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Abstract  Conditional facies modeling combines geological spatial patterns with 
different types of observed data, to build earth models for predictions of subsurface 
resources. Recently, researchers have used generative adversarial networks (GANs) 
for conditional facies modeling, where an unconditional GAN is first trained to 
learn the geological patterns using the original GAN’s loss function, then appropri-
ate latent vectors are searched to generate facies models that are consistent with the 
observed conditioning data. A problem with this approach is that the time-consum-
ing search process needs to be conducted for every new conditioning data. As an 
alternative, we improve GANs for conditional facies simulation (called GANSim) 
by introducing an extra condition-based loss function and adjusting the architec-
ture of the generator to take the conditioning data as inputs, based on progressive 
growing of GANs. The condition-based loss function is defined as the inconsistency 
between the input conditioning value and the corresponding characteristics exhib-
ited by the output facies model, and forces the generator to learn the ability of being 
consistent with the input conditioning data, together with the learning of geological 
patterns. Our input conditioning factors include global features (e.g., the mud facies 
proportion) alone, local features such as sparse well facies data alone, and joint com-
bination of global features and well facies data. After training, we evaluate both the 
quality of generated facies models and the conditioning ability of the generators, 
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by manual inspection and quantitative assessment. The trained generators are quite 
robust in generating high-quality facies models conditioned to various types of input 
conditioning information.

Keywords  Conditional facies modeling · Generative adversarial networks 
(GANs) · Progressive growing of GANs · Deep learning · Geological pattern · 
Reservoir forecast

1  Introduction

Geological facies modeling is fundamental to the accurate prediction of subsurface 
resources, such as groundwater, petroleum, and carbon storage potential. Many geo-
statistical facies modeling approaches have been developed in the past decades, such 
as variogram-based methods, multiple point-statistics (MPS)-based methods, object-
based methods, and process-mimicking methods (Pyrcz and Deutsch 2014). These 
approaches have various advantages and disadvantages, and they have been widely 
used in different scenarios. Some of them are still under research, such as the recent 
development of the tree-based direct sampling MPS method (Zuo et al. 2020).

Basically, geological facies modeling is a process of generating two-dimensional 
or three-dimensional spatial facies models with realistic geological spatial patterns, 
given various types of observed data. From the perspective of deep learning, geo-
logical facies modeling belongs to the class of generative problems, in which a gen-
erative model is trained to reproduce a probability distribution given many samples 
from that distribution (Goodfellow and Yoshua Bengio 2016). Some widely used 
deep generative models include deep sigmoid belief networks (Gan et  al. 2015), 
pixel recurrent neural networks (RNN) and pixel convolutional neural networks 
(CNN) (Van Den Oord et  al. 2016b), variational autoencoders (VAE) (Larochelle 
and Murray 2011; Rezende et al. 2014), and especially, generative adversarial net-
works (GANs) (Goodfellow et al. 2014).

Among these generative models, GANs generate very realistic results and have 
been the most widely studied and applied. In the GANs framework, there is a gen-
erator network and a discriminator network. The goal of the generator is to “cheat” 
the discriminator by generating realistic results, while the goal of the discriminator 
is to avoid being cheated by the generator by discriminating the real data from the 
outputs of the generator. Finally, after iterations of training, the generator is kept 
for further generative applications. Appendices A.1 and A.2 in the ESM give more 
details about GANs. Many variants of GANs have been developed, such as condi-
tional GANs (Mirza and Osindero 2014), cycle GANs (Zhu et al. 2017), and bidi-
rectional GANs (Dumoulin et al. 2016). Karras et al. (2017) proposed progressive 
growing of GANs, where the networks in the GANs are trained layer by layer. This 
progressive GAN training method allows the features to be learned from large scales 
to fine scales, and proves to perform much better than the conventional GAN train-
ing method in terms of the training speed, stability, and the quality of the generated 
results. Appendix B in the ESM shows how progressive growing of GANs is applied 
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for an unconditional facies modeling case. Based on the progressive growing of 
GANs, Karras et al. (2018) further proposed style GANs. GANs have been success-
fully used in many areas, including image generation (Karras et al. 2017), image in-
painting (Van Den Oord et al. 2016a), super-resolution image creation (Ledig et al. 
2016), text-to-image translation (Reed et al. 2016), and object segmentation (Isola 
et al. 2016).

Many researchers have studied the application of GANs for geological facies 
modeling. Mosser et  al. (2017, 2018a) used deep convolutional GANs for recon-
struction of three-dimensional solid-void structures of porous media and micro-CT-
scale oolitic Ketton limestone. Chan and Elsheikh (2017) used convolutional GANs 
combined with the Wasserstein loss to generate geological facies models. These 
works are focused on unconditional realizations.

In most cases, geological facies models need to be conditioned to observed data 
(e.g., facies observed in wells). To achieve conditioning to observed data, some 
researchers have used “post-GAN” approaches, where unconditional GANs are first 
trained, and then appropriate latent vectors that generate models consistent with the 
observed data are searched. Nesvold and Mukerji (2019), Mosser et al. (2020), and 
Laloy et al. (2018) used Markov chain Monte Carlo (MCMC) algorithms to search 
for the appropriate latent vectors. Dupont et  al. (2018) and Zhang et  al. (2019) 
applied gradient descent method to obtain the appropriate latent vectors. With the 
above MCMC or the gradient decent optimization algorithm, only one appropriate 
latent vector is searched every time. In  situations where many conditional facies 
realizations are required, e.g., uncertainty quantification, the latent vector searching 
process needs to be conducted many times, which is, however, slow and inconven-
ient. Therefore, Chan and Elsheikh (2019) proposed to train an extra inference neu-
ral network to map a known distribution, e.g., Gaussian, into the distribution of the 
appropriate latent vectors, so that multiple samples from the known distribution can 
be directly mapped into multiple appropriate latent vectors by the inference network. 
One problem for the “post-GAN” approaches is that once the values of the observed 
data change, the time-consuming “post-GAN” process of finding the appropriate 
latent vector (i.e., MCMC, gradient descent, or inference network training) needs to 
be performed again.

Sun (2018) applied cycle GANs for bidirectional domain transformation between 
high-dimensional parameter space and the corresponding model state space. The 
output of the GAN is directly conditioned to the GAN’s input. Similarly, Mosser 
et  al. (2018b) also used cycle GANs for domain transformation between seismic 
velocity and the geological model. Theoretically, cycle GANs stand out in unsu-
pervised domain transformation tasks, where paired training datasets between two 
domains are difficult to obtain. One problem for cycle GANs is that concurrently 
training two GANs is quite difficult and unstable.

In addition, Zhong et al. (2019) used conditional GANs and “U-Net” design to 
transfer the permeability distribution map into CO2 saturation maps at different time 
steps. The GAN takes the time step data and the permeability map as two chan-
nels in the input and generates CO2 saturation maps as outputs. The output maps 
are conditioned to the input permeability and the time steps. Such a GAN architec-
ture may also be extended for the conditional facies modeling task. Compared to the 
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“post-GAN” processes, this architecture is more straightforward for achieving mul-
tiple conditionings; however, the “U-Net” design in this architecture increases the 
number of trainable parameters, leading to increased training difficulties.

Therefore, in this paper, we improve GANs for conditional facies simulation, by 
introducing an extra condition-based loss function and adjusting the architecture of 
the generator to take conditioning data as inputs, in the context of the progressive 
growing of GANs. This improved GAN is called GANSim in this paper. The con-
ditioning information for the facies modeling includes prior global features (e.g., 
the facies proportions, and the sinuosity of channels) alone, sparse well facies data 
(“hard data”) alone, and the joint combination of global features and well facies 
data. After training, the generator can be directly used for practical conditional 
facies modeling without further training or “post-GAN” processes.

This paper is organized as follows. Section 2 shows GANSim and how it is used 
for facies modeling conditioned to global features, well facies data, and their com-
bination. Section 3 illustrates how the trained generators are evaluated in terms of 
the quality of the generated facies models and the conditioning ability of the trained 
generators to various types of input conditioning data. Section 4 shows how neces-
sary datasets are built for the training and testing of our GANs. Section 5 presents 
the results, evaluation, and analyses of the trained generators. Finally, conclusions 
are provided in Sect. 6.

2 � GANSim

For conditional facies modeling, the generator needs two types of abilities: one is 
to be consistent with the geological patterns, and the other is to be consistent with 
the conditioning data. In GAN-based unconditional facies modeling, the generator 
learns the knowledge about geological patterns, and this allows the generator to sim-
ulate realistic facies models in an unconditional manner. To enforce the generator to 
be consistent with the given conditioning data (or conditioning ability) at the same 
time, we propose an improved GAN workflow called GANSim (Fig. 1) as follows. 
First, we design the architecture of the generator ( G� ) to also take the given condi-
tioning information ( con0 ) as an input together with the latent vector ( z ). Second, we 
construct a function ( fcon(F) ), which maps the facies model ( F ) into the given con-
ditioning domain ( con ). Third, we use fcon(F) to map the output facies model of the 
generator back into the conditioning domain, i.e., con1 = fcon

[
G�

(
z, con0

)]
 , where in 

general con1 may not be equal to con0 ; we define a condition-based loss function as 
some form of the distance between con1 and con0 (Eq. (1)).

Here, L
(
G�

)
con

 is the condition-based loss function, and Dist
(
con1, con0

)
 is some 

type of distance (made more specific later) between con1 and con0 , while pz is the 
distribution of z , and pcon0 is the distribution of con0 . The condition-based loss func-
tion is combined with the original GAN loss function as shown in Eq. (2)

(1)L
(
G�

)
con

= Dist
(
con1, con0

)
= �z∼pz,con0∼pcon0

Dist
(
fcon

[
G�

(
z, con0

)]
, con0

)
.
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where L
(
G� ,D�

)
combined

 is the combined loss, L
(
G� ,D�

)
 is the original GAN loss 

function, D� is the discriminator, and � is the weight for L
(
G�

)
con

.
Finally, we apply this combined loss to train the GAN in a progressive growing 

manner. The condition-based loss function only affects the training of the genera-
tor. This workflow is universal for all forms of conditioning, so it is called the 
general GANSim workflow hereafter in this paper.

In this general GANSim workflow, there are two “objectives” working: (1) the 
GAN framework and the original GAN loss function push the generator to map 
its input into the distribution of the training dataset ( pdata ), so the output facies 
model of the generator would be realistic, i.e., G�

(
z, con0

)
→ pdata (shown by pur-

ple arrows in Fig. 1); (2) the condition-based loss function pushes the generator to 
the proper subspace of the distribution that is consistent with the input condition-
ing value through fcon(F) , i.e., fcon

[
G�

(
z, con0

)]
→ con0 (shown by green arrows 

in Fig. 1). With the above two objectives, the output facies model of the generator 
is both realistic in terms of spatial patterns and consistent with the input condi-
tioning data.

Three most important elements in the general GANSim workflow are (1) the 
architecture of generator to take the conditioning data as input, (2) the construc-
tion of fcon(F) , and (3) the definition of the distance between con1 and con0 in the 
condition-based loss function. These elements are decided depending on the input 
conditioning data type. In the following parts, we discuss these three elements in 
detail, with conditioning data as non-spatial global features, spatially sparse well 
facies data, and both jointly.

(2)L
(
G� ,D�

)
combined

= L
(
G� ,D�

)
+ �L

(
G�

)
con

,

Fig. 1   A schematic for the 
general GANSim workflow to 
achieve conditional facies mod-
eling. Axis con and z represents 
the condition and the latent 
vector, respectively. The size of 
the light blue cross represents 
certain characteristics (e.g., the 
width of channel) exhibited by 
the generated facies model, and 
these characteristics correspond 
to the input conditioning value
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The GAN architecture for conditional facies modeling in this paper is based on an 
unconditional GAN for facies modeling (Song et al. 2020) which is also described in 
detail in Appendix B in the ESM. The generator and the discriminator in the uncon-
ditional GAN are called the base generator and the base discriminator in this paper. 
For conditioning, the generators are modified from the base generator; the discrimi-
nator is modified from the base discriminator for the case of conditioning to global 
features alone and the case of conditioning to both global features and well facies 
data, and remains the same as the base discriminator for the case of conditioning to 
well facies data alone. The resolution of the base generator’s output is 64 × 64 (two-
dimensional). The Wasserstein loss function with gradient penalty (W-gp) [Eq. (A4) 
in Appendix A in the ESM] and other settings of training in the unconditional work 
(Appendix B.2 in the ESM) are also used in this work. After training, the generator 
is kept for further evaluation and practical applications.

2.1 � Facies Modeling Conditioned to Global Features

In practice, sometimes we need to simulate facies models that have certain types 
of features, such as the proportion of facies and the sinuosity of channels. These 
features describe the global characteristics of the facies models and are not related 
to the spatial distribution of facies, so these features are called global features ( g ) in 
this paper.

According to the general GANSim workflow, we specify the three elements for 
the facies modeling conditioned to global features as follows. First, we modify the 
input layer of the base generator to also include the global features, and accordingly 
adjust the first fully connected layer of the base generator (Fig. 2). Second, the facies 
model-to-condition function (specifically called the facies model-to-global features 
function in this case, fg(F) ) can be easily obtained for a small number of global 
features, such as facies proportion, but can be difficult to calculate for other global 
features, such as the sinuosity, orientation, width, wavelength, and amplitude of 

Global features ( )

Train 

Fake facies model ( )

Score ( )

Real facies model ( )

Facies model ( )

Train GAN

Train GAN

’

(a)

(b)

Fake facies model ( )

Facies model ( )

Fig. 2   a Two-step procedure of the facies modeling conditioned to global features. First, we train fg(F) 
with training facies models and corresponding global features. Second, based on the trained fg(F) , we 
train the modified GANs. b The discriminator is modified from the base discriminator to integrate the 
fg(F) network, and it produces a score value ( s ) and the global feature values. In this way, we only need 
to train the modified GAN
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channel complexes, as it could involve some image processing on every generated 
facies model. For example, Clerici and Perego (2016) proposed to first obtain the 
centerline of a channel by gradually moving two channel boundary curves towards 
each other, then calculate the width of the channel by averaging many transect lines 
that are orthogonal to the centerline, and finally calculate the sinuosity index by 
dividing the length of the centerline by the distance between the start and end points 
of the centerline. However, such calculations are difficult to express using param-
eterized functions, and would be specific to each global feature. An efficient and 
more general way to obtain fg(F) (valid for any global feature) is to train a separate 
deep neural network with a labeled training dataset, where the input is the facies 
model and the outputs are the global features. Considering that the architecture and 
function of such a deep neural network are very similar to that of the discrimina-
tor, we propose to integrate fg(F) into the discriminator so that the discriminator 
produces a score value ( s ) and an array of the global feature values (Fig. 2). Third, 
the distance between the input and output global features in the condition-based loss 
function (Eq. (1)) is defined as the L2 norm distance.

As the Wasserstein loss function with gradient penalty (W-gp) is used, we com-
bine Eq. (A4) in the ESM and Eqs. (1) and (2) to derive the final loss function of the 
modified generator in this case as follows

where pz and pg are the distributions of the latent vector ( z ) and the global features 
( g ), and Ds�

 and Dg�
 represent the output score ( s ) and the output global features of 

the modified discriminator. In terms of the loss function for the modified discrimina-
tor, loss in Eq. (A4) in the ESM can only be used to train the modified discriminator 
to produce a meaningful score to assess the realism of the input facies model, but 
cannot train the modified discriminator to produce meaningful global features of the 
input facies model. Thus, we add an additional term to the loss of Eq. (A4) in the 
ESM [ −� ∥ Dg�

(x) − g ∥
2
 in Eq.  (4)] to train the modified discriminator to extract 

meaningful global features of the input facies model in a supervised way, using the 
training facies models and the corresponding ground truth global features; the final 
loss function for the modified discriminator is given in the following equation

where (x, g) is a pair of training facies models and the corresponding global features, 
p(data,g) is their joint distribution, � is a weight, and x̂ is sampled between x ∼ pdata 
and xG = G�(z, g) , i.e., x̂ = tx + (1 − t)xG, t ∼ uniform(0, 1).

The loss function L
(
G�

)
combined

 is minimized when training the modified genera-
tor, while the loss function L

(
D�

)
combined

 is maximized when training the modified 

(3)L
(
G�

)
combined

= �z∼pz,g∼pg

{
−Ds�

(
G�(z, g)

)
+ �

‖‖‖
Dg�

[
G�(z, g)

]
− g

‖‖‖2

}
,

(4)

L
(
D�

)
combined

= �(x,g)∼p(data,g),z∼pz

[
−� ∥ Dg�

(x) − g ∥
2
− Ds�

[
G�(z, g)

]
+ Ds�

(x)

]

− ��x̂∼px̂
[(∥ ∇x̂Ds�

(̂x) ∥
2
− 1)

2
],
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discriminator. In our study, we train GANs in a progressive growing process for bet-
ter performance, but it can also be trained in a conventional process.

2.2 � Facies Modeling Conditioned to Well Facies Data

Well facies data have very high certainty and resolution, but they are sparsely dis-
tributed around the whole study area. One approach for feeding in the well facies 
data into the generator is the “U-Net” design (e.g., Ledig et al. 2016; Zhong et al. 
2019), where the spatial well facies data are first coded into a low-dimensional space 
and then encoded back into the high-dimensional facies models. Inspired by the pro-
gressive growing of GANs, we propose a simpler encoding approach for feeding 
in the well facies data (Fig. 3). Let N be the number of different facies categories. 
The input sparse well facies data ( w , 64 × 64) are decomposed into multiple chan-
nels: one well location indicator channel ( Iwloc , 64 × 64 × 1), and N − 1 well facies 
indicator channels one for each of the N − 1 facies types ( Iw1 , Iw2 , …, IwN−1 , 64 × 64 
× 1), i.e., w → (Iwloc, Iw1, Iw2,… , IwN−1) . The indicator of the last facies type IwN is 
not included, because the information of IwN is included by the other indicators. In 
progressive growing of GANs, the real samples are fed in at multiple scales from 
coarse to fine (Karras et al. 2017). Thus, these well indicator channels (64 × 64 ×N ) 
are downsampled into different resolution levels (4 × 4 ×N , 8 × 8 ×N , …, 32 × 32 
×N ). The well location indicator channel is downsampled using maximizing, and 
the well facies indicator channels are downsampled using averaging. These down-
sampled and the original 64 × 64 ×N indicator channels are converted into feature 
cubes of the same resolution, using convolutional layers with kernel size of 1 × 1 
(Fig. 3). The number of feature maps in these feature cubes should be proportional 
to the number of facies types ( N ). The 1 × 1 convolutional layers are commonly 
used when there is a need to change only the number of the feature maps, (e.g. as in 

Fig. 3   The architecture of the generator for the facies modeling conditioned to the well facies data. In 
this figure, there are three facies: inter-channel mud, channel sand, and channel bank. We combine chan-
nel sand and channel bank facies together as one channel complex composite facies in the input well 
facies data, and only take the well location indicator and channel complex facies indicator as inputs. The 
input channel complex facies can be generated as either channel sand or channel bank in the generated 
facies models
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the inception network, Szegedy et al. (2015)). They do not conduct spatial feature 
abstraction, which is especially important for well facies conditioning because the 
constraint of well facies data is strictly localized.

Finally, we concatenate the feature cubes obtained in the previous step with the 
corresponding feature cubes of the base generator. Because progressive growing is 
used for training, the generator first grasps the geological knowledge and the well 
facies conditioning ability at larger scales (or at lower resolutions) and then progres-
sively learns them at finer scales (or at higher resolutions).

The facies model-to-condition function (specifically called the facies model-to-
well facies function in this case, fw(F) ) is simply the process of extracting the facies 
indicators at the well locations from the generated facies models. Given that the pro-
gressive growing process generates facies models at various resolution levels, fw(F) 
first upsamples the generated facies models into 64 × 64 resolution scale and then 
extracts the facies indicators at the well locations from the upsampled facies models 
(Eq. (5)).

where US(xG) denotes the upsampling operator that upsamples the generated facies 
model ( xG ) into the resolution of 64 × 64 using nearest-neighbor upsampling 
method, and ⊙ is the element-wise product.

The distance in the condition-based loss function (Eq. (1)) is defined as the L2 
distance between the input-sparse well facies data ( w ) and the generated facies data 
at well locations; the well facies condition-based loss function is given as in Eq. (6)

where pw represents the distribution of possible sparse well facies data ( w ), and W 
represents the well indicators 

(
Iwloc, Iw1, Iw2,… , IwN−1

)
 which are decomposed from 

w.
One pitfall of the current procedure is that sometimes the generated facies type 

do not change smoothly from well location pixels to the surrounding pixels (e.g., 
(b) and (c) in Fig. 4). Such local abrupt transition of facies types around the well 
location will be called “local pixel noise” for brevity in this paper. The reasons for 
this local pixel noise might be as follows: (1) each conditioning well facies datum 
generally occupies only one of the 64 × 64 pixels in the whole simulation area; (2) 
the original GANs loss function enforces the global spatial patterns of the generated 
facies models, while the condition-based loss function enforces facies conditioning 
only at well point pixels (Eq. (2)); (3) the local pixel noise occurring only at the sin-
gle-pixel well locations may not hurt the global spatial pattern reproduction greatly, 
i.e., the discriminator easily neglects this local pixel noise when obtaining the global 
score.

To address the local pixel noise problem, we propose to enlarge the well datum 
occupation area from 1 × 1 pixel to 4 × 4 pixels (e.g., from (a) to (d) in Fig. 4) in the 
sparse well facies data before training the GANs. In this way, the local pixel noise phe-
nomenon would have a larger impact on the global pattern reproduction, so it would be 

(5)fw
(
xG
)
∶ Iwloc ⊙ US(xG),

(6)L
(
G𝜃

)
w
= �z∼pz,w∼pw

‖‖‖
Iwloc ⊙ US

(
G𝜃(z,W)

)
− w

‖‖‖2
,
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penalized during the training. We train GANs with both the original well facies data 
(before well datum enlargement) and the enlarged well facies data for facies modeling, 
and then compare the two trained generators.

2.3 � Facies Modeling Conditioned to Both Global Features and Well Facies 
Data

The specifications of the three elements of the general GANSim workflow (i.e., the set-
tings of generator architecture, the facies model-to-condition function fcon(F) , and the 
condition-based loss function) for conditioning to global features is distinct from that 
for conditioning to well facies data. Therefore, we can combine the settings in Sects. 
2.1 and 2.2, and use both global features and well facies data as joint conditioning data 
for facies modeling. The generator takes global features and well facies data together as 
inputs, in the manner shown in Figs. 2(b) and 3; the architecture of discriminator is the 
same as the discriminator in the case of only conditioning to global features (Fig. 2(b)). 
The final loss function is a weighted combination of the original GAN loss function 
L
(
G� ,D�

)
 , global features condition-based loss function L

(
G�

)
g
 , and well facies con-

dition-based loss function L
(
G�

)
w
 , as shown in the following Eq. (7)

where L
(
G� ,D�

)
combined

 is the combined loss, and �1 and �2 are weights. The magni-
tudes of �1 and �2 control the ability of the generated facies models being similar to 
training facies models, being conditioned to input global features, and being condi-
tioned to input well facies data during training. To better tune the magnitudes of �1 
and �2 , we normalize the three types of losses into standard Gaussian distribution, 
i.e., L

(
G� ,D�

)
 , L

(
G�

)
g
 , and L

(
G�

)
w
 , before multiplying the weights. By combining 

(7)L
(
G� ,D�

)
combined

= L
(
G� ,D�

)
+ �1L

(
G�

)
g
+ �2L

(
G�

)
w
,

Fig. 4   a The original input sparse well facies data. b–c The generated facies models with a as the input 
condition, where the red arrows point to the local pixel noise phenomenon at the single-pixel well loca-
tions. d The enlarged sparse well facies data corresponding to a. In this figure, there are three facies: 
inter-channel mud, channel sand, and channel bank facies. We combine channel sand and channel bank 
facies together as one channel complex composite facies in the input well facies data (a, d); the input 
channel complex facies can be generated as either channel sand or channel bank in the generated facies 
models (b, c)
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Eqs. (4), (6), and (7), the loss function of the modified generator in this case can be 
represented as in Eq. (8)

where W represents well indicators 
(
Iwloc, Iw1, Iw2,… , IwN−1

)
 , which are decomposed 

from w . The loss function of the modified discriminator is very similar to Eq. (4), 
except the inputs of the generator also include W in this case

where Ds�
 and Dg�

 represent the output score and output global features of the modi-

fied discriminator, respectively, and x̂ is sampled between x ∼ pdata and 
xG = G�(z, g,W) , i.e., x̂ = tx + (1 − t)xG, t ∼ uniform(0, 1) . In this case, only the 
enlarged well facies data is used to train GANs.

3 � Evaluation Metrics

The metrics assess both the quality (i.e., the realism and the diversity) of the gen-
erated facies models and the conditioning ability of the generator. We use manual 
inspection to evaluate the quality of the generated facies models. Manual inspection 
is one of the most common and intuitive ways to evaluate GANs (Borji 2018). We 
generate a large number of facies models and assess the generator by comparing the 
generated facies models with the training facies models in terms of the realism and 
the diversity.

Assessing the conditioning ability of the generator means checking whether the 
output of the generator exhibits characteristics that are consistent with the input con-
ditioning data. We propose different metrics to assess the conditioning ability of the 
generator for different types of conditioning data.

(1)	 Global features metrics
	   We use both manual inspection and quantitative metrics to assess the gen-

erator’s conditioning ability to global features. Manual inspection includes the 
following two aspects. First, manually observe the gradual change of certain 
characteristics exhibited by the generated facies models, when the input global 
feature values of the generator change gradually; this is a relative assessment of 
the conditioning ability, thus a weak metric. Second, manually compare certain 
characteristics exhibited by the generated facies models with the correspond-
ing input global feature values. Because human eyes are not sensitive to the 
magnitude of values, we further replace the input global feature values with the 

(8)

L
(
G𝜃

)
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{
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real facies models that correspond to the same global feature values and directly 
compare the generated facies models with the real facies models with respect to 
certain characteristics. This metric compares the generated facies models with 
the input global feature values, so it is a relatively strong metric.

	   To quantitatively assess the generator’s conditioning ability, we randomly gen-
erate many facies models and directly calculate or measure the global features 
(e.g., the facies ratio or width of channels) from each generated facies model. We 
compare the calculated global feature values with the corresponding input global 
feature values for each generated facies model and measure their closeness. We 
also compare the distributions of calculated global features from the generated 
facies models with that from the training facies models.

(2)	 Well facies metrics
	   The assessment of the generator’s conditioning ability to well facies data 

includes two aspects: the well facies reproduction accuracy at well points and 
the local pixel noise around well points. We expect the generated facies models 
to reproduce the input well facies types at well points, so we define the well 
facies reproduction accuracy as the percentage of the well facies data that are 
accurately reproduced in the generated facies models, for each facies type. In 
addition, we randomly generate many facies models and manually inspect the 
local pixel noise problem.

4 � Dataset

We build a large systematic synthesized dataset, which includes 35,640 two-dimen-
sional (64 × 64) facies models, their corresponding global features, and 285,120 
sparse well facies data (64 × 64).

The facies models were synthesized in the commercial Petrel platform using 
object-based modeling. It includes three facies types: inter-channel mud, channel 
sand, and channel bank facies. Each facies model includes multiple channels, and 
these channels have similar features (e.g., orientation, sinuosity, etc.). During the 
synthesizing process, we tune the input number, orientation, wavelength, amplitude, 
and width of channel sand to create a variety of synthesized facies models. Figure 5 
shows some facies model examples. These input parameters are set as the global 
features for the synthesized facies models. We also include two extra parameters 
as global features, i.e., the proportion of the inter-channel mud facies and the sinu-
osity index of the channel sand, which is defined as the amplitude divided by the 
wavelength.

Well facies data are produced from the synthesized facies models. For each facies 
model, eight sets of well facies data are randomly sampled, and each well facies set 
includes 1 to 20 well points. Each well point occupies one pixel. The channel sand 
and channel bank are lumped together as one channel complex composite facies in 
well facies data, so the final well facies types include channel complex composite 
facies and inter-channel mud facies (Fig. 5).
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We split the synthesized dataset into the training dataset and the test dataset. The 
training dataset include 32,640 facies models and their corresponding global fea-
tures, and well facies data, while the test dataset includes the remaining 3,000 facies 
models and their corresponding global features, and well facies data. The training 
dataset was used for training the GANs, while the test dataset was used for evalua-
tion of the trained generators.

5 � Facies Modeling Results and Analyses

We use TensorFlow (tensorflow.org), an open-sourced deep learning framework, to 
construct and train our GANs. Two GPUs (NVIDIA Tesla V100-PCIE-32GB), ten 
CPUs, and 80 G of RAM are used in parallel for training the GANs conditioned to 
different types of inputs, as described in the following cases.

5.1 � Conditioning to Global Features

In our study, we used three global features for facies modeling, namely, the inter-
channel mud facies proportion, the sinuosity index of the channel sand, and the 
width of the channel sand. Based on the approach described in Sect. 2.1, the input of 
the generator is a vector of 124 × 1 dimensions, which include 121 × 1 dimensions 
for the latent vector and 3 × 1 dimensions for the three global features. The output 
of the modified discriminator ( D� ) is 4 × 1 dimensions corresponding to one score 
value and the three global feature values.

There are in total three predefined weights in this case (see Eqs. (3), (4)): � , � , 
and � . Weight � is set to the default value of 10 as in the Wasserstein loss paper 

Fig. 5   Random examples of the facies models, corresponding global features, and the sparse well facies 
data in the synthesized dataset
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(Gulrajani et al. 2017). Weights � and � are decided based on the realism of the gen-
erated facies models and their conditioning ability to input global features, in quick 
trial-and-error experiments, as we scan through a range of the weight values. Since 
the evaluation of conditioning to input mud facies proportion is more straightfor-
ward than the other two global features, we only assessed the conditioning to mud 
facies proportion in the quick experiments. The experiments are based on a GANs 
training schedule, in which 10,000 iterations of alternative training of the discrimi-
nator and generator were conducted in the first phase, while 20,000 iterations were 
conducted in other phases (see Appendix B.3 in the ESM). The training is stopped 
after a total of 80,000 training iterations, when 64 × 64 dimensional facies mod-
els are produced. Figure 6 shows randomly generated facies models and cross-plots 
between input and calculated real mud facies proportion values of generated facies 
models, for different combinations of � and � . The choice of weight � and � relates 
to a trade-off between realistic reproduction of the spatial patterns and their condi-
tioning ability to input mud facies proportion value. The results are acceptable when 
� is roughly between 1 and 10 and � between 0.01 and 10 (the area inside the red 
polygon in Fig. 6). In this case, we chose the weight combination of � and � both 

Fig. 6   Randomly generated facies models (64 × 64), cross-plots between input and real mud facies 
proportion values of generated facies models, and the trendline equations of the cross-plots for differ-
ent weight combinations of � and � , based on a quick training schedule. In the equations, min and mcal 
represent input and calculated real mud facies proportion value for generated facies models, respectively
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being 10, because the best conditioning ability to input mud facies proportion is 
achieved at this weight combination. 

The formal training schedule we used here and also in the following cases 
includes 20,000 training iterations for phase 1 (4 × 4), 40,000 training iterations for 
each phase during phase 2 (8 × 8) to phase 4 (32 × 32), and an unlimited number of 
iterations for phase 5 (64 × 64) until stopping criterion is achieved (see Appendix 
B.3 in the ESM). The stopping criterion is mainly manual inspection of the realism, 
diversity, and conditioning ability of generated facies models. In this case, the GAN 
is trained for 13 h, and we kept the final generator for further assessments and prac-
tical applications. Figure 7 shows the loss of the modified discriminator (Eq.  (4)) 
versus alternative training iterations. We used the 3,000 groups of global feature val-
ues in the test dataset and randomly sampled 3,000 latent vectors (from a Gaussian 
distribution) to generate 3,000 facies models for evaluation of the generator. Then, 
we arranged the generated facies models and the 3,000 real facies models in the test 
dataset, according to the magnitude of the corresponding global feature values, in 
Figs. 8 and 9. Compared to the facies models in the test dataset, the generated facies 
models are very realistic and diversified, in spite of minor flaws.

In Figs. 8 and 9, the test facies models are used as the ground truth for the gen-
erated facies models. We see that when a certain input global feature gradually 
changes, the corresponding characteristics exhibited in the generated facies models 
also gradually change; for example, in the first column of Fig. 8, the mud facies pro-
portion in the generated facies models gradually increases, as the input inter-channel 
mud facies proportion value gradually increases. In addition, the generated facies 
models are also very similar to the corresponding ground truth test facies models, 
with respect to the mud facies proportion, the width, and the sinuosity of channel 
sand; for example, in Fig. 9, the upper left generated facies model is very similar to 
the upper left test facies model, with respect to these characteristics.

Figure 10 shows the cross-plot between the input mud facies proportion values of 
the generator and the mud facies proportion values calculated from the correspond-
ing generated facies models. These two proportions are almost equal to each other 

Fig. 7   The loss of the modified discriminator versus training iterations
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with an R-squared value of 0.91. This proves the generator’s strong conditioning 
ability to the inter-channel mud facies proportion.

We used geodesic distance and Euclidean distance transform algorithms (i.e., 
bwdistgeodesic and bwdist functions in MATLAB) to calculate the width, arc 
length, and straight-line length of channels in facies models. Figure 11 shows the 
cross-plot between the input channel sand width of the generator and the channel 
sand width calculated from the corresponding generated facies models. The input 

Fig. 8   Generated facies models with various input inter-channel mud proportion and channel sinuosity 
index values, and ground truth test facies models with the same inter-channel mud proportion and chan-
nel sinuosity index values. The width of channel sand is fixed at 3.1 pixels

Fig. 9   Generated facies models with various input channel sand width and channel sinuosity index val-
ues, and ground truth test facies models with the same channel sand width and channel sinuosity index 
values. The inter-channel mud facies proportion varies from 0.51 to 0.6
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Fig. 10   Cross-plot between the input inter-channel mud facies proportion of the generator and the calcu-
lated mud facies proportion values from the corresponding generated facies models

Fig. 11   The cross-plot between the input channel sand width of the generator and the channel sand 
width calculated from the corresponding generated facies models
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width values are close to the calculated width values, to some extent, but not as 
close as in the mud facies proportion case (Fig. 10); this may result from the errors 
in the measurement of channel sand width from facies models. Therefore, we gen-
erated 100 facies model realizations for each of the three input channel sand width 
values (i.e., 2.7, 3.1, and 3.5) and measured the channel sand width for each gener-
ated realization. Then, we found 100 facies models from the test dataset for each of 
the three input channel sand width values, and measured the channel sand width for 
each test facies model. Figure 12 compares the distributions (in the form of box plot) 
of the channel sand width measured from the generated facies model realizations 
and from the test facies models for the three input width values. Their distributions 
are very similar, indicating the generator’s strong conditioning ability to the channel 
sand width.

Fig. 12   The box plot of the channel sand width measured from the generated facies models and from the 
test set facies models

Fig. 13   The box plot of RAS of channels measured from the generated facies models and from the test 
set facies models
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In this study, we use the ratio of channel arc length to straight-line length (RAS) 
to represent the sinuosity of channel sand facies. Figure 13 compares the distribu-
tion of RAS calculated from the generated facies model realizations with that from 
the test set facies models, for each of the four input sinuosity index values (ie., 0.07, 
0.23, 0.38, and 0.55). There are minor deviations in the distribution of RAS between 
the generated and test set facies models when the input sinuosity index equals 0.23 
and 0.38, but generally speaking, the distributions of the RAS for the generated and 
the test set facies models are very close in terms of the four input values. This indi-
cates the generator’s strong conditioning ability to the input channel sinuosity. To 
sum up, the generator is quite robust in generating high-quality facies models and in 
conditioning to the three input global features, i.e., inter-channel mud facies propor-
tion, width, and sinuosity index of channel sand facies.

5.2 � Conditioning to Well Facies Data

The well facies data include two facies types (i.e., the inter-channel mud facies 
and the channel complex composite facies), so the input of the generator includes 
one well location indicator and one well facies indicator of the channel complex 
facies. The channel complex composite facies can be generated as either the channel 
sand or channel bank facies in the generated facies models. Based on the approach 
described in Sect.  2.2, the number of feature maps converted from the input well 
facies data is set to be 16 (Fig. 3).

In this case, we trained GANs using both the original well facies data (before 
well datum enlargement) and the enlarged well facies data (after well datum enlarge-
ment), and compared the two trained generators, in terms of the quality of the gener-
ated facies models, the well facies reproduction accuracy, and the local pixel noise 
around well points.

Similar to the previous case, weight � in the Wasserstein loss Eq. (A4) in the 
ESM is set at the default value of 10 (Gulrajani et al. 2017), and weight � in Eq. (2) 
is decided based on quick trial-and-error experiments. Figure  14 shows randomly 
generated facies models and reproduction accuracies of input well facies data for dif-
ferent � values in the two scenarios of with and without input well data enlargement. 
The experiments suggest that the setting of � value relates to a trade-off between the 

Fig. 14   Randomly generated facies models (64 × 64) and reproduction accuracies of input well facies 
data (upper is for channel complex facies, and lower is for mud facies) for different weight � based on the 
quick training schedule explained in Sect. 5.1, in the two scenarios of with and without input well data 
enlargement
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realism of the facies models and the reproduction accuracy of input well facies data. 
Weight � is suggested to be located roughly between 103 and 105.

In our study, we set weight � to be 103 in both scenarios. Both GANs were trained 
for 15 h with two GPUs and ten CPUs in parallel. Figures 15 and 16 show the Was-
serstein loss with gradient penalty (W-gp loss) (Eq.  (2)) versus training iterations, 
during training the two GANs; this loss is also called the critic loss in the GAN 
research community. After training, to evaluate the trained generators, we randomly 
sampled well facies data from the test facies models, and took the sampled well 
facies data and random latent vectors as inputs into the trained generators to pro-
duce facies models. Figures 17 and 19 show some facies model examples that are 

Fig. 15   The W-gp loss versus training iterations, during the training of the GAN before well datum 
enlargement

Fig. 16   The W-gp loss versus training iterations, during the training of the GAN after well datum 
enlargement
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produced from the two trained generators with the same input well facies data and 
corresponding E-type and variance for channel complex facies. By manual inspec-
tion, over 90% of the generated facies models from both generators are very realistic 
and diversified. The number and the configuration of the input well facies data affect 
the quality of the generated facies models. At input well points, the E-type values of 
the channel complex are very close to either 1 or 0, indicating perfect conditioning 
of the generated facies models to input well facies data. The variance values at areas 
away from the well data are pretty close to the maximum variance value of 0.25; this 
proves good diversity of the generated facies models, to a large extent.

By quantitative evaluation over 3,000 randomly generated facies models, the 
well facies reproduction accuracies of the two generators are both 100% for both the 
channel complex facies and the inter-channel mud facies. Among the facies models 

Fig. 17   Some random facies model examples generated from the generator that was trained with the 
original well facies data (i.e., before well datum enlargement). The red arrows point to the local pixel 
noise phenomena around well facies data. The E-type and variance of channel complex are calculated 
over 500 generated facies models. The red rectangle marks the abrupt transition around well points in the 
E-type map, because of the local pixel noise problem. The sub-figures marked by the blue triangles are 
also shown in Fig. 18 in a larger version
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generated from the generator that was trained using the original well facies data, the 
local pixel noise problem was found in a small group of the facies models. These 
areas are pointed out by the red arrows in Fig. 17, and some of them are shown in 
Fig. 18 with a larger version. We also calculated the E-type map of the channel com-
plex for each input well facies data from 500 generated facies models (the second 
to last column in Figs. 17, 19). Because of the local pixel noise problem, there are 
abrupt transitions from some well points to the surrounding values in some E-type 
maps; one such area is marked with the red rectangle in Fig. 17, and Fig. 18 shows a 
larger version of this E-type map.

Among the facies models generated from the generator trained with the enlarged 
well facies data, no local pixel noise problem was found. In the E-type maps of the 
channel complex, the transitions from the well points to their surrounding values are 
smooth. Figure 19 shows some random facies models generated by enlarging and 
inputting the well facies data in Fig. 17.

In sum, the trained generators can generate high-quality facies models with 100% 
well facies reproduction accuracy. The local pixel noise problem is addressed by 
using the well datum enlargement approach. However, well datum enlargement 
means forcing the surrounding 4 × 4-pixel area to have the same facies type as the 
concerning well point; this introduces an artifact bias and reduces the uncertainty of 
the generated facies models to some extent. Compared to the local pixel problem, 
this artifact bias may be acceptable in practical applications modeling spatially cor-
related geology. An alternative for the local pixel noise problem might be adding an 
additional local discriminator to especially penalize the local unrealism of generated 
facies models around wells, just as in GAN-based image in-painting works (e.g., 
Demir and Unal 2018).

We further analyzed the generator trained with the enlarged well facies data by 
comparing the distributions of sinuosity of the generated facies models and the test 
facies models. Theoretically, the two distributions should be as close as possible. 
Figure 20 shows the closeness of channel sinuosity distributions of test facies mod-
els, and generated facies models with different input well facies conditioning data, 

Fig. 18   A large version of the 
input-sparse well facies data, the 
generated facies models, and the 
E-type map of channel complex 
marked by blue triangles in 
Fig. 17
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and the aggregate of all generated facies models. Therefore, the trained generator 
generates conditional facies models that capture the distribution of sinuosity present 
in the training data.

5.3 � Conditioning to Both Global Features and Well Facies Data

We consider two subcases: (1) conditioning to both mud facies proportion and well 
facies data, and (2) conditioning to channel sinuosity and well facies data. The well 
facies data are enlarged to avoid local pixel noise.

In both subcases, weight � in the discriminator loss Eq. (9) is set at the default 
value of 10 (Gulrajani et al. 2017). The discriminator loss (Eq. (9)) in this case is 
very similar to the discriminator loss (Eq.  (4)) in the case of only conditioning to 
global features. Figure 6 shows good performance when weight � was between 0.1 
and 10, in the case of conditioning to global features only. Thus, � is set to 10 here 

Fig. 19   Some random facies model examples generated from the generator that was trained with the 
enlarged well facies data. The E-type and variance of channel complex are calculated over 500 generated 
facies models
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in the both subcases. The weight for global feature-based loss and well facies-based 
loss, �1 and �2 in Eqs. (7) and (8), are decided based on quick trial-and-error experi-
ments. We only conducted the experiments for the first subcase (i.e., conditioning 
to mud facies proportion and well facies data). Weight �1 and �2 for the second sub-
case (i.e., conditioning to channel sinuosity and well facies data) are set to be the 
same as the first subcase, because both subcases share the same loss functions for 
the generator and the discriminator (Eqs. (7), (8), (9)). Figure 21 shows generated 
facies models, cross-plots between input and real mud facies proportion value of 
generated facies models, and reproduction accuracies of input well facies data, for 
various weight combinations of �1 and �2 , in the first subcase. The settings of weight 
�1 and �2 involve a trade-off among conditioning ability to input mud facies propor-
tion, conditioning ability to input well facies data, and realism of generated facies 
models. From Fig. 21, we can conclude a rough range for weight �1 and �2 : 0.05 < �1
< 0.5 and 0.25 < �2 < 25. Because normalization is applied for the three losses (i.e., 
the original GAN loss, the global feature-based loss, and well facies-based loss) of 
the generator loss function (Eq. (7)) in this case, the magnitude of weights �1 and �2 
is not comparable to the corresponding weights in previous cases. In the both sub-
cases, we set �1 and �2 as 0.05 and 0.25, respectively.

In the first subcase, the GAN was trained for 15 h with two GPUs and ten CPUs 
in parallel. Figure 22 shows the loss of the modified discriminator (Eq. (4)) versus 
training iterations. After training, the generator takes well facies data, mud facies 
proportion value, and latent vector as inputs and produces a corresponding realistic 
facies model. Figure 23 shows some generated facies model examples and E-type 

Fig. 20   Channel sinuosity distributions (cdf) of test facies models, generated facies models with differ-
ent input well facies data, and the aggregate of all generated facies models



1 3

Math Geosci	

Fig. 21   Randomly generated facies models (64 × 64), cross-plots between input and real mud facies 
proportion values of generated facies models, trendline equations of the cross-plots, and reproduction 
accuracies of input well facies data (upper is for channel complex facies, and lower is for mud facies), for 
various weight combinations of �1 and �2 , in the first subcase. The trainings of GANs in this figure are 
based on the quick training schedule explained in Sect. 5.1. In the equations, min and mcal represent the 
input and calculated real mud facies proportion values for generated facies models, respectively

Fig. 22   The W-gp loss versus training iterations, during training of the GAN in the subcase of condi-
tioning to mud facies proportion and well facies data
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and variance for channel complex facies, for various input mud proportion values 
and random well facies datasets. By manual inspection, the generated facies models 
are very realistic and diversified. The variance of channel complex in areas away 
from wells are close to the maximum variance value of 0.25, especially when the 
input mud facies proportion varies from 0.46 to 0.69, also indicating good diversity 
in the generated facies models.

As shown in Fig.  23, the generated facies models are similar to the referenced 
ground truth facies models (second column of Fig. 23) with respect to mud propor-
tion characteristic. As the input mud facies proportion value increases, the mud pro-
portion of the generated facies models also increases. In addition, we randomly gen-
erated 500 facies models, and Fig. 24 shows the cross-plot between the input mud 
facies proportion values into the generator and the mud facies proportion values 
calculated from the corresponding generated facies models. These two proportion 
values are very close with an R-squared value of 0.83. This proves the generator’s 
strong conditioning ability to input mud facies proportion values, both qualitatively 
and quantitatively.

In Fig.  23, the E-type values of channel complex at input well points are very 
close to 1 or 0. By further quantitative evaluation of 3,000 randomly generated 
facies models, the well facies reproduction accuracies for channel complex and 
inter-channel mud facies are 99.4% and 98.8%, respectively, quantitatively showing 
the generator’s strong conditioning ability to input well facies data.

In the second subcase of conditioning to channel sinuosity and well facies 
data, the GAN was trained for 20 h with two GPUs and ten CPUs in parallel. 

Fig. 23   Some random facies model examples generated from the trained generator in the subcase of 
conditioning to mud facies proportion and well facies data. The second column shows the ground truth 
facies models with respect to the input mud facies proportion and well facies data. The E-type and vari-
ance of the channel complex are calculated over 500 generated facies models
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Figure  25 shows the loss of the modified discriminator. The trained generator 
takes well facies data, channel sinuosity value, and latent vector as inputs and 
produces corresponding facies models. Figure  26 shows some generated facies 
model examples and E-type and variance of channel complex facies, for various 
input channel sinuosity values and random well facies data. Similar to the first 
subcase, by manually inspecting the generated facies models, comparing them 

Fig. 24   Cross-plot between the input inter-channel mud facies proportion and the mud facies proportion 
calculated from the corresponding generated facies models, when the generator is conditioning to both 
mud proportion and well facies data

Fig. 25   The W-gp loss versus training iterations during training of the GAN in the subcase of condition-
ing to channel sinuosity and well facies data
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with the corresponding ground truth facies models, and inspecting E-type and 
variance maps, we can qualitatively conclude that the generated facies models 
are realistic, diversified, and conditioned to input sinuosity values and input well 
facies data.

Figure 27 compares the calculated RAS distributions of generated facies mod-
els and the ground truth test facies models for different input sinuosity index val-
ues. In spite of minor deviations, the overall RAS distributions of the generated 
facies models are very close to that of the test facies models for different sinuos-
ity index values, further proving the generator’s strong conditioning ability to the 
input channel sinuosity. In addition, quantitative evaluation of 3,000 randomly 

Fig. 26   Some random facies model examples generated from the trained generator in the subcase 
of conditioning to channel sinuosity index values and well facies data. The second column shows the 
ground truth facies models with respect to the input channel sinuosity values and well facies data. The 
E-type and variance of channel complex are calculated over 500 generated facies models

Fig. 27   The RAS box plot of generated facies models and the ground truth test facies models for differ-
ent input sinuosity index values in the subcase of conditioning to channel sinuosity and well facies data
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generated facies models shows that the well facies reproduction accuracies for 
channel complex facies and inter-channel mud facies are 99.6% and 97.9%, 
respectively, also indicating the generator’s strong conditioning ability to input 
well facies data.

We further analyzed the trained generators of both subcases using the distribu-
tions of the global features that were left free and were not used for conditioning the 
generated facies models. Figure 28 compares the channel sand width distributions 
(cdf’s) of the test facies models and the facies models generated by the generator of 
the second subcase with various input sinuosity values. The cdf’s of the generated 
facies models are close to the cdf of the test ground truth facies models. It is a simi-
lar case for channel sinuosity and mud facies proportion in both subcases. Therefore, 
the two trained generators of both subcases capture the distribution of global fea-
tures that are not conditioned by input data.

In terms of conditional generation using GANs, one widely used GAN architec-
ture is conditional GAN (CGAN; Mirza and Osindero 2014), such as in Leinonen 
et al. (2019). Both CGAN and GANSim can achieve conditioning for the generated 
samples, but in slightly different ways. In CGAN, the discriminator first learns the 
differences between realism and non-realism and between conditioning and non-
conditioning, and then guides the generator to learn the knowledge about realism 
and conditioning. However, in GANSim, the discriminator only learns the differ-
ence between realism and non-realism and only gives guidance about realism to 
the generator. The generator learns knowledge about conditioning with the help of 
an additional condition-based loss function (Eq. (1)). Compared to GANSim, two 
potential disadvantages of CGAN are as follows. First, if the discriminator does not 
learn the clear difference between conditioning and non-conditioning, then it cannot 

Fig. 28   Channel width distributions (cdf’s) of test ground truth facies models, generated facies models 
by the trained generator of the second subcase with different input sinuosity values, and the aggregate of 
all generated facies models
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give clear guidance to the generator about the learning of conditioning. Second, in 
the cases of multiple conditions, especially when the conditions slightly contradict 
each other, which is quite common in geosciences, which condition should be given 
priority? There is no mechanism to control the priority assignment in CGAN, but in 
GANSim, it can be controlled by weight assignment in loss functions (e.g., Eq. (8)).

6 � Conclusions

In the GAN-based unconditional facies modeling, researchers use the original gen-
erative adversarial networks (GANs) loss function to force the generator to learn the 
geological patterns from the training facies models. To train the generator to also 
grasp the conditioning ability to input conditioning data, in the proposed GANSim, 
we introduce an extra loss function into GANs, which is defined as the inconsistency 
between the input conditioning value and the corresponding characteristics exhib-
ited by the output facies model. In addition, we design efficient architectures for 
including non-spatial global features (e.g., facies ratio), sparse well facies data, and 
both jointly as input conditions into the generator of the GANs. The global features 
are taken as inputs by concatenating with the latent vector. To input the well facies 
data, (1) we decompose it into multiple indicator channels, (2) we downsample the 
indicator channels into various resolution levels, and (3) we input these downsam-
pled and the original indicator channels into different hidden layers of the genera-
tor during the progressive growing of GANs. Such a design allows the generator to 
learn the geological patterns and the conditioning ability progressively from coarse 
scales to fine scales. We train GANs in a progressive growing manner, and after 
training, we evaluate both the quality of generated facies models and the condition-
ing ability of the generators. It turns out that the trained generators are quite robust 
both in generating high-quality facies models and in conditioning to the global and 
local data. The performance is not very sensitive to choice of weights for the differ-
ent components of the loss function. The reasonable ranges of predefined weights 
in loss functions are quite wide, with a spread of one to three orders of magnitude. 
Within the range, the generated facies models are realistic, and their conditioning to 
input data is excellent.

The generated facies models from current generators are in two dimensions. We 
are extending the proposed GANSim workflow to three dimensions, and expect to 
also achieve conditioning ability of GANs to low-resolution “soft” probability data 
in future work.
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