
ORIGINAL PAPER

Geological Facies modeling based on progressive growing
of generative adversarial networks (GANs)

Suihong Song1,2,3
& Tapan Mukerji3 & Jiagen Hou1,2

Received: 18 June 2020 /Accepted: 25 March 2021
The Author(s), under exclusive licence to Springer Nature Switzerland AG 2021

Abstract
Geological facies modeling has long been studied to predict subsurface resources. In recent years, generative adversarial
networks (GANs) have been used as a new method for geological facies modeling with surprisingly good results. However, in
conventional GANs, all layers are trained concurrently, and the scales of the geological features are not considered. In this study,
we propose to train GANs for facies modeling based on a new training process, namely progressive growing of GANs or a
progressive training process. In the progressive training process, GANs are trained layer by layer, and geological features are
learned from coarse scales to fine scales. We also train a GAN in the conventional training process, and compare the conven-
tionally trained generator with the progressively trained generator based on visual inspection, multi-scale sliced Wasserstein
distance (MS-SWD), multi-dimensional scaling (MDS) plot visualization, facies proportion, variogram, and channel sinuosity,
width, and length metrics. The MS-SWD reveals realism and diversity of the generated facies models, and is combined with
MDS to visualize the relationship between the distributions of the generated and training facies models. The conventionally and
progressively trained generators both have very good performances on all metrics. The progressively trained generator behaves
especially better than the conventionally trained generator on the MS-SWD, MDS plots, and the necessary training time. The
training time for the progressively trained generator can be as small as 39% of that for the conventionally trained generator. This
study demonstrates the superiority of the progressive training process over the conventional one in geological facies modeling,
and provides a better option for future GAN-related researches.

Keywords Facies modeling . Generative adversarial networks . GANs . Progressive growing of GANs . Channel facies . Karst
cave

1 Introduction

Subsurface geological facies modeling is a very important part
of the workflow for accurate assessment of subsurface re-
sources such as groundwater, petroleum, and carbon storage.
Geological facies modeling is a process of integrating various
observed data (e.g., well data, seismic data, and outcrops) and
geological patterns, and predicting the range of spatial geo-
logical facies distributions in the subsurface. Many
geostatistical methods have been used for facies modeling,
including variogram-based methods, multiple points statistics
(MPS)-based methods, object-based (Boolean) methods, and
process-mimicking methods (see e.g. [1, 2]). These traditional
methods have various advantages and disadvantages. Some of
them are still under research, such as the development of tree-
based direct samplingMPSmethod [3] andmany variations of
forward stratigraphic modeling (e.g. [4]).

Key Points
• Progressive growing of GANs is used for geological facies modeling,
where geological features are learned from large scales to fine scales.
•Multi-scale sliced Wasserstein distance, multi-dimensional scaling plot,
facies proportion, variogram, and channel sinuosity, width, and length are
proposed as metrics to evaluate GANs.
• Progressive growing of GANs behaves better than conventional training
processes in many metrics including computation time.

* Jiagen Hou
jghou63@hotmail.com

1 State Key Laboratory of Petroleum Resources and Prospecting,
China University of Petroleum (Beijing), Beijing 102249, China

2 College of Geoscience, China University of Petroleum (Beijing),
Beijing 102249, China

3 Stanford University, 367 Panama St, Stanford, CA 94305, USA

Computational Geosciences
https://doi.org/10.1007/s10596-021-10059-w

http://crossmark.crossref.org/dialog/?doi=10.1007/s10596-021-10059-w&domain=pdf
http://orcid.org/0000-0002-0976-7502
mailto:jghou63@hotmail.com

With the quick improvement of algorithms and enlarge-
ment of datasets, deep learning (DL) has been providing ro-
bust solutions for many complicated problems that cannot be
addressed using conventional methods. These problems can
be within any field including geosciences. Tahmasebiet et al.
[5] reviewed commonly used machine learning (including
deep learning) algorithms and their state-of-the-art applica-
tions in various problems of geosciences. These problems
include prediction of rock parameters, reconstruction of po-
rous media, modeling of ground water level, soil moisture
prediction, carbon leakage management. Widely used DL
techniques vary from convolutional neural networks, recur-
sive neural networks, variational autoencoder, to generative
adversarial networks, etc. DL techniques can also be com-
bined with conventional statistical methods for better perfor-
mances, such as the combination of recursive convolutional
neural networks with MPS method [6].

From the perspective of DL, geological facies modeling is
a typical generative problem, where a generative model is
trained to reproduce a probability distribution given many
observed samples [7]. Widely used deep generative models
include deep sigmoid belief network [8], neural autoregressive
density estimation [9], pixel recurrent neural networks (RNN)
and pixel convolutional neural networks (CNN) [10], varia-
tional autoencoders (VAE) [9, 11], and especially generative
adversarial networks (GAN) [12]. Major variants of GAN
include deep convolutional GAN (DCGAN) [13],
Wasserstein GAN [14, 15], cycle GAN [16], progressive
GAN [17], style GAN [18], and bidirectional GAN [19].
These generative models have been successfully used in many
areas, including digit generation [9], image generation [10,
17], audio generation [20], domain transformation [16],
super-resolution image creation [21], text-to-image translation
[22], and object segmentation [23].

Generative models have also been used in the geosciences,
especially in the geological facies modeling problem. Laloy
et al. [24] used VAE for low-dimensional representation of
binary geological models. Mosser et al. [25] and Mosser et al.
[26] used DCGAN for generating three-dimensional solid-
void structure of porous media and micro-CT-scale oolitic
Ketton limestone. Chan and Elsheikh [27] used Wasserstein
DCGAN to generate geological facies models.

In the above GAN applications, all layers of GANs were
trained concurrently. Karras et al. [17] proposed an alternative
to the conventional training process - the progressive growing
of GANs or the progressive training process, i.e. training
GANs layer by layer, and proved the superiority of this pro-
gressive training process over the conventional training pro-
cess in multiple applications. The focus of this paper is to
investigate the progressive GAN training process for geologic
facies modeling, and compare the progressive training process
with the conventional training process, based on a set of eval-
uation metrics, including realistic reproduction of facies

distributions and computation time. In addition, we also build
two large training datasets for facies modeling. These datasets
can be used for many facies modeling-related future works.

This paper is organized as follows. In section 2, we intro-
duce related background materials on GANs. Section 3 pre-
sents the workflows and settings on how to train GANs for
facies modeling with both the conventional and the progres-
sive training processes. In section 4, we build a set of evalu-
ation metrics for the trained GANs. Section 5 presents the
facies model training datasets. Then, in section 6 we compare
and analyze the results of the trained conventional GANs and
progressive GANs. Finally, conclusions are provided in sec-
tion 7.

2 Background on GANs

2.1 GAN framework

The framework of GANs was proposed by Goodfellow,
Pouget-Abadie [12] to address the generative problem.
Given many observed real samples xr’s from an unknown
distribution pdata over a high-dimensional space X , i.e., xr~p-
data, the goal of GANs is to train a generative model that can
reproduce a distribution pG to approximate pdata. Figure 1
shows the typical workflow of a GAN. In general, a GAN
includes two trainable blocks, a generator (Gθ) and a discrim-
inator (Dφ) (θ and φ are trainable parameters). We define a
latent variable Z with a known distribution pz (e.g., Gaussian)
over a low-dimensional space Z, and define z as a sample
from Z, i.e., z~pz. The generator Gθ maps z into xG over the
space X , i.e., xG =Gθ(z); the distribution of xG is pG, i.e.,
xG~pG. The discriminator Dφ maps the generated sample xG
and the given data sample xr into two scalar values, which are
called scores; the two scores are abbreviated as sG and sr, i.e.,
sG =Dφ(xG), sr =Dφ(xr). The scores evaluate the realism of
the inputs ofDφ. The loss function of GANs is based on some
type of distance between sG and sr (Eq. (1)); in essence, the
loss represents the distance between the pG and pdata. We will
discuss the loss function in more detail in section 2.2. The
discriminatorDφ and the generatorGθ are alternatively trained
by maximizing and minimizing the loss (Eq. (1)), until a cer-
tain stopping criterion is reached. In practice, usually a batch
of z’s and xr’s are taken as inputs for the training of GANs.

minGθmaxDφL Gθ;Dφ

� �
¼ minGθmaxDφExG∼PG;xr∼pdataDist sG; srð Þ ð1Þ

In the above equation, L(Gθ, Dφ) is the loss function,
Dist(sG, sr) is some type of distance between sG and sr, and
E is the expectation over xG~pG and xr~pdata.

Comput Geosci

Figure 2 gives an intuitive way to understand the mecha-
nism behind GANs. For better understanding, here we specify
the loss function in Eq. (1) as L Gθð ;DφÞ ¼ ∥ExG∼pG sG−
Exr∼pdata sr ∥L1, which is the L1 distance between the expecta-
tion of sG’s and the expectation of sr’s. The loss function is
affected by both Gθ(z) (the yellow mapping from z to xG in

Fig. 2) andDφ (the dark blue curve in Fig. 2). WheneverDφ is
trained, the dark blue curve is adjusted to be larger on the left
and smaller on the right, to increase the loss function, discrim-
inating better between sG’s and sr’s, e.g., from (a) to (b) or
from (c) to (d) in Fig. 2. On the contrary, whenGθ(z) is trained,
xG’s are shifted a step closer towards xr’s, to decrease the loss,

Fig. 1 The basic GAN framework in the context of the geological facies
modeling. The generator Gθ maps a latent vector (z) into a “fake”
generated facies model (xG). The discriminator Dφ maps xG and a “real”
facies model (xr) into two scores, one real score and one fake score. The

scores evaluate the realism of the inputs of Dφ. Finally, the loss is
calculated based on Eq. (1); Dφ and Gθ are alternatively trained by
maximizing and minimizing the loss

Fig. 2 A schematic illustration of
the training of GANs. Training
the discriminator (Dφ) adjusts the
dark blue curve to be larger on the
left and smaller on the right, to
increase the loss function, to
better discriminate the generated
samples (xG’s, blue) from the real
samples (xr’s, red), e.g., from (a)
to (b) or from (c) to (d). On the
contrary, training the generator
(Gθ(z)) maps xG’s a step closer
towards xr’s, to decrease the loss
function, e.g., from (b) to (c) or
from (d) to (e). Every successive
pair of the training of Dφ and Gθ

actually pushes xG’s a step closer
to xr’s, e.g., from (a) to (c) or from
(c) to (e); finally xG’s and xr’s
completely mix in (f),
representing pG = pdata

Comput Geosci

e.g., from (b) to (c) or from (d) to (e) in Fig. 2. Every succes-
sive pair of the training ofDφ andGθ pushes xG’s a step closer
to xr’s, e.g., from (a) to (c) or from (c) to (e) in Fig. 2; finally,
xG’s and xr’s completely mix, representing pG = pdata, e.g., (f)
in Fig. 2.

Basically, the generator and the discriminator are functions
with trainable parameters, and these functions can be of any
form. When GANs were first proposed, the generator and the
discriminator were multilayer perceptrons [12]. In recent years,
depending on the practical needs, different types of architec-
tures have been proposed for the generator and the discrimina-
tor. Generally, if the outputs of the generator are spatially cor-
related data (e.g., images), the architectures of generator and
discriminator are designed to be convolutional neural networks
(CNN) (e.g., [13, 28, 29]); if the outputs of the generator are
time-related sequence data (e.g., natural language), the architec-
tures of the generator and discriminator may be designed to be
recurrent neural networks (RNN) (e.g., [30]). The architecture
design of the generator and the discriminator can be very com-
plicated in complicated applications (e.g., [31, 32]).

2.2 GAN loss

Since the GAN framework was proposed, many different
types of loss functions have been studied [33], and each of
them corresponds to a type of distance between pG and pdata.

Originally, Goodfellow, Pouget et al. [12] proposed the
loss function given below in Eq. (2), where the last layer of
Dφ is a sigmoid function.

L Gθ;Dφ

� � ¼ Exr∼pdata logDφ xrð Þ� �þ Ez∼pz log 1−Dφ Gθ zð Þð Þ� �� � ð2Þ
This loss function was proved to be equivalent to having a

Jensen-Shannon divergence between pdata and pG [12].
Arjovsky et al. [14] showed that theWasserstein distance is

more sensitive than the Jensen-Shannon divergence, and pro-
posed the Wasserstein loss function based on the Wasserstein
distance between pdata and pG shown in Eq. (3)

L Gθ;Dφ

� � ¼ Exr∼pdataDφ xrð Þ−Ez∼pzDφ Gθ zð Þð Þ ð3Þ

where Dφ does not have the sigmoid function in the last layer
and should be changing slowly.

Gulrajani et al. [15] improved theWasserstein loss function
by using a gradient penalty to enforce the gradient ofDφ to be
small. This improved loss function is shown in Eq. (4).

L Gθ;Dφ

� � ¼ Exr∼pdataDφ xrð Þ−Ez∼pzDφ Gθ zð Þð Þ−λEbx∼pbx ∥∇bxDφ bx� �
∥2−1

� 	2
" #

ð4Þ

Here, Dφ does not have the sigmoid function in the last
layer; λ is a predefined weight, and bx is sampled between

xr~pdata and xG~pG using t~uniform(0, 1), i.e.,bx ¼ txþ 1−tð ÞxG.

2.3 Progressive growing of GANs

The training of GANs is actually a process of forcing the
generator to learn all the features of pdata; the more features
are learned, the closer pG and pdata would be ((a) to (c) in Fig.
2); if all features are learned, then pG = pdata ((f) in Fig. 2).
Features of a distribution have various scales; for example, in
terms of the distribution of human face images, the scale of
face gesture feature is larger than the scale of mouth size
feature. In most GAN related researches, all layers of GANs
are trained concurrently and the scales of features are not
considered, so the generator has to manage and learn different
scales of features completely by itself; this may result in an
inefficient way of feature learning of the generator, e.g., some
fine-scale features may be learned earlier than the large-scale
features.

Therefore, Karras et al. [17] proposed a new training meth-
odology for GANs: a progressive growing of GANs or a pro-
gressive training process, in which the generator and the dis-
criminator are trained layer by layer. The workflow for pro-
gressive growing is as follows. First, the original high-
resolution training data xr are downsampled into lower-
resolution training data at different resolution levels, e.g.,
downsampling 1024×1024 training images into 512×512,
256×256,…,4×4 training images. These different levels of
low-resolution training data represent different scales of fea-
tures of the original-resolution training data. The lower-
resolution downsampled training data capture only the coarse
scale features represented in the training data. Second, the
shallowest layers of the generator and the discriminator are
activated, and the GAN is trained with the lowest-resolution
training data. After training, the largest-scale features repre-
sented by the lowest-resolution training data are learned by
these activated shallowest layers of the generator. Third, the
next shallower layer of the generator and the discriminator are
further included, and the GAN is trained with the second
lowest-resolution training data. After training, the features at
the next level of resolution represented by the input training
data are learned by the newly activated shallower layers of the
generator. Then, increasingly more layers of the generator and
the discriminator are progressively included, and larger-
resolution training data are used to train the GAN. In this
way, the shallower layers of the generator learn the larger-
scale features of the training data, while the deeper layers of
the generator learn the finer-scale features of the training data.
Throughout the training process, all activated layers of both
the generator and the discriminator remain trainable. New
layers of the generator and the discriminator are included
smoothly, meaning their contribution increases from 0 to 1
to avoid disrupting the already well-trained, shallower layers.

Comput Geosci

Ta
bl
e
1

A
rc
hi
te
ct
ur
es

of
th
e
ge
ne
ra
to
r
an
d
th
e
di
sc
ri
m
in
at
or

us
ed

in
th
is
st
ud
y

G
en
er
at
or

D
is
cr
im

in
at
or

B
lo
ck

L
ay
er

A
ct
iv
at
io
n

O
ut
pu
ts
ha
pe

N
o.
of

tr
ai
na
bl
e

pa
ra
m
et
er
s

B
lo
ck

L
ay
er

A
ct
iv
at
io
n

In
pu
ts
ha
pe

N
o.
of

tr
ai
na
bl
e

pa
ra
m
et
er
s

L
at
en
tv

ec
to
r

–
12
8
×
1

–
In
pu
ti
m
ag
e

–
64

×
64

×
1

–

B
lo
ck

1
(4
×
4)

Fu
lly

co
nn
ec
te
d

L
R
eL

U
20
48

×
1

26
2
k

B
lo
ck

5
(6
4
×
64
)

C
on
vo
lu
tio

na
l1

×
1

L
R
eL

U
64

×
64

×
1

12
8

R
es
ha
pe

–
4
×
4
×
12
8

–
C
on
vo
lu
tio

na
l3

×
3

L
R
eL

U
64

×
64

×
64

37
k

C
on
vo
lu
tio

na
l3

×
3

L
R
eL

U
4
×
4
×
12
8

14
8
k

C
on
vo
lu
tio

na
l3

×
3

L
R
eL

U
64

×
64

×
64

74
k

B
lo
ck

2
(8
×
8)

U
ps
am

pl
in
g

–
8
×
8
×
12
8

–
D
ow

ns
am

pl
in
g

–
64

×
64

×
12
8

–

C
on
vo
lu
tio

na
l3

×
3

L
R
eL

U
8
×
8
×
12
8

14
8
k

B
lo
ck

4
(3
2
×
32
)

C
on
vo
lu
tio

na
l3

×
3

L
R
eL

U
32

×
32

×
12
8

14
8
k

C
on
vo
lu
tio

na
l3

×
3

L
R
eL

U
8
×
8
×
12
8

14
8
k

C
on
vo
lu
tio

na
l3

×
3

L
R
eL

U
32

×
32

×
12
8

14
8
k

B
lo
ck

3
(1
6
×
16
)

U
ps
am

pl
in
g

–
16

×
16

×
12
8

–
D
ow

ns
am

pl
in
g

–
32

×
32

×
12
8

–

C
on
vo
lu
tio

na
l3

×
3

L
R
eL

U
16

×
16

×
12
8

14
8
k

B
lo
ck

3
(1
6
×
16
)

C
on
vo
lu
tio

na
l3

×
3

L
R
eL

U
16

×
16

×
12
8

14
8
k

C
on
vo
lu
tio

na
l3

×
3

L
R
eL

U
16

×
16

×
12
8

14
8
k

C
on
vo
lu
tio

na
l3

×
3

L
R
eL

U
16

×
16

×
12
8

14
8
k

B
lo
ck

4
(3
2
×
32
)

U
ps
am

pl
in
g

–
32

×
32

×
12
8

–
D
ow

ns
am

pl
in
g

–
16

×
16

×
12
8

–

C
on
vo
lu
tio

na
l3

×
3

L
R
eL

U
32

×
32

×
12
8

14
8
k

B
lo
ck

2
(8
×
8)

C
on
vo
lu
tio

na
l3

×
3

L
R
eL

U
8
×
8
×
12
8

14
8
k

C
on
vo
lu
tio

na
l3

×
3

L
R
eL

U
32

×
32

×
12
8

14
8
k

C
on
vo
lu
tio

na
l3

×
3

L
R
eL

U
8
×
8
×
12
8

14
8
k

B
lo
ck

5
(6
4
×
64
)

U
ps
am

pl
in
g

–
64

×
64

×
12
8

–
D
ow

ns
am

pl
in
g

–
8
×
8
×
12
8

–

C
on
vo
lu
tio

na
l3

×
3

L
R
eL

U
64

×
64

×
64

74
k

B
lo
ck

1
(4
×
4)

M
in
ib
at
ch

st
d.
de
v.

–
4
×
4
×
12
8

–

C
on
vo
lu
tio

na
l3

×
3

L
R
eL

U
64

×
64

×
64

37
k

C
on
vo
lu
tio

na
l3

×
3

L
R
eL

U
4
×
4
×
12
9

14
9
k

C
on
vo
lu
tio

na
l1

×
1

L
in
ea
r

64
×
64

×
1

65
F
ul
ly

co
nn
ec
te
d

L
R
eL

U
20
48

×
1

26
2
k

T
ot
al
tr
ai
na
bl
e
pa
ra
m
et
er
s

1.
41

M
F
ul
ly

co
nn
ec
te
d

L
in
ea
r

12
8
×
1

12
9

T
ot
al
tr
ai
na
bl
e
pa
ra
m
et
er
s

1.
41

M

**
C
on
vo
lu
tio

na
l3

×
3/
C
on
vo
lu
tio

n
1
×
1:

C
on
vo
lu
tio

na
ll
ay
er

w
ith

ke
rn
el
si
ze

of
3
×
3/
1
×
1

Comput Geosci

The progressive growing of GANs provides a process of
learning different scales of features from large scales to fine
scales. This philosophy is also well revealed in the multiple-
grid geological facies modeling approach, which was pro-
posed by Tran [34] and has been widely used especially in
MPS modeling methods (e.g., [35–37]). In the multiple-grid
modeling approach, the coarse grid is first simulated to cap-
ture large-scale structures from the training image with a
coarse template, then the fine grid is simulated, conditioned
to the coarse grid simulation, to capture fine-scale structures
with a fine-scale template.

3 Geological facies modeling

We train GANs for the geological facies modeling problem,
with both the conventional training process and the progres-
sive training process, and compare their results. In this section,
first, we introduce the GAN architectures we use in this study;
then we describe the settings for the GAN training; finally, we
specify the progressive training process, based on the speci-
fied architectures of the generator and the discriminator. The

conventional training process is standard (e.g., [14]), so we do
not discuss it in detail.

3.1 GAN architectures used in this study

The facies model is spatially correlated, so we use CNN for
both the generator and the discriminator. The architecture of
the generator is shown in Fig. 3 and Table 1. The input of the
generator is a 128×1 latent vector that is sampled from a stan-
dard Gaussian distribution, i.e., z~Gaussian(0, 1); the output
is a 64×64 facies model. The architecture of the generator
includes 1 fully connected neural network layer with 128 in-
put neurons and 2048 output neurons, 1 reshape layer, 4
upsampling layers, and 10 2-dimensional convolutional
layers. The reshape layer converts the 2048×1 vector into
the 4×4×128 feature cube, corresponding to 128 feature maps
of size 4×4. Each upsampling layer dilates the heights and
widths of the feature cubes by 2, using the nearest-neighbor
upsampling method. The kernel size for the last convolution
layer of the generator is 1×1, while the kernel size for the other
convolutional layers is 3×3; the stride size for all
convolutional layers is 1×1. The leaky rectified linear unit

Fig. 3 The architectures of the generator and the discriminator used in
this study. The input of the generator is a 128-dimensional vector sampled
from the Gaussian distribution, i.e., z~Gaussian(0, 1); the input
propagates through the fully connected layer, the reshape layer,

multiple convolutional layers, and multiple upsampling layers; finally
the generator outputs a 64×64 2-dimensional facies model. The
discriminator takes the 64×64 facies model as input and finally outputs
a score to evaluate the realism of the input

Fig. 4 Illustration of how a mini-batch standard deviation layer works.
The batch of feature cubes on the left are calculated from the earlier layers
of the discriminator. Each feature cube includes multiple vertical square
feature maps. The mini-batch standard deviation layer first calculates the
standard deviation for each feature map at each spatial location over the

mini-batch to obtain a standard deviation feature cube. Then the cube of
standard deviations are averaged to obtain a single overall average value.
This value is replicated into a feature map of the same resolution as other
feature maps, and is concatenated to other feature maps of the mini-batch

Comput Geosci

function (LReLU) with a leaky value of 0.2 is used as the
activation function in all hidden layers except the last for
which only the linear function to add bias is used. As seen
in Fig. 3 and Table 1, the architecture consists of five blocks of
layers producing feature maps with coarser to finer resolution
– 4×4, 8×8, 16×16, and 32×32, and finally 64×64. The first
fully connected layer is also included in block 1 (4×4) for
easier description. These five blocks are trained progressively
starting from the coarse 4×4 block to finer and finer blocks
ending with 64×64 output image. The progressive training
process is described in more detail later.

The architecture of the discriminator is essentially symmet-
rical to the generator, with corresponding blocks of layers
producing feature maps with coarse (4×4) to increasingly fine
resolution (8×8, 16×16, 32×32, and 64×64), except that the
output of the discriminator is a scalar and a mini-batch stan-
dard deviation layer (discussed below) is applied at the dis-
criminator (Fig. 3 and Table 1). The kernel size for the first
convolutional layer of the discriminator is 1×1, while the ker-
nel size for the other convolutional layers is 3×3. The mini-
batch standard deviation technique was proposed by Karras
et al. [17] to increase the variability of the generated results.
The calculation steps for the mini-batch standard deviation
layer are as follows (Fig. 4): first, calculate the standard devi-
ation for each feature map at each spatial location over the
mini-batch; second, average these calculated standard devia-
tion values over all feature maps and spatial locations to obtain
a single value; third, replicate the value into an additional
feature map with the same resolution as other feature maps;
finally, concatenate the new feature map with other feature
maps of the mini-batch, increasing the channels (or the

number of feature maps) by one, from 128 to 129 after
concatenating the mini-batch standard deviation layer (MSD
in Fig. 3). This layer could be inserted anywhere in the dis-
criminator, but it is best to be inserted towards the end [17].

3.2 Loss function training

We use the Wasserstein loss function with gradient penalty
(W-gp). During the training, the trainable parameters (i.e., θ
and φ) are initialized with He initialization approach [38]. To
speed up the training process, mini-batch gradient descent and
the Adam optimizer [39] with the default parameters (i.e., α =
0.001, β1 = 0.9, β2 = 0.999, and ε = 10−8) are used. Every
mini-batch is set to include 32 facies models. In many studies,
the number of optimization steps for the discriminator in each
loop is set to be larger than 1, i.e., the training alternates
between multiple iterations of optimizing the discriminator
and one step of optimizing the generator. In our study, we
set the optimization steps of the discriminator to be 1 in each
loop, because the Wasserstein loss can largely stabilize the
training process. In this work, we call each pair of the optimi-
zations of the discriminator and the following generator as one
step of alternative training. We use Tensorflow (tensorflow.
org), an open-source deep learning framework, to construct
and train our GANs. 2 GPUs (NVIDIA Tesla V100-PCIE-
32GB), 10 CPUs, and 80G RAM are used in parallel for the
training.

The criterion for stopping the training is important during
the training of GANs. Different from other deep learning ap-
proaches, the loss in GAN, by definition, does not measure the
accuracy, although observations of some experiments show

Fig. 5 The progressive GAN training workflow used in this study. In
phase 1, the layers of block 1 in the generator and the discriminator in
Fig. 3, are trained from scratch with the 4×4-size training facies models.
In phase 2, the layers of block 2 in the generator and the discriminator are
smoothly included. The trainable parameters of the layers marked with

blue triangle are initialized from scratch, and the remaining trainable
parameters are initialized from previous phase. All activated layers in
phase 2 are trained with the 8×8-size training facies models. Similar to
phase 2, more and more blocks of layers in the generator and the
discriminator are trained in successive phases until all layers are trained

Comput Geosci

http://tensorflow.org
http://tensorflow.org

that the Wasserstein loss reflects the quality of the generated
images [15]. We use two evaluation metrics as the stopping
criteria, i.e., the multi-scale sliced Wasserstein distance and
visual inspection. The multi-scale sliced Wasserstein distance
measures the distance between the distribution of the generat-
ed results and the distribution of the training data, over multi-
ple scales; visual inspection refers to visually inspecting the
generated results during the training process by humans, until
the generated results are visually indistinguishable from the
training data. The training stops when the multi-scale sliced
Wasserstein distance converges and the generated results are
visually indistinguishable from the training data. We will dis-
cuss the multi-scale slicedWasserstein distance and the visual
inspection in detail in Section 4. We evaluate the generator
every 20 k steps of alternative training based on the above
criteria to decide when to stop the training process.

3.3 Progressive training workflow

Figure 5 shows the progressive training workflow of this
study. Different from the conventional training workflow,
we downsample the original 64×64-size training facies
models into 32×32, 16×16, 8×8, and 4×4-size training facies
models, using averaging. These downsampled facies models
and the original ones are used during the following process.

The layers of the generator and the discriminator are pro-
gressively trained block by block from coarse to fine (shallow
to deep), in different phases. In phase 1, we activate the layers
of block 1 (4×4) in the generator and the discriminator
(Fig. 5), and add two additional convolutional layers (i.e.,
“CV(1×1)” in Fig. 5). The two convolutional layers convert
the output (the 4×4×128 feature cube) of block 1 in the

generator into a 4×4 facies model and convert a 4×4 facies
model, either a training or a generated facies model, into a
4×4×128 feature cube as the input of block 1 in the discrim-
inator. The involved layers are initialized from scratch. We
train the activated layers in this phase with 4×4-size training
facies models.

In phase 2, we now activate the layers of block 2 (8×8) in
the generator and the discriminator, and add two new
convolutional layers (“CV(1×1)” in Fig. 5) that convert the
output (8×8×128 feature cube) of block 2 in the generator into
a 8×8 facies model and correspondingly convert a 8×8 facies
model into a 8×8×128 feature cube. To avoid disrupting the
already trained layers in the previous phase, the newly acti-
vated layers (block 2) are included smoothly in the generator
and the discriminator by a weighted average, meaning that the
contribution of the new layers increases gradually from 0 to 1.
We upsample the 4×4 facies model generated from block 1 in
the generator into a 8×8 facies model, and average that 8×8
facies model from block 1 with the 8×8 facies model convert-
ed from the output of block 2, with a weighting factor α. The
generator output now is thus (1 −α)× (upsampled 8×8 facies
model from block 1) +α×(8×8 facies model from block 2). In
the discriminator, the input 8×8 facies model, either a training
or a generated facies model, is both directly converted into a
8×8×128 feature cube and downsampled into a 4×4 facies
model. Block 2 in the discriminator takes that 8×8×128 fea-
ture cube as input and generates a 4×4×128 feature cube. At
the same time, the downsampled 4×4 facies model is convert-
ed into another 4×4×128 feature cube by a convolutional lay-
er. These two 4×4×128 feature cubes are then averaged into a
new 4×4×128 feature cube with the same weight α, i.e., (1
− α)× (4×4×128 feature cube converted from 4×4 facies

Fig. 6 We applyMS-SWD to assess the distance between the distribution
of the generated facies models and the distribution of the training facies
models. We calculate the Laplacian pyramid representations for 4000
generated facies models and 4000 randomly selected training models.
Next, we randomly sample 32 5×5-pixel patches from the Laplacian

pyramid representation of each facies model at each level. We
normalize these patches with the mean and the standard deviation of
each patch. Finally, we calculate the SWD between these patches from
the generated facies models and from the training facies models, at each
level

Comput Geosci

model)+α×(4×4×128 feature cube generated from block 2).
This new 4×4×128 feature cube finally goes through the
layers of block 1 in the discriminator to output the score.
The weighting factorα represents the contribution of the new-
ly activated layers of block 2. It first changes linearly from 0 to

1, to ensure that the newly activated layers fade in smoothly
without breaking the already learned features stored in the
previous block. After that, α is held constant at 1. This allows
training of all parameters (in the newly activated block as well
as the previous block) to the same degree, to enhance the

Fig. 7 Some random training facies model examples

Fig. 8 Random Examples of large karst cave simulations (left) and small cropped training karst cave facies models (right). The red rectangles (64×64)
illustrate how the large facies models are cropped into small facies models along karst caves

Comput Geosci

robustness of the generator and the discriminator. In this
phase, the trainable parameters of the newly activated and
newly added layers are initialized from scratch, while the other
trainable parameters are initialized from the values they
reached in the previous training phase. Finally, we train all
the activated layers in this phase with 8×8-size training facies
models.

In a similar manner as in phase 2, we progressively train
more and more blocks of layers in phase 3 (16×16), phase 4
(32×32), and phase 5 (64×64) until all layers in the generator
and the discriminator are trained.

4 Evaluations of GANs

We evaluate the generator by assessing its generated facies
models, based on the following metrics described below: vi-
sual inspection, multi-scale slicedWasserstein distance, multi-
dimensional scaling plots, facies proportion, variogram, and
channel sinuosity, width, and length.

4.1 Visual inspection

Visual inspection of the generated samples is one of the most
common and intuitive ways to evaluate GANs [40]. We gen-
erate large numbers of facies models, and assess their quality
(i.e., realism and diversity) by comparing them with the train-
ing facies models. Visual inspection is used both in the train-
ing process as a stopping criterion and after the training pro-
cess to inspect the performance of the trained generator.

Although visual inspection is the simplest approach for
GAN evaluation, it is expensive, biased, requires background
knowledge, and cannot fully reflect the capacity of the gener-
ator [40]. We further use several other quantitative evaluation
metrics.

4.2 Multi-scale sliced Wasserstein distance (MS-SWD)
and multi-dimensional scaling

Many researchers use the multi-scale structural similarity in-
dex (MS-SSIM) [41] or directly the structural similarity index
(SSIM) to evaluate the generator’s output (e.g., [42, 43]).
Karras et al. [17] found that MS-SSIM can reveal large-scale
mode collapse reliably but fails to react to smaller effects such
as loss of variation in colors or textures, and MS-SSIM does
not assess the realism of the generated samples. Therefore,
Karras et al. [17] proposed multi-scale sliced Wasserstein dis-
tance (MS-SWD) to evaluate the generator, based on the in-
tuition that a successful generator should produce samples
whose structure is similar to the structure of the training data
over all scales. We apply MS-SWD for our study (Fig. 6) as
follows. First, we randomly generate 4000 facies models from
the trained generator and randomly select 4000 training facies
models. Second, we obtain the Laplacian pyramid representa-
tions [44] of both the generated facies models and the training
facies models from resolution of 64×64 to 16×16. The
Laplacian pyramid representations reveal the structures of
the original facies models at different scales. Third, we ran-
domly extract 32 5×5-pixel patches from the Laplacian pyra-
mid representation of each faciesmodel at each level, to obtain

Fig. 9 The change of MS-SWD of the generator during the conventional training process. The trend of the average SWD flattens out after about 460 k
alternative training

Comput Geosci

Fig. 10 MDS plots of the relationship between the generated facies
models (blue) and the training facies models (red) in 2D space at
different iterations of alternative training, during the conventional
training process. Each point in this figure represents 40 facies models.

As the training progresses, the generated facies model distribution gets
closer to the training facies model distribution, but after 420 k training
iterations there is minor or no improvements of the relationship between
these two distributions

Fig. 11 Transition of the generated facies models with the same input latent vectors after different iterations of alternative training, during the
conventional training process

Comput Geosci

128,000 patches respectively from the generated facies
models and the training facies models at each level. Fourth,
we normalize these patches with respect to the mean and the
standard deviation of each patch. Finally, we calculate the
sliced Wasserstein distance (SWD), an efficient approxima-
tion to the Wasserstein distance [45], between the patches
from the generated facies models and the patches from the
training facies models at each level. The smaller the MS-
SWD, the closer is the distribution of the generated facies
models to the distribution of the training facies models, and
better is the performance of the generator with respect to both
realism and variation of the generated facies models. We av-
erage MS-SWD over different levels to obtain one value to

assess the distance between two distributions; this value is
defined as the average SWD in this study. To evaluate the
generator more objectively, we also randomly select two
groups of the training facies models (4000 in each group)
and calculate their MS-SWD, and their average SWD is
regarded as the ground truth baseline. In the progressive train-
ing, the resolution of the generated facies models varies from
4×4 to 64×64; for the low-resolution (<64×64) facies models,
we first upsample them into 64×64 with the nearest-neighbor
method, and then calculate the MS-SWD.

Although the calculated MS-SWD can be indicative of the
closeness between the distributions of the generated and the
training facies models, we may still have no clear sense of

Fig. 12 The W-gp loss versus
iterations of alternative training,
during the conventional training
process

Fig. 13 The change of MS-SWD
of the generator during the
progressive training process. The
MS-SWD converges after 160 k
iterations of alternative training.
The dashed black lines represent
the points when the deeper blocks
of 16×16, 32×32, and 64×64-
resolution were added to the
generator

Comput Geosci

their spatial relationship. Therefore, we propose a method to
visualize the distribution of the generated and the training
facies models in 2D space, based on MS-SWD and multi-
dimensional scaling (MDS) approach [46]. MDS was also
used to evaluate the GAN-generated facies models in [47]
but based on the modified Hausdorff distance. We randomly
generate 12,000 facies models using the generator and ran-
domly select 12,000 training facies models. We randomly
divide the generated and the training facies models into 300
sub-groups of size 40 each, respectively. The average SWD
between every two of the 600 groups, is taken as the pairwise
distance matrix used for multi-dimensional scaling. We use
MDS to approximate the distribution of the 600 groups of the
facies models in 2D space. This distribution can visually show
the relationship between the generated facies models and the
training facies models. In addition, in the same way, we also
visualize the distribution of the training facies models, the
distribution of the facies models generated from the generator
trained in the conventional process, and the distribution of the
facies models generated from the generator trained in the pro-
gressive process. This MDS plots visualization approach can

help to compare the performances of GANs trained in differ-
ent processes.

4.3 Facies proportion

For each facies model, we calculate a proportion of each facies
type. The facies proportion distribution of the generated facies
models should be close to that of the training facies models,
for each facies type. To quantitatively measure this closeness,
we define an error as the area between the facies proportion
cdf of the generated facies models and that of the training
facies models. This error is between 0 and 1. In this study,
we sample 3000 generated facies models and 3000 training
facies models, to compare their facies proportion distributions
over different facies types.

4.4 Variogram

Variogram describes two-point spatial continuity of proper-
ties, including the geological facies. We sample 3000 gener-
ated and 3000 training facies models, calculate their

Fig. 14 MDS plots of the relationship between the generated facies
models (blue) and the training facies models (red) in 2D space at
different iterations of alternative training in the progressive process. As

the training progresses, the generated facies model distribution gets closer
to the training facies model distribution. After 160 k iterations there is no
improvement of the relationship between these two distributions

Comput Geosci

variograms along four directions (NS, NE-SW, EW, and SE-
NW), and assess the generator by comparing their variograms
in different directions.

4.5 Channel sinuosity, channel width, and channel
length

We use image processing algorithms to calculate channel sin-
uosity, channel width, and channel length (arc length) for each
facies model. The channel sinuosity is defined as the ratio of
channel length to the straight-line length between two end
points. We used geodesic distance and Euclidean distance
transforms algorithms to calculate the width, arc length, and
straight-line length of channels in facies models. We random-
ly sample 200 generated facies models and 200 training facies
models to compare their distributions of channel sinuosity,
channel width, and channel length. The channel length reveals
the connectivity of channels, to some extent.

5 Training datasets

In terms of the facies model training dataset used for GANs,
researchers have used training images (TIs) [48], as well as
object-based facies modeling methods (e.g., [29, 42]) to con-
struct their own training datasets. In addition, Nesvold and
Mukerji [49] used satellite images as the training dataset. In
our study, we synthesized two systematic facies training
datasets in terms of different reservoir types: sinuous channel
reservoirs and underground river-related karst caves.

The training sinuous channel facies models were synthe-
sized in the commercial Petrel platform using mature object-
based modeling method. The facies types include channel com-
plex facies (channel sand and channel bank) and inter-channel
mud facies. The resolution of each of the 35,640 2-dimensional
facies models is 64×64. Each facies model includes multiple
channel complexes, and these channel complexes have similar
global features (e.g., orientation, sinuosity, width, amplitude,
etc.). During the synthesizing process, we tune the number,
orientation, width, wavelength, and amplitude of the channel
complexes, to create a variety of synthesized facies models.
Figure 7 shows some facies model examples.

For the karst cave training models, we initially designed an
object-based simulation method to produce 642 large karst cave
realizations with resolution of 655 × 655 cells. These realizations
vary in cave width, cave direction, and the number of cave
branches (Fig. 8). There are totally two facies types: cave and
non-cave facies. We randomly cropped these large realizations
along karst caves to form 22,695 small 64×64-resolution karst
cave facies models, which will be used as the training facies
models in this study. Figure 8 shows the cropping process and
some large and small karst cave facies model examples.

6 Results and analyses

6.1 GANs used for sinuous channel facies modeling

The sinuous channel facies model training dataset was used
for training the GANs in this case. First, we trained the GAN

Fig. 15 Transition of the generated facies models with the same input
latent vectors at different iterations of alternative training in the
progressive process. Facies models are upsampled to 64×64, if they are
smaller than 64×64. The first 4 columns are upsampled from 4×4, 8×8,

16×16, and 32×32 into 64×64. The quality of the generated facies models
increases stably, especially at the transitions when the resolution is
doubled. After 280 k iterations, the generated facies models are almost
indistinguishable from the training data

Comput Geosci

Fig. 16 The W-gp loss after
different times of the alternative
training, in the progressive
manner

Fig. 17 Comparison among the facies models generated from the
conventionally trained generator (upper left), the facies models
generated from the progressively trained generator (upper right), and
the training facies models (upper center). All the generated facies

models are all very similar to the training facies models in both realism
and diversity, and only a small number of generated facies models ((a),
(b), (c), and (d)) exhibit minor flaws of discontinuous channel complexes

Comput Geosci

in the conventional process. The trend of the average SWD
becomes smaller and finally flattens out after about 460 k
iterations of alternative training (Fig. 9). Figure 10 shows
the MDS plots of the distributions of the generated facies
models and the training facies models in 2D space during
the training process; after 420 k alternative training iterations,
there is minor or no improvement in the relationship between
the generated and the training facies models. By further visual
inspection, we found that, after 520 k alternative training iter-
ations, the generator can generate very realistic facies models,
almost indistinguishable from the training data by human
eyes. Figure 11 shows some random generated facies model
examples after different iterations of the alternative training.
We stopped training after 520 k iterations of alternative train-
ing, and kept that final generator for further evaluation and
applications. This generator is called the conventionally
trained generator hereafter. The total training time is 15.4 h
using 2 GPUs (NVIDIA Tesla V100-PCIE-32GB), 10 CPUs,

and 80G RAM in parallel. Figure 12 shows theW-gp loss (see
Eq. (4)) versus training iterations; this loss is also called the
critic loss in GAN research community.

Next, we trained another GAN with the same architecture
but now using the progressive process described above. The
MS-SWD converges after about 160 k iterations of alternative
training (Fig. 13). Figure 14 further shows in the MDS plots
that the generated facies model distribution gets closer to the
training facies model distribution as the training progresses,
and these two distributions almost totally mix after 160 k it-
erations. Further visual inspection indicates that, after 280 k
iterations the generated facies models are almost indistin-
guishable from the training facies models (Fig. 15).
Therefore, we stopped training after 280 k iterations of alter-
native training, and kept that generator for further assessment
and applications. This generator is called the progressively
trained generator hereafter. The total training time is 6.03 h
using the same computational capabilities as for the

Fig. 18 The change of the average SWDs of the conventional and progressive training, during the training process

Fig. 19 The comparison of the
training facies models, the facies
models generated from the
conventionally trained generator,
and facies models generated from
the progressively trained
generator, in 2D space, using
MDS plot. The facies models
generated from the progressively
trained generator is closer in
distribution to the training facies
models than the facies models
generated from the
conventionally trained generator

Comput Geosci

conventionally trained GAN. Figure 15 also indicates that the
quality of the generated facies models increases stability dur-
ing the training, especially at the time points when the output
resolution is doubled. At these time points, more layers are
involved in the generator and the discriminator, so the gener-
ator and the discriminator becomemore robust. The generated
facies models after these times points (e.g., the fourth column
in Fig. 15) are based on the generated facies models before
these times points (e.g., the third column in Fig. 15). The
newly added deeper layers in the generator learns more de-
tailed features of the facies models based on the features
learned by the shallower layers. Figure 16 shows the W-gp
loss (see (4)) versus alternative training iterations.

We compared the conventionally trained generator and the
progressively trained generator using visual inspection, MS-
SWD, MDS plots, facies proportion, the variogram, and the
channel sinuosity, width, and length metrics.

The conventionally and progressively trained generators
were both applied to generate 20,000 facies models with one
GPU (NVIDIA Tesla V100-PCIE-32GB), respectively, and it
takes around 3.2 s for each of the two trained generators. We
manually compared these generated facies models with the
training facies models, with respect to realism and diversity.
The facies models generated from both generators are all very
realistic and diversified, and almost indistinguishable from the
training facies models, in spite of someminor flaws of discon-
tinuous channel complexes in a small number of generated
facies models (Fig. 17). It is difficult to decide which genera-
tor is superior based on visual inspection alone.

Figure 18 shows the change of the average SWDs during
the conventional and progressive training against the baseline.
The average SWD of the conventional training process flat-
tens out slowly, and is farther away from the baseline.
Figure 10 indicates that, in the conventional training process,

although the initial generated facies model distribution is not
far from the training facies model distribution, the two distri-
butions cannot get very close even after many iterations of
alternative training. On the other hand, the average SWD of
the progressive training converges very quickly, and the
convergence value is very close to the baseline
(Fig. 18). The progressive training process starts from
low-resolution output and progressively increases the
resolution. Hence during the initial 2 h of training, the
average SWD of the progressive training is much larger
than that of the conventional training process (Fig. 18),
and the generated facies model distribution is very far
from the training facies model distribution (Fig. 14).
During the progressive training, whenever the resolution
of the output is doubled, there is a large improvement
in the average SWD and in the relationship between the
generated and the training facies model distributions.
The final generated facies model distribution of the pro-
gressive training almost totally mixes with the training
facies model distribution (last plot in Fig. 14).

The average SWD of the progressively trained generator
(6.81) is much closer to the baseline (4.69) than the average
SWD of the conventionally trained generator (12.74)
(Fig. 18). Figure 19 usesMDS plot to compare the distribution
of the training facies models, and the distributions of the facies
models generated from both the conventionally trained and
the progressively trained generators, in 2D space. It is clear
that the facies models generated from the progressively
trained generator is closer to the training facies models than
the facies models generated from the conventionally trained
generator (Fig. 19, last plot in Fig. 10, and last plot in Fig. 14).
In addition, the progressively trained generator is trained in
only 39.2% (6.03 h) of the time required to train the conven-
tionally trained generator (15.4 h).

Table 2 Errors in cdf of facies
proportion for the conventionally
trained generator and the
progressively trained generator
over all facies types

Generator Mud facies Channel bank facies Channel and facies

Conventionally trained 9.8% 5.6% 6.0%

Progressively trained 6.5% 5.1% 4.6%

Fig. 20 Facies proportion distributions (cdf’s) of the conventionally trained generator, the progressively trained generator, and the training data, over all
facies types

Comput Geosci

We also evaluated the facies proportion distributions of
both the conventionally trained generator and the progressive-
ly trained generator, by comparing to the facies proportion
distributions of the training data (Fig. 20). The cumulative
distribution functions (cdfs) of both the trained generators
are very close to the cdfs of the training data, over all facies
types. We calculated the facies proportion errors in cdf for the
two trained generators, over different facies types (Table 2).
The progressively trained generator has slightly lower errors
than the conventionally trained generator, over all facies
types.

We calculated the variograms of the facies models gener-
ated from the conventionally trained generator, the progres-
sively trained generator, and the training facies models, along
different directions (Fig. 21). We further compared the aver-
age variograms of the generators with that of the training
facies models (Fig. 22). The average variograms of both gen-
erators are very close to that of the training data, over all
directions. The average variograms of the two generators al-
most overlap; this means that the two generators have similar
performance (and flaws) in capturing two-point spatial conti-
nuity, to some extent.

We calculated the cdf distributions of channel sinuosity,
channel width, and channel length for the randomly sampled
training facies models, facies models produced from conven-
tionally trained generator, and facies models from progres-
sively trained generator (Fig. 23). The cdfs of both trained
generators are almost equally close to the cdf of the training
data, for channel sinuosity, channel width, and channel length.
Channel length reveals the connectivity of channels, thus the
close channel length distributions in Fig. 23 indicates that,
both trained generators produce similar channel connectivity
as in training facies models. Looking at the details of the
channel length distribution we see that the conventionally
trained generator (blue triangles) produces models with a
slightly larger proportion of shorter channel lengths as com-
pared to the distribution of channel length from the training set
(red circles). This implies that the channel connectivity is
slightly poorer for the models from the conventionally trained
generator. The models from the progressively trained genera-
tor (black squares) show a better match to the training set
distribution.

To sum up, the progressively trained generator and the
conventionally trained generator both have very good

Fig. 21 The variogram distributions of the facies models generated from
the conventionally trained and the progressively trained generators along
different directions (i.e., 0, 45, 90, and 135 degrees), compared to the
variogram distribution calculated from the training facies models. The

red curve is the average, while the dashed blue and dotted green curves
are P10 and P90 (i.e. 10th ad 90th percentiles) of the variogram
distributions

Comput Geosci

performances on all metrics. Once they are trained, it takes
0.16 milliseconds for each generator to simulate a 64×64-res-
olution facies model. The progressively trained generator be-
haves especially better than the conventionally trained gener-
ator on the MS-SWD metric, MDS plots, and the reduced
training time.

We further compare the facies models generated from the
progressively trained generator with their closest counterparts
in the training dataset (Fig. 24). The closest training facies
models are found based on the pixel-to-pixel Euclidean dis-
tance. We can see from Fig. 24 that, although the generated
facies models are very similar to their counterparts in the
training dataset, there are still large differences between therm.
Thus, we can conclude that, the generated facies models are

not just a naïve copy of the training dataset; instead, they are
produced based on the geological pattern knowledge learned
from the training dataset.

6.2 GANs used for karst cave facies modeling

Similar to the previous case, we trained two generators with
conventional and progressive processes, respectively, using
the karst cave training dataset. Based on visual inspection
and change of MS-SWD metrics, the conventionally trained
generator is obtained after 190 k iterations of alternative train-
ing. The training time is 4.7 h using 2 GPUs (NVIDIA Tesla
V100-PCIE-32GB), 10 CPUs, and 80G RAM in parallel.
Similarly, the progressively trained generator is obtained after

Fig. 22 The comparison of the
average variograms for the
conventionally trained generator,
the progressively trained
generator, and the training facies
models, along different directions
(i.e., 0, 45, 90, and 135 degrees).
The average variograms of two
generators almost overlap, and
they are both very close to that of
the training facies models

Fig. 23 Channel sinuosity (left), channel width (middle), and channel length (right) distributions (cdf’s) of the randomly sampled training facies models,
facies models produced from conventionally trained generator, and facies models from progressively trained generator

Comput Geosci

240 k iterations of alternative training, and takes 4.4 h with the
same computational resources as the conventional process.

We manually compared the karst cave facies models pro-
duced by the two trained generators with the training karst
cave facies models in realism and diversity (Fig. 25). All the
generated facies models are very realistic and diversified, and
almost indistinguishable from the training facies models. The
average SWD of the progressively trained generator, conven-
tionally trained generator, and the baseline computed from
two groups of training facies models are 6.93, 11.75, and
4.69, respectively. That the average SWD of progressively
trained generator is much closer to the baseline than the con-
ventionally trained generator, indicates the superiority of the
progressive training to some extent. Figure 26 shows theMDS
plot to compare the distributions of the training facies models
with the distributions of the facies models produced from the
two generators, in 2D space. The facies models generated

from the progressively trained generator is closer to the train-
ing facies models than those generated from the convention-
ally trained generator. We further compared the cdf distribu-
tions of the karst cave proportion for randomly sampled train-
ing facies models and facies models produced from the two
trained generators (Fig. 27). The cdf of the progressively
trained generator is slightly closer to the cdf of the training
data than the conventionally trained generator.

In this case, compared to the conventional training process,
the progressive training process only saves about 6% of the
training time, while the saved training time in previous case is
about 60%. The reason might be that, the karst cave distribu-
tion patterns to be learned in this case is easier than the sinuous
channel distribution patterns in the previous case, given that
generally only one or two karst caves exist in one facies model
and that the caves are more aligned along the north-south
direction (Fig. 8). With easier feature knowledge to be

Fig. 24 Comparison between generated facies models with their closest counterparts in the training dataset

Fig. 25 Comparison among the facies models generated from the
conventionally trained generator (left), the facies models generated from
the progressively trained generator (right), and the training facies models

(middle). All the generated facies models are very similar to the training
facies models in both realism and diversity

Comput Geosci

learned, even the direct conventional training process can
learn good features quite efficiently, thus the progressive train-
ing process cannot show much advantage in at least the train-
ing time.

7 Conclusions

Different from the conventional Generative Adversarial
Network (GAN) training process, in the progressive GAN
training process, or the progressive growing of GANs,
GANs are trained layer by layer, allowing features to be
learned by the generator from large coarse scales to fine
scales. We trained GANs for geological facies modeling using
both the progressive training workflow and the conventional
training workflow, and assessed the two trained generators.
We used visual inspection, multi-scale slicedWasserstein dis-
tance (MS-SWD), multi-dimensional scaling (MDS) plots,
facies proportion, variogram, channel sinuosity, channel
width, and channel length as the evaluation metrics for the

two trained generators. MS-SWD reveals the realism and va-
riety of the generated facies models over different scales, com-
pared to the training facies models; MS-SWD was also com-
bined with MDS to visualize the distributions of the training
and the generated facies models in 2D space. The two trained
generators both have very good performances on all metrics.
The progressively trained generator behaves especially better
than the conventionally trained generator on the MS-SWD
metric, MDS plots, and the GAN training time. The training
time for the progressively trained generator can be only 39.2%
of that for the conventionally trained generator. However, if
the features to be learned are simple, then this advantage of the
progressive process on training time might be smoothed. Both
trained generators can reproduce very good facies proportion,
variograms, and channel sinuosity, width, and length that are
similar to the training data. Once the generators are trained, it
takes 0.16 milliseconds for each generator to simulate a new
64×64-resolution facies model. We also built two large facies
model training datasets for this study: one is sinuous channel
reservoir type, and the other is karst cave reservoir type. These

Fig. 26 The comparison of the
training facies models, the facies
models generated from the
conventionally trained generator,
and facies models generated from
the progressively trained
generator, in 2D space, using
MDS plot. The distribution of
facies models generated from the
progressively trained generator is
much closer to the training facies
models than the facies models
generated from the
conventionally trained generator

Fig. 27 Karst cave proportion
distributions (cdf’s) of the facies
models produced from the
conventionally trained generator,
the progressively trained
generator, and the training data

Comput Geosci

datasets can also be used for future facies modeling-related
works. Future work involves extending the progressive grow-
ing of GANs into conditional facies modeling and 3D
applications.

Acknowledgments This work was supported by the National Natural
Science Foundation of China (42072146). We acknowledge the sponsors
of the Stanford Center for Earth Resources Forecasting (SCERF) and
support from Prof. Steve Graham, the Dean of the Stanford School of
Earth, Energy and Environmental Sciences. Some of the computing for
this project was performed on the Sherlock cluster at Stanford University.
We would like to thank Stanford University and the Stanford Research
Computing Center for providing computational resources and support
that contributed to these research results. Codes, data, and some results
of this work are available at the GitHub site (https://github.com/
SuihongSong/GeoModeling_Unconditional_ProGAN).

References

1. Pyrcz, M.J., Deutsch, C. V.: Geoestatistical Reservoir Modeling.
(2014)

2. Mariethoz, G., Caers, J.: Multiple-Point Geostatistics: Stochastic
Modeling with Training Images. (2014)

3. Zuo, C., Yin, Z., Pan, Z., MacKie, E.J., Caers, J.: A tree-based
direct sampling method for stochastic surface and subsurface hy-
drological modeling. Water Resour. Res. 56, (2020). https://doi.
org/10.1029/2019WR026130

4. Yan, N., Mountney, N.P., Colombera, L., Dorrell, R.M.: A 3D
forward stratigraphic model of fluvial meander-bend evolution for
prediction of point-bar lithofacies architecture. Comput. Geosci.
105, 65–80 (2017). https://doi.org/10.1016/j.cageo.2017.04.012

5. Tahmasebi, P., Kamrava, S., Bai, T., Sahimi, M.: Machine
Learning in Geo- and Environmental Sciences: from Small to
Large Scale, (2020)

6. Avalos, S., Ortiz, J.M.: Recursive convolutional neural networks in
a multiple-point statistics framework. Comput. Geosci. 141,
104522 (2020). https://doi.org/10.1016/j.cageo.2020.104522

7. Ian Goodfellow, Yoshua Bengio, A.C.: Deep Learning. (2015)
8. Gan, Z., Henao, R., Carlson, D., Carin, L.: Learning Deep Sigmoid

Belief Networks with Data Augmentation. In: Journal of Machine
Learning Research (2015)

9. Larochelle, H., Murray, I.: The Neural Autoregressive Distribution
Estimator. In: Proceedings of the 14th International Conference on
Artificial Intelligence and Statistics (AISTATS 2011) (2011)

10. Van Den Oord, A., Kalchbrenner, N., Vinyals, O., Espeholt, L.,
Graves, A., Kavukcuoglu, K.: Conditional Image Generation with
PixelCNN Decoders. In: Advances in Neural Information
Processing Systems (2016)

11. Rezende, D.J., Mohamed, S., Wierstra, D.: Stochastic
backpropagation and approximate inference in deep generative
models. In: 31st Int;ernational Conference on Machine Learning,
ICML 2014 (2014)

12. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-
Farley, D., Ozair, S., Courville, A., Bengio, Y.: Generative
Adversarial Networks. In: Advances in Neural Information
Processing Systems 27 (2014)

13. Radford, A., Metz, L., Chintala, S.: Unsupervised Representation
Learning with Deep Convolutional Generative Adversarial
Networks. arXiv e-prints. arXiv:1511.06434 (2015)

14. Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein GAN. arXiv e-
prints. arXiv:1701.07875 (2017)

15. Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville,
A.: Improved Training ofWasserstein GANs. arXiv e-prints. arXiv:
1704.00028 (2017)

16. Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired Image-to-Image
Translation Using Cycle-Consistent Adversarial Networks. In:
Proceedings of the IEEE International Conference on Computer
Vision (2017)

17. Karras, T., Aila, T., Laine, S., Lehtinen, J.: Progressive Growing of
GANs for Improved Quality, Stability, and Variation. arXiv e-
prints. arXiv:1710.10196 (2017)

18. Karras, T., Laine, S., Aila, T.: A Style-Based Generator
Architecture for Generative Adversarial Networks. arXiv e-prints.
arXiv:1812.04948 (2018)

19. Dumoulin, V., Belghazi, I., Poole, B., Mastropietro, O., Lamb, A.,
Arjovsky, M., Courville, A.: Adversarially Learned Inference.
arXiv e-prints. arXiv:1606.00704 (2016)

20. Van Den Oord, A., Dieleman, S., Zen, H., Simonyan, K., Vinyals,
O., Graves, A., Kalchbrenner, N., Senior, A., Kavukcuoglu, K.:
WaveNet: A Generative Model for Raw Audio. arXiv e-prints.
arXiv:1609.03499 (2016)

21. Ledig, C., Theis, L., Huszar, F., Caballero, J., Cunningham, A.,
Acosta, A., Aitken, A., Tejani, A., Totz, J., Wang, Z., Shi, W.:
Photo-Realistic Single Image Super-Resolution Using a
Generative Adversarial Network. arXiv e-prints. arXiv:
1609.04802 (2016)

22. Reed, S., Akata, Z., Yan, X., Logeswaran, L., Schiele, B., Lee, H.:
Generative Adversarial Text to Image Synthesis. arXiv e-prints.
arXiv:1605.05396 (2016)

23. Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-Image
Translation with Conditional Adversarial Networks. arXiv e-prints.
arXiv:1611.07004 (2016)

24. Laloy, E., Hérault, R., Lee, J., Jacques, D., Linde, N.: Inversion
using a new low-dimensional representation of complex binary
geological media based on a deep neural network. Adv. Water
Resour. 110, 387–405 (2017). https://doi.org/10.1016/j.advwatres.
2017.09.029

25. Mosser, L., Dubrule, O., Blunt, M.J.: Reconstruction of three-
dimensional porous media using generative adversarial neural net-
works. Phys. Rev. E. 96, (2017). https://doi.org/10.1103/
PhysRevE.96.043309

26. Mosser, L., Dubrule, O., Blunt, M.J.: Stochastic reconstruction of
an Oolitic limestone by generative adversarial networks. Transp.
Porous Media. 125, 81–103 (2018). https://doi.org/10.1007/
s11242-018-1039-9

27. Chan, S., Elsheikh, A.H.: Parametrization and generation of geo-
logical models with generative adversarial networks, (2017)

28. Wu, J., Zhang, C., Xue, T., Freeman, W.T., Tenenbaum, J.B.:
Learning a Probabilistic Latent Space of Object Shapes via 3D
Generative-Adversarial Modeling. arXiv e-prints. arXiv:
1610.07584 (2016)

29. Zhang, T.F., Tilke, P., Dupont, E., Zhu, L.C., Liang, L., Bailey,W.:
Generating geologically realistic 3D reservoir facies models using
deep learning of sedimentary architecture with generative adversar-
ial networks. Pet. Sci. 16, 541–549 (2019). https://doi.org/10.1007/
s12182-019-0328-4

30. Mogren, O.: C-RNN-GAN: Continuous recurrent neural networks
with adversarial training. arXiv e-prints. arXiv:1611.09904 (2016)

31. Ma, L., Jia, X., Sun, Q., Schiele, B., Tuytelaars, T., Van Gool, L.:
Pose Guided Person Image Generation. arXiv e-prints. arXiv:
1705.09368 (2017)

32. Zhang, H., Xu, T., Li, H., Zhang, S., Wang, X., Huang, X.,
Metaxas, D.: StackGAN: Text to Photo-realistic Image Synthesis
with Stacked Generative Adversarial Networks. arXiv e-prints.
arXiv:1612.03242 (2016)

Comput Geosci

https://github.com/SuihongSong/GeoModeling_Unconditional_ProGAN
https://github.com/SuihongSong/GeoModeling_Unconditional_ProGAN
https://doi.org/10.1029/2019WR026130
https://doi.org/10.1029/2019WR026130
https://doi.org/10.1016/j.cageo.2017.04.012
https://doi.org/10.1016/j.cageo.2020.104522
https://doi.org/10.1016/j.advwatres.2017.09.029
https://doi.org/10.1016/j.advwatres.2017.09.029
https://doi.org/10.1103/PhysRevE.96.043309
https://doi.org/10.1103/PhysRevE.96.043309
https://doi.org/10.1007/s11242-018-1039-9
https://doi.org/10.1007/s11242-018-1039-9
https://doi.org/10.1007/s12182-019-0328-4
https://doi.org/10.1007/s12182-019-0328-4

33. Lucic, M., Kurach, K., Michalski, M., Gelly, S., Bousquet, O.: Are
GANs Created Equal? A Large-Scale Study. arXiv e-prints. arXiv:
1711.10337 (2017)

34. Tran, T.T.: Improving variogram reproduction on dense simulation
grids. Comput. Geosci. 20, 1161–1168 (1994). https://doi.org/10.
1016/0098-3004(94)90069-8

35. Strebelle, S.: Conditional simulation of complex geological struc-
tures using multiple-point statistics. Math. Geol. 34, 1–21 (2002).
https://doi.org/10.1023/A:1014009426274

36. Liu, Y.: Using the Snesim program for multiple-point statistical
simulation. Comput. Geosci. 32, 1544–1563 (2006). https://doi.
org/10.1016/j.cageo.2006.02.008

37. Arpat, G.B., Caers, J.: Conditional simulation with patterns. Math.
Geol. 39, 177–203 (2007). https://doi.org/10.1007/s11004-006-
9075-3

38. He, K., Zhang, X., Ren, S., Sun, J.: Delving Deep into Rectifiers:
Surpassing Human-Level Performance on ImageNet Classification.
In: IEEE International Conference on Computer Vision. pp. 1026–
1034 (2015)

39. Kingma, D., Ba, J.: Adam: a method for stochastic optimization.
arXiv Prepr. arXiv1412.6980. (2014). https://doi.org/10.1109/
ICCE.2017.7889386

40. Borji, A.: Pros and Cons of GAN Evaluation Measures. arXiv e-
prints. arXiv:1802.03446 (2018)

41. Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural sim-
ilarity for image quality assessment. In: The Thrity-Seventh
Asilomar Conference on Signals, Systems & Computers, 2003.
pp. 1398–1402 (2003)

42. Mosser, L., Dubrule, O., Blunt, M.J.: Stochastic seismic waveform
inversion using generative adversarial networks as a geological

prior. Math. Geosci. 52, 53–79 (2020). https://doi.org/10.1007/
s11004-019-09832-6

43. Zhong, Z., Sun, A.Y., Jeong, H.: Predicting CO 2 plume migration
in heterogeneous formations using conditional deep convolutional
generative adversarial network. Water Resour. Res. 55, 5830–5851
(2019). https://doi.org/10.1029/2018wr024592

44. Burt, P.J., Adelson, E.H.: Readings in Computer Vision: Issues,
Problems, Principles, and Paradigms. Presented at the (1987)

45. Rabin, J., Peyré, G., Delon, J., Bernot, M.: Wasserstein barycenter
and its application to texture mixing. In: Bruckstein, A.M., ter Haar
Romeny, B.M., Bronstein, A.M., and Bronstein, M.M. (eds.) Scale
Space and Variational Methods in Computer Vision. pp. 435–446.
Springer Berlin Heidelberg, Berlin, Heidelberg (2012)

46. Scheidt, C., Caers, J.: Representing spatial uncertainty using dis-
tances and kernels. Math. Geosci. 41, 397–419 (2009). https://doi.
org/10.1007/s11004-008-9186-0

47. Azevedo, L., Paneiro, G., Santos, A., Soares, A.: Generative adver-
sarial network as a stochastic subsurface model reconstruction.
Comput. Geosci. 24, 1673–1692 (2020). https://doi.org/10.1007/
s10596-020-09978-x

48. Laloy, E., Hérault, R., Jacques, D., Linde, N.: Training-image based
Geostatistical inversion using a spatial generative adversarial neural
network. Water Resour. Res. 54, 381–406 (2018). https://doi.org/
10.1002/2017WR022148

49. Nesvold, E., Mukerji, T.: Geomodeling Using Generative
Adversarial Networks and a Database of Satellite Imagery of
Modern River Deltas. In: Petroleum Geostatistics (2019)

Publisher’s note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.

Comput Geosci

https://doi.org/10.1016/0098-3004(94)90069-8
https://doi.org/10.1016/0098-3004(94)90069-8
https://doi.org/10.1023/A:1014009426274
https://doi.org/10.1016/j.cageo.2006.02.008
https://doi.org/10.1016/j.cageo.2006.02.008
https://doi.org/10.1007/s11004-006-9075-3
https://doi.org/10.1007/s11004-006-9075-3
https://doi.org/10.1109/ICCE.2017.7889386
https://doi.org/10.1109/ICCE.2017.7889386
https://doi.org/10.1007/s11004-019-09832-6
https://doi.org/10.1007/s11004-019-09832-6
https://doi.org/10.1029/2018wr024592
https://doi.org/10.1007/s11004-008-9186-0
https://doi.org/10.1007/s11004-008-9186-0
https://doi.org/10.1007/s10596-020-09978-x
https://doi.org/10.1007/s10596-020-09978-x
https://doi.org/10.1002/2017WR022148
https://doi.org/10.1002/2017WR022148

	Geological Facies modeling based on progressive growing of generative adversarial networks (GANs)
	Abstract
	Introduction
	Background on GANs
	GAN framework
	GAN loss
	Progressive growing of GANs

	Geological facies modeling
	GAN architectures used in this study
	Loss function training
	Progressive training workflow

	Evaluations of GANs
	Visual inspection
	Multi-scale sliced Wasserstein distance (MS-SWD) and multi-dimensional scaling
	Facies proportion
	Variogram
	Channel sinuosity, channel width, and channel length

	Training datasets
	Results and analyses
	GANs used for sinuous channel facies modeling
	GANs used for karst cave facies modeling

	Conclusions
	References

