensitivity Index Interpretation Method. As per
the absolute content of clay minerals in the 16 cores from
the five wells, the relationship between the water sensitivity
index and absolute clay mineral content was analyzed along
with the water sensitivity test data. Graphs demonstrating
the contents of four types of clay minerals in relation to
water sensitivity index were then established. By comparing
the relationship between the four clay minerals and water
sensitivity index, a larger coefficient leads to a greater contri-
bution to water sensitivity. However, a smaller one leads to a
lower contribution. The linear regression equations of these
four types of clay minerals and the water sensitivity index
were obtained as follows:

Iw = 0:2355 × VI/S − 0:0444, ð9Þ

Iw = 0:1567 ×VI + 0:0363, ð10Þ
Iw = 0:0897 × VK + 0:0396, ð11Þ
Iw = 0:0684 ×VC + 0:0877, ð12Þ
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Figure 13: Comparison diagram of measured Iw and predicted Iw: (a) scatter diagram; (b) histogram.

Table 11: Comparison table of water sensitivity index prediction
accuracy.

Methods Accuracy rate

Single factor linear regression 43.75%

Multiple linear regression 12.50%

Neural network 93.75%
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where Iw is the water sensitivity index, VI/S is the illite/-
smectite mixed-layer content, VI is the illite content, VK is
the kaolinite content, and VC is the chlorite content.

4.2.1. Single-Factor Linear Regression Method. Single-factor
linear regression uses the best-fit straight line (known as
the regression line) to establish a relationship between the
dependent variable (Y) and an independent variable (X).
The illite/smectite mixed-layer is the main mineral affecting
water sensitivity. The single-factor linear regression method
was used to establish the relationship between the water sen-
sitivity index Iw and the illite/smectite mixed-layer to calcu-
late the water sensitivity index Iw. The fitting formula used
was Iw = 0:2355 ×VI/S – 0:0444. Using this formula to pre-
dict the water sensitivity index and comparing the predicted
water sensitivity index with the measured one, the errors of
the seven points were within ±0.05 in the 15 samples, and
the accuracy rate was 43.75% (Figure 11).

4.2.2. Multiple Linear Regression. Generally, multiple linear
regression is more effective and useful than single-factor lin-
ear regression for prediction or estimation. Because kaolinite
has almost no water sensitivity, the relational model between
water sensitivity index Iw and the other three clay minerals
was established using multiple linear regression to calculate
the water sensitivity index Iw. The fitting formula used to
predict the water sensitivity index was Iw = 0:021 ×VI/S +
0:095 × VI + 0:042 ×VC + 0:11. By comparing the predicted
water sensitivity index with the measured water sensitivity

index, in 15 samples, only two points had an error within
±0.05; however, their accuracy was 12.50% (Figure 12).

4.2.3. Neural Network Analysis. In terms of the clay mineral
interpretation, only input and output data used were the
water sensitivity index and clay mineral content, respec-
tively. Furthermore, we used MATLAB for the NN opera-
tions. The water sensitivity index and water sensitivity
mineral data of 16 sample points in five wells were input
as two variables into MATLAB. The NN then used these
for training to obtain a better correlation for the system with
the aim of predicting the water sensitivity index. Comparing
the predicted water sensitivity index with the measured
water sensitivity index, out of the 16 samples, 15 points
had an error within ±0.05, and the accuracy rate was
93.75% (Figure 13).

4.2.4. Method Comparison. Based on a comparative analysis
of the accuracy of the abovementioned methods (Table 11),
the NN machine learning method yielded a stronger correla-
tion between the predicted and the measured water sensitiv-
ity index while the accuracy was high. Therefore, the NN
machine learning method can be considered the preferred
method for predicting the water sensitivity index in the
research area.

4.3. Predicting Outcomes. Based on the above prediction
method, clay mineral content was used as the medium to
interpret the water sensitivity intensity, and 1,223 reservoir
intervals from 78 wells in the study area were interpreted.

(a) (b)

Water sensitivity interpretation diagram of Well 80450 Water sensitivity interpretation diagram of Well 80558

Figure 14: Individual well water sensitivity interpretation diagram: (a) water sensitivity interpretation diagram of Well 80450; (b) water
sensitivity interpretation diagram of Well 80558.
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Two particular wells are obtained as examples (Figure 14). In
this figure, 1 represents no water sensitivity, 2 represents
weak sensitivity, 3 represents medium-to-weak sensitivity, 4
represents medium-to-strong sensitivity, 5 represents strong
sensitivity, and 6 represents extremely strong sensitivity.

5. Conclusion

This study introduces the use of an NN in the interpretation
of water sensitivity logs. A linear regression and an NN were
used to calculate the clay minerals and water sensitivity
index of glutenite in the Lower Karamay Formation in the
530-well area of District 8 in the Karamay oil field. The
following conclusions were drawn:

(1) In the absence of natural gamma ray spectral data,
gamma, neutron, density, and sonic log data can be
used to establish a clay mineral content model

(2) The NN model was able to retain details on clay
mineral changes when calculating clay mineral con-
tent in this area as well as calculate the water sensi-
tivity index values. This makes it possible to more
accurately represent the changes in the water sensi-
tivity of the formation. Compared with multiple
linear regression, the NN method has a number of
obvious advantages. The prediction results agree
with the water sensitivity test results; furthermore,
the accuracy rate was high, indicating this method
can provide a more realistic basis for future explora-
tion and development
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