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A B S T R A C T   

The reservoir rocks in the volcanic strata of the Jilin oil field are characterized by great complexity and diversity 
in composition and structure of lithology. To enhance the rate of lithology identification in subsurface is very 
laborious. However, lithology identification is often ignored in quantitative studies, though it is the basis for 
reservoir characterization. In this paper, an ensemble learning algorithm named gradient boosting decision tree 
(GBDT) was used to establish the classification model for the volcanic lithology identification of the Lower 
Cretaceous Yingcheng Formation in the Songliao Basin, NE China. At the same time, support vector machine 
(SVM), logistic regression (LR) and decision tree (DT) classification models were also adopted in contrast with 
the classification accuracy of GBDT model. Subsequently, the optimal key parameters for each model were 
determined by employing validation curves and GridSearchCv. These results indicate that the GBDT model is 
superior to the single classifier and can accurately distinguish the lithologic interface of breccia tuff and rhyolite. 
Moreover, it also has better recognition ability for thin layer. It was concluded that the ensemble learning al-
gorithm GBDT has significantly enhanced the accuracy of lithology identification and can be used as a lithologic 
identification technology.   

1. Introduction 

According to history of petroleum, the major targets of petroleum 
exploration and exploitation around the globe are often clastic and 
carbonate reservoirs. Less concentration is given to the deeply buried 
volcanic reservoirs due to their complicated lithologies and lithofacies 
characteristics (He et al., 2020). Since the first discovery of volcanic 
hydrocarbon reservoir in San Joaquin basin, California, USA in 1887, 
significant advances have been made in volcanic hydrocarbon explora-
tion. More than 300 volcanic or volcanic-related reservoirs have been 
found worldwide, of which 169 volcanic hydrocarbon reserves have 
been proven (Petford and Mccaffrey, 2003). Statistically, there exist 
abundant oil and gas resources in global volcanic reservoirs, containing 
a total of 65.5 × 108 tons of proven oil reserves and 36 × 108 tons of gas 
(Schutter, 2003). An example is the Cristales oil field of the North Cuba 
basin where more than 3425 tons of oil per day (t/d) were successfully 
extracted from depths exceeding 2000 m (Zou et al., 2008). Addition-
ally, in the Yoshii-Kashiwazaki gas field in the Niigata Basin, single wells 

produce up to 49.5 × 104 cubic meters of gas per day (m3/d) through the 
rhyolite reservoir (Zhang et al., 2008; Wang et al., 2015). China has also 
initiated many volcanic hydrocarbon explorations at depths greater than 
3000 m (Zishu and Wu, 1994; Mao et al., 2015; Feng, 2008). China's 
volcanic hydrocarbon exploration target has the characteristics of larger 
size and deeper-layer formations compared with other analogous vol-
canic oil and gas fields throughout the world (Jia et al., 2016). Deep- 
layered formations, especially volcanic strata, represent the major tar-
gets of exploration in the Songliao Basin. Several huge gas fields with 
reserves of over 100 billion cubic meters have been found, including 
Changling, Yingtai, and Wangfu gas fields (Zhang et al., 2015; Zhang 
et al., 2017). As the fourth strategic energy succession region of 100 
billion cubic meters of natural gas exploration of Jilin oilfield, industrial 
gas flow has been obtained from wells in the strata of Huoshiling for-
mation, Shahezi formation and Yingcheng formation in Dehui fault 
depression (Fig. 1a, b). The main formation of this gas field is Cretaceous 
in age, buried at a depth of more than 3000 m. However, the compli-
cated geological conditions of volcanic gas reservoir have resulted in 
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great complexity and diversity in composition and structure of volcanic 
lithology and lithofacies. 

In recent years, researchers have reached broad agreement about the 
physical properties and reservoir space of volcanic reservoirs in different 
regions(Sun et al., 2019; Feng et al., 2018; Gong et al., 2017). However, 
for volcanic oil reservoirs, no practical mature methods or techniques to 
effectively identify the volcanic lithology are available. In the research 
of igneous reservoir, lithology identification is the basis of reservoir 
characterization (Ye et al., 2017; Han et al., 2018). Different types of 
volcanic lithology have distinct petrological characteristics and mineral 
assemblage types, and different logging numerical characteristics and 
pattern combination relationship of logging curves. It is very chal-
lenging to improve the rate of lithology identification in igneous reser-
voirs. Core analysis is the most direct and effective method for 
identifying the lithology of volcanic rocks, but due to the high cost of 
coring, it is almost impossible to take cores in every single well. It is, 
therefore, crucial to make full use of conventional logging data to 
identify the lithology of volcanic rocks. The lithology in the study area is 
predominantly acidic volcanic rocks, therefore, the change in compo-
sition is relatively small, while variation of structure exhibits different 
logging response of resistivity (RLLD, RLLS), density (DEN), acoustic 
slowness (AC), and compensated neutron log (CNL) values. A more 
traditional method of identifying volcanic lithology based on well log 
data is the use of cross plots (Zhang et al., 2017). At present, many 
machine learning methods have been introduced into volcanic lithology 
identification, including neural network, support vector machine (SVM), 
logistic regression (LR) and decision tree (DT). These methods have 

various applications in different research areas, but they all have their 
own limitations. Supported vector machine algorithm is difficult to 
implement for large-scale training samples and neural network is easy to 
fall into local optimum (Alpaydin, 2014; LeCun et al., 2015). Logistic 
regression and decision tree are easy to under fit, resulting in low clas-
sification accuracy (Guoyin et al., 2018; Guo and Liu, 2016; Camila 
et al., 2018). 

The goal of this study is to distinguish the acidic volcanic rocks with 
similar composition but different structures in deep buried volcanic 
strata within the working area of Baojia sag, Dehui fault depression 
(Fig. 1b). Based on the conventional logging data of the working area, 
this paper innovatively introduces the ensemble learning algorithm 
named gradient boosting decision tree (GBDT) into the study of lithol-
ogy identification. Experiments show that the GBDT algorithm has 
higher classification performance than the traditional classification 
model and can be used as a lithologic identification technology. The 
results allow us to improve our analysis of volcanic reservoir intervals 
and subsequent identification of volcanic lithofacies. 

2. Geological setting 

The Dehui Fault Depression is 4053 km2 in size and is located in the 
middle of southeast uplift of Songliao Basin. The Dehui Fault Depression 
is a secondary tectonic unit of Songliao Basin, which is east of the 
Nongan Uplift, south of the Wangfu Fault Depression, west of the Jiutai 
Uplift, and north of the Huaide Uplift and the Lishu Fault Depression 
(Fig. 1a). The Dehui Fault Depression can be further divided into seven 

Fig. 1. Location of the Dehui Fault Depression and division of its tectonic units. (a) Tectonic components of the Songliao Basin, including two uplifts, two de-
pressions, one plunge and one slope area. The Dehui Fault Depression is located in the Southeast Uplift of the Songliao Basin. (b) The Baojia Sag, located in the north- 
eastern part of the Dehui Fault Depression of the Southeast Uplift(modified from Jilin Oilfied). (c) The depth-domain map of Cretaceous strata in the study area. 
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sub structural units, namely the Nongan graben, the Huajia sag, the 
Baojia sag, the Helong sag, the Lanjia sag, the Nongan South sag and the 
Longwang sag. The study area, which measures 300 km2, is located in 
the Baojia Sag (Fig. 1b). 

Within this gas field, hydrocarbon reservoirs have been identified in 
Cretaceous and Jurassic strata. Natural gas production from Cretaceous 
reservoirs accounts for a large amount of total gas production (Libin 
et al., 2006). The Cretaceous strata can be divided into two series (Upper 
and Lower Cretaceous) and nine formations (Fig. 2). From bottom to top, 
these Cretaceous strata are divided into the Shahezi Formation (K1sh), 
Yingcheng Formation (K1y), Denglouku Formation (K1d), Quantou 
Formation (K1q), Qingshankou Formation(K2qn), Yaojia Formation 
(K2y), Nenjiang Formation(K2n), Sifangtai Formation(K2s) and Min-
gshui Formation(K2m) (Yang et al., 2019; Jing and Liande, 2016). 

The Baojia Sag experienced multiple stages of tectonic movements in 
the early Yingcheng formation(Shuangfang et al., 2010). Meanwhile, 
multi-phase volcanic eruption has generated large sets of volcanic 

construction accompanied with the strong tectonic movement (Hui-
guang et al., 2011),thus resulting in forming volcanic structural traps in 
the local area, which provide favorable reservoir for hydrocarbon 
enrichment of Yingcheng formation. 

3. Data and method 

The study area consists of the Baojia sag of the Jilin Oilfield (Figs.1b 
and 1c). To date, a total of 26 wells have been drilled in the Cretaceous 
strata, including 18 vertical wells, and 8 inclined wells, with depths 
exceeding 3000 m. Core samples (including thin sections) and imaging 
logging data (mostly in the form of formation microscanner images 
(FMI)) provided direct evidence for volcanic rock identification. Hence, 
conventional logging data, which are calibrated by cores and FMI, could 
serve as sufficient information for establishing machine learning model 
for identification of volcanic rocks. 

Ensemble learning is a new machine learning paradigm, which 

Fig. 2. Stratigraphic column of the Jilin Oilfield.  

Fig. 3. Workflow of GBDT algorithm.  
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constructs multiple learners to solve the same problem (Avnimelech and 
Intrator, 1999; Elghazel and Aussem, 2015; Miyoshi et al., 2006). By 
referring to the gradient descent method, its underlying principle which 
is training the newly added weak classifier according to the negative 
gradient information of the loss function of the current model is applied 
(Fig. 3; Li et al., 2018; Sakhnovich, 2007). Subsequently, the trained 
weak classifier will be appended to the existing model. The GBDT al-
gorithm can be explained as the adoption of a decision tree as the weak 
classifier in a gradient boosting algorithm (Liao et al., 2016; Jin Yuan 
et al., 2018; Xin et al., 2019). The workflow of GBDT algorithm is as 
follows: 

(1) Initializing the model with constantγ0 

F0(x) = argmin γ0
∑n

i=1
L(yiγ0) (1) 

(2) For m from 1 to M: 
(a) The negative gradient of loss function is used to approximate the 

value of residual in the current modelFm − 1(x): 

rim = −

[
∂L(yiF(xi) )

∂F(xi)

]F(x)=Fm− 1(x)

f or i = 1, 2,…, n. (2) 

(b) In accordance with the training set{(xi, rim)}
n

i = 1 , a base lear-

nerhm(x)is constructed to fit the pseudo residual. 
(c) The multiplierγm is calculated by the following one-dimensional 

optimization problem: 

γm = arg γ min
∑n

i=1
L(yiFm− 1(xi) + γhm(xi) ) (3) 

(d) The model is then updated 

Fm(x) = Fm− 1(x) + γmhm(x) (4) 

(3) OutputFM(x)stands for the prediction of a strong classifier 
composed of a series of weak decision tree models. 

Fig. 4. Characteristics of volcanic reservoir cores: (a) Rhyolite, marked by vesicular structure, well DS63, 2394.60 m. (b) Dacite core interval, a series of steep 
fractures were encountered, well DS7, 2083.00–2085.70 m. (c) Tuff, steep fracture filling calcite, well DS83, 4086.08 m. (d) Tuffite, well DS80, 2562.00 m. (e) 
Ignimbrite, characterized by welded structure, with coarse grain size, well DS80, 2582.50 m. (f) Breccia tuff, finer grain size than ignimbrite, well DS80, 2543.00 m 
(g) Diabase, fine to medium grain size, well DS80, 4158.00 m. 
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4. Application and results 

4.1. Rock type and characteristics 

Detailed lithology analysis was performed on the studied wells on 
whole cores and core plugs of the Yingcheng Formation. Accordingly, 
these core samples were analyzed with casting and conventional thin 
section. Additionally, imaging logging, which can obtain high- 
resolution images (as data are collected by vertically scanning the for-
mation at 2.5 mm intervals) and identify structure characteristics of 

volcanic rocks within the borehole, is an effective tool for us to better 
understand the development of volcanic reservoirs. Through the above 
dataset, there are mainly three categories (volcanic lava, pyroclastic 
rock and intrusive rock) and seven kinds (rhyolite, dacite, tuff, tuffite, 
breccia tuff, ignimbrite and diabase) of volcanic rock types in the study 
area. 

Volcanic lava mainly consists of rhyolite and dacite. Core from (a) 
depth of 2394.6–2394.8 m in Well DS63 in the Yingcheng Formation 
represents a typical rhyolite development section, the core sample is 
generally greyish-white and features the development of vesicular 

Fig. 5. Thin-section photomicrographs: (a) 
Spherulite rhyolite, developing vesicular 
structure, well DS110, 3220.00 m. (b) 
Dacite, micro-fractures filled by organic 
matter, carbonate metasomatism were dis-
played locally, well DS17, 2237.34 m. (c) 
Tuff, chloritization and carbonate meta-
somatism can be observed, well DS104, 
3060.00 m. (d) Tuffite, no porosity were 
observed under microscope, carbonate 
metasomatism and micro-fractures filled by 
organic matter were recorded, well DS33, 
2897.60 m. (e) Breccia tuff, tuff fillings were 
obviously dissolved, well DS80, 2740.60 m. 
(f) Ignimbrite, under plane polarized light, 
dissolved microfractures and dissolved pores 
(generated by devitrification of tuff, seen in 
Fig. 7g) were encountered, well DS80, 
2522.00 m. (g) Ignimbrite, under perpen-
dicular polarized light, devitrification of tuff 
and carbonate metasomatism were observed, 
well DS80, 2522.00 m. (h) Diabase,the 
chloritization in the feldspar was developed 
and micro pores were observed, well DS80, 
4158.00 m.   
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Table 1 
Well log responses of different volcanic lithology.  

Volcanic lithology GR 
(API) 

AC 
(μs/ft) 

RHOB 
(g/cm3) 

CNL 
(%) 

RLLD 
(Ω⋅M) 

RLLS 
(Ω⋅M) 

Rhyolite 128.4–217.8 53.0–59.3 2.06–2.66 1.05–13.02 96.1–1990.6 73.1–1686.8 
172.8 55.8 2.59 3.28 874.6 248.4 

Dacite 130.8–201.1 54.2–63.7 2.50–2.67 3.02–8.57 35.8–332.7 43.5–610.3 
153.5 57.9 2.61 5.22 181.3 251.2 

Tuff 80.3–321.3 50.2–73.7 2.04–2.71 3.54–20.05 44.4–1986.2 41.2–1981.5 
159.7 57.3 2.54 8.75 612.1 586.4 

Tuffite 107.7–266.0 51.3–74.8 2.11–2.64 5.86–38.14 22.9–1961.5 27.4–1625.5 
167.2 57.6 2.53 14.0 346.6 314.6 

Breccia tuff 76.8–324.1 51.8–67.1 2.02–2.70 4.14–23.14 30.6–1796.8 35.2–1852.0 
167.2 57.3 2.57 10.47 345.4 334.3 

Ignimbrite 35.3–99.7 56.3–83.9 2.18–2.69 5.87–38.01 8.6–733.1 7.8–523.4 
606 71.9 2.54 23.46 48.2 36.9 

Diabase 22.7–84.6 48.7–69.7 2.12–2.91 0.14–30.99 10.3–1948.4 7.9–1667.1 
39.7 55.4 2.71 11.00 257.4 149.9 

Minimum-Maximum       
Average        

Fig. 6. FMI images of different volcanic lithology: (a) Rhyolite, showing the development of flow structure, well DS83,4341.00–4343.00 m. (b)Tuffite, featured by 
layering development, well DS80,2925.00–2927.00 m. (c)Tuff with tuffaceous structure, well DS83,4138.00–4140.00 m. (d) Breccia tuff, porphyritic structure, well 
DS83,4288.00–4290.00 m. (e) Ignimbrite, marked by blocky structure, well DS80,2581.00–2583.00 m. (f) Diabase, blocky structure with well-developed fracture, 
well DS80,4158.00–4160.00 m. 
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structure (Fig. 4a). It shows a very characteristic flow structure (Fig. 6a) 
and is marked by vesicular characteristic under microscope (Fig. 5a). 
Conventional logging was characterized by high natural gamma ray 
radiation (>150API), low acoustic slowness, high density, low neutron 
porosity, low resistivity and moderate-to-low compensated neutron log 
values (Table 1). The dacite core was obtained from a depth of 2083.00 
to 2085.70 m in Well DS7 and the core section contains a series of steep 
fractures (Fig. 4b). Additionally, micro-fractures filled by organic matter 
were also recorded during the thin section studies (Fig. 5b). Compared 
with rhyolite, which are relatively denser, the dacite interval exhibited 
lower resistivity (RLLD, RLLS), lower density (DEN), lower natural gamma 
ray radiation (GR), higher acoustic slowness (AC), and higher compen-
sated neutron log (CNL) values (Table 1). 

Pyroclastic rock comprises of tuff, tuffite, breccia tuff and ignimbrite. 
Their conventional well logging values are recoded in Table 1. Inter-
section of two kinds of conventional logging data shows that there are 
overlapping zones over different lithology (Fig. 7). The cores spanning a 
depth of 2500 to 4200 m were obtained from Well DS83 and DS80 in the 
Yingcheng Formation. Tuff and tuffite have greyish-white and grey color 
(Fig. 4c, d), with grain size less than 2 mm, and the tuff core has been 
partially cemented by calcite (Fig. 4c) while the tuffite has the charac-
teristic of layering development (Fig. 4d). In contrast, breccia tuff and 
ignimbrite have greenish grey or dark color and breccia makes up 15% 
portion of the core sample (Fig. 4e, f). Petrographic studies on cores and 
thin section samples obtained from the Yingcheng Formation indicated 
that the Yingcheng Formation has been subjected to various diagenetic 

Fig. 7. The multi-curve cross plot of volcanic lithology.  

Fig. 8. Sketch of 10-folder cross validation.  
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Fig. 9. Validation curves for key parameters of different classifiers.  
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alterations. Dissolution is one of the most important diagenetic pro-
cesses in terms of porosity generation in the Yingcheng Formation. It is 
recorded in most thin sections in the pyroclastic rock and is marked by 
feldspar dissolution facies (Fig. 5e, f). Moreover, the Yingcheng For-
mation has been greatly affected by metasomatism during the burial 
within the area. Carbonate metasomatism are the main features 
observed in thin sections of this formation (Fig. 5g). The pyroclastic 
rocks appear as distinct structure on FMI image. Tuffite, tuff, breccia tuff 
and ignimbrite are characterized by lamellar, tuffaceous, porphyritic, 
and blocky structure, respectively (Fig. 6b, c, d, e). 

Diabase is the most common intrusive rock in the study area, which 
belongs to basic hypabyssal intrusive rock with fine to medium grain 
size through core observation (Fig. 4g). Also, the feldspar is alternated 
by chlorite and micro pores were observed under microscope (Fig. 5h). 
The diabase is imaged as blocky structure on FMI (Fig. 6f). 

4.2. Model establishment of lithology identification 

The fundamental data of lithology analysis is various logging curves 
related to lithology, therefore, conventional logging data, which are 
calibrated by cores and FMI, can serve as training data to identify li-
thology. On the basis of logging response mechanism of petrophysics, 6 
conventional logs (GR, AC, RLLD, RLLS, DEN, CNL), which are sensitive to 
lithology, were selected to be the original input features of the model, 
whereas the output is volcanic lithology. Before the experiment, the 
training data were preprocessed to improve the quality of the data: the 
abnormal data caused by human or external factors were eliminated. 
Subsequently, the data were normalized from 0 to 1, avoiding the in-
fluence of dimension on prediction results. These ‘calibrated’ data were 
collected from Well DS80, Well DS83, Well DS7 and Well DS63. A total 
of 9724 data points were obtained from the Yingcheng formation. 6806 
(approximately 70%) data points were randomly selected as training 
samples and the rest served as test samples to check the efficacy and 

reliability of the proposed method. The methods of DT, SVM, LR, and 
GBDT algorithms were used respectively to construct the model. 

4.3. Parameter optimization 

4.3.1. Cross validation 
Cross validation is a common approach in machine learning to build 

models and verify model parameters. It can be explained as follows: the 
training data set were grouped into training and validation data sets. 
The training set was used to train the classifier while the validation set 
was employed to test the model trained by the training set (Krogh and 
Vedelsby, 1995). In this paper, 10-folder cross validation (Fig. 8) was 
adopted to conduct the experiment. The original training data were 
grouped into 10 sections (generally equally), a validation set was set for 
each subset of the data, and the rest of the 9 groups were taken as the 
training set. Consequently, we can get 10 models. Average classification 
accuracy of the validation set of the 10 models is regarded as the per-
formance index of the classifier under the 10-folder cross validation. 10- 
folder cross validation can effectively avoid the occurrence of over 
fitting and under fitting. Furthermore, the final result is more convincing 
in the sense that almost all samples in each round have been used for 
training the model. 

4.3.2. Validation curves 
The validation curve determines whether the model is over-fitting or 

under-fitting by virtue of the values of some hyperparameters by 
drawing the curve of a single hyperparameter with training score and 
cross validation score (Airola et al., 2011). In instances where the 
training score and the cross validation score are very low, the classifier 
may not be suitable due to possible occurrence of under-fitting. Over- 
fitting may also occur if the training score is high and the validation 
score is low. The performance curves of vital hyperparameters for 
different model are drawn in Fig. 9. 

Fig. 10. Learning curve of different classifiers.  

Z. Yu et al.                                                                                                                                                                                                                                       



Journal of Applied Geophysics 194 (2021) 104443

10

4.3.3. Grid search 
By selecting a reasonable parameter range, the optimal parameter set 

of the model can be sought out automatically by using Grid search (Ji 
et al., 2008). The essential idea is to divide the parameters to be opti-
mized into grids in a certain space, searching for the optimal parameters 
by traversing all the intersections in the grid. In accordance with the 
given model, cross validation can be automatically carried out. Addi-
tionally, the validation curve can help specify the search scope, thus 
considerably increasing the efficiency. Table 2 shows the parameters 
requiring adjustment of each model and corresponding optimal 
parameters. 

4.4. Model evaluation 

There are many evaluation indexes in machine learning over classi-
fication problems, such as learning curve, F1 score, ROC curve. Fig. 10 
shows the learning curve of the four classifiers. The result shows that 
SVM has the best performance in a single classifier, while LR and DT 
have the problem of underfitting. Meanwhile, the GBDT model out-
performs the single classifier and the score can reach approximately 0.9. 

With regard to binary classification, the concerned classes are 

ordinarily designated as positive class while other classes are designated 
as negative class. The prediction results of the classifier on the test set 
are only true or false. Confusion matrix is a visual tool in supervised 
learning, which is mainly employed to compare the prediction results 
and genuine results (Mitchell, 2003; Yang et al., 2019). Each row in the 
matrix represents the predicted label, and each column represents the 
true label. The confusion matrix of classification results is shown in 
Table 3. 

However, accuracy is not the only index used in unbalanced binary 
classification. PrecisionPr, recallReandf1score are also employed as 
important indexes to evaluate the performance of the algorithm. They 
are defined as follows: 

Pr = NTP/(NTP + NFP) (5)  

Re = NTP/(NTP + NFN) (6)  

f 1 = 2(1/Re + 1/Pr)− 1
= 2

PrRe
Pr + Re

(7) 

Where precisionPr represents the true positive proportion of the 
samples predicted as positive (i.e. how many of the found were correct 

Fig. 11. Confusion matrix of f1 score over different classifiers.  
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hits). Recall literally is how many of the true positives were recalled 
(found), i.e. how many of the correct hits were found.f1 score is the 
harmonic average of precision and recall. It is commonly used as eval-
uation metrics in many cases because there is a reciprocal relationship 
between precision and recall. A stable algorithm should simultaneously 
maximize both precision and recall. Blindly increasing either precision 
or recall may be of no significance since f1 score will be high under 
circumstance of either high precision or recall. 

Tables 4 and 5 show the precision, recall, andf1score for each type of 
lithology on the test set over different classifiers. The result showed that 
SVM has the best performance in a single classifier, and the average 
value off1score reached 81.2%, while LR and DT can only reach 72.8% 
and 70.2%, respectively. Evidently, GBDT has significantly enhanced 
the efficiency of the classifier by increasing the f1 score up to 87.1%. 

4.5. Results 

Fig. 11 shows the confusion matrix of f1 score of 7 kinds of lithology 
over different classifiers on test samples. Among the single classifier, the 
f1 score of rhyolite and dacite are relatively high (exceeding 90%), while 
tuffite has the lowest, with 41%, 53% and 22% in the DT, SVM and LR, 
respectively. Evidently, the model constructed by GBDT algorithm 
performs superior to the three single classifiers, the f1 score of tuffite 
increased to 63%. The average accuracy of each lithology can reach up 
to 85.6%. 

Fig. 12 shows the result of volcanic lithology identification of well 
DS83 from a depth of 4086 to 4396 m. Identification results of different 
classification models are contrasted with the logging profile (which has 
been accurately calibrated by FMI) of this well. It can be seen that the 
GBDT model has the best performance on lithology identification. It has 
a satisfactory application on breccia tuff, tuff and rhyolite, which can 
accurately distinguish their lithologic interface. Nevertheless, the tuff 
and tuffite are easily misjudged and intersected. The confusion matrix 
also indicates that the two lithologies tend to be obscure, which is 
mainly due to the little difference in mineral composition contents with 
distinct origin. Additionally, thin layers with small thickness can be 
identified by the GBDT model. Considering the breccia tuff interval 
developed within a buried depth of 4225.1–4226.7 m, only the recog-
nition results of GBDT model is consistent with the lithologic interpre-
tation results of logging. Fig. 13 shows the result of volcanic lithology 
identification of well DS107 from a depth of 2800 to 2950 m. It can be 
seen that the GBDT and SVM model has the best performance on li-
thology identification. It has a satisfactory application on breccia tuff 
and ignimbrite, while DT and LR model tend to misjudge the tuff and 
breccia tuff. 

5. Discussion 

Volcanic reservoirs in deep buried Cretaceous strata are heteroge-
neous, making effective exploration relatively challenging. Lithology 

Fig. 12. Lithology identification results of well DS83.  

Z. Yu et al.                                                                                                                                                                                                                                       



Journal of Applied Geophysics 194 (2021) 104443

12

identification is the groundwork in research of this kind of reservoir. 
Therefore, it is crucial to undertake related work to enhance the accu-
racy of lithology identification (Zhang et al., 2015). In this study, we 
presented a new ensemble learning algorithm (namely GBDT) to address 
this problem. Firstly, conventional logging data, which are calibrated by 
cores and FMI, can serve as training data to help establish the model. To 

avoid the occurrence of over-fitting and under-fitting, 10-folder cross 
validation was adopted to conduct the experiment so that all samples in 
each round could be used for training the model. It is critical and 
challenging to achieve the best accuracy without over-fitting and under- 
fitting. Validation curves and GridSearchCv were employed to deter-
mine the optimal key parameters for each model to find the balance 
between under-fitting and over-fitting. These results indicated that SVM 
and DT outperformed LR in the single classifier. Logging curves are 
highly nonlinear related. A strong classifier such as SVM and DT can 
better adapt to the irregular data while LR is a linear model. Therefore, 
they can achieve better classification results than LR. The GBDT model is 
superior to the single classifier and can accurately distinguish the lith-
ologic interface of breccia tuff and rhyolite. Moreover, it also has better 
recognition ability for thin layer. Rhyolite and dacite have large quantity 
of samples, the number of which is approximately five times the tuffite. 
This makes the classification result of rhyolite obviously surpass that of 

Fig. 13. Lithology identification results of well DS107.  

Table 2 
Critical hyperparameters and optimal parameter values for each classification 
model.  

Classification 
model 

Optimized parameter Search 
range 

Optimal 
parameter 

DT Feature selection criterion Gini/ 
Entropy 

Entropy 

Maximum depth of the 
tree 

1– 20 10 

SVM Parameter γ of kernel 
function 

1– 50 19 

Penalty C 10− 3– 102 82.86 
LR Regularization strategy L1/L2 L1 

Penalty C 10− 3– 102 79.06 
GBDT Number of estimators 1– 100 56 

Learning rate 0.01– 1 0.23 
Subsample 0– 1 0.16 
Maximum depth of the 
tree 

1– 20 7  

Table 3 
Confusion matrix of classification results.  

True label Predict label 

Positive Negative 

Positive NTP NFN 

Negative NFP NTN  
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the tuffite in the single classifier. However, for this kind of unbalanced 
data, the GBDT algorithm can still determine the features of samples 
fairly well. It can adaptively adjust the weight distribution of samples, 
thereby making it possible to deal with samples that are hard to train 
with. 

The approach presented in this study could be used to improve the 
accuracy of volcanic lithology identification. However, the tuff and 
tuffite are usually misjudged on account of their similar mineral 
composition. Future work focused, in particular, on solving the problem 
of similar logging response with different lithology is recommended. 
Great deal of additional scientific research could be undertaken to 
determine other features which can distinguish them in origin. 

6. Conclusions 

(1) Multi-phase volcanic eruption has generated large sets of volca-
nic constructions in the Yingcheng Formation, making it rela-
tively hard to identify volcanic lithology due to its strong 
heterogeneity. By using a variety of data, including cores, casting 
and conventional thin sections and imaging logging data, we 
were able to divide the volcanic lithology into three categories 
(volcanic lava, pyroclastic rock and intrusive rock) and eight 
kinds (rhyolite, dacite, tuff, tuffite, breccia tuff, ignimbrite, (and) 
diabase) in the Yingcheng Formation within the study area.  

(2) In this paper, ensemble learning algorithm GBDT was used to 
establish a classification model for volcanic lithology with strong 
heterogeneity. The results showed that the GBDT model out-
performs the single classifier. It can accurately distinguish the 
lithologic interface of breccia tuff and rhyolite, and also has 
better recognition ability for thin layer. Although the ensemble 
learning algorithm GBDT has significantly enhanced the accuracy 
of lithology identification, there still exist issues in distinguishing 
the different lithology with similar well logging response.  

(3) To enhance the generalization ability and avoid under-fitting and 
over-fitting, parameter optimization becomes crucial and critical. 
Experiments were conducted on how to select the optimal pa-
rameters for each model. 10-folder cross validation curves and 
GridSearchCv were employed to determine the optimal key pa-
rameters for each model to find the balance between under-fitting 
and over-fitting. Eventually, these resultsrevealed that SVM has 
the best performance in a single classifier, and the average value 

of f1score reached 81.1%, while LR and DT reached 71.5% and 
70.2%, respectively. GBDT significantly enhanced the efficiency 
of the classifier and increased thef1 score up to 87.1%. 
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