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A B S T R A C T   

The emplacement of the Late Permian Emeishan large igneous province (ELIP) in the Upper Yangtze craton, SW 
China, is considered to be a crucial factor that triggered the end-Guadalupian biodiversity crisis. However, the 
contribution of ELIP remains debated because of its relatively modest known size. The restricted assessment of its 
areal extent is, in part, due to the lack of study of the potential volcanic rocks concealed beneath younger strata. 
Here we present the first geochemical and isotopic variations and detailed spatial distribution of Late Permian 
basaltic rocks penetrated by deep exploratory boreholes in the Sichuan Basin. The Late Permian basaltic rocks are 
mainly distributed in the western and northeastern parts of the Sichuan Basin and are positioned at the same 
stratigraphic level as the Emeishan flood basalts. Petrography, whole-rock trace elements and Sr-Nd-Pb isotopic 
compositions demonstrate that these rocks are alkaline basalts and have oceanic island basalt - like character
istics, indicating a similar origin as the Emeishan flood basalts. The trace element and isotope ratios suggest that 
the basaltic magmas in the western Sichuan Basin were derived by low degrees of partial melting of a garnet- 
bearing source. In contrast, the basalts in the northeastern part of the basin were generated by higher degrees 
of melting of a shallower mantle source in the spinel-garnet transition zone. Varying amounts of contamination 
by lower continental crustal melts are suggested by rough correlations between isotope and immobile trace 
element ratios. The spatial changes in composition and origin of the basaltic rocks in the Sichuan Basin can be 
interpreted as the result of varying extents of Emeishan mantle plume-lithosphere interaction under different 
lithospheric stress backgrounds, such that the reactivation of pre-existing basement faults controlled the 
emplacement of basaltic magma in the periphery of the ELIP. Our work reveals a substantially broader extent of 
the ELIP in buried sedimentary strata, which might have contributed to the abrupt end-Guadalupian climatic 
change.   

1. Introduction 

Large igneous provinces (LIPs) represent rapid production of 
anomalous and voluminous intraplate magmatism and are generally 
linked with high-temperature mantle plumes rising from the deep 
interior of the Earth and upwelling beneath the base of the lithosphere 
(e.g., Richards et al., 1989; Campbell and Griffiths, 1990; Campbell, 
2005). As the largest magma outpourings recorded on our planet (Bryan 
and Ernst, 2008, Bryan and Ferrari, 2013), the emplacement of both 

extrusive and intrusive igneous rocks of LIPs can cover vast areas 
(typically >105 km2) within short durations of peak eruptions (<5 Myr; 
e.g., Ernst, 2014; Schoene et al., 2015). Thereby, they have an important 
bearing on mineral and hydrocarbon occurrences and play a potential 
causal role in supercontinent breakup and environmental catastrophes 
including mass extinction events throughout Earth’s history (e.g., 
Campbell and Griffiths, 1990; Ernst et al., 2005, Ernst and Youbi, 2017; 
Wignall et al., 2009). 

The Permian Emeishan large igneous province (ELIP) in SW China is 
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one of the most intensely studied LIPs over the years because it hosts 
world-class Fe-Ti-V oxide deposits and is contemporaneous with the 
end-Guadalupian mass extinction event (Zhou et al., 2005, 2008; 
Wignall et al., 2009; Zhang et al., 2009; Shellnutt, 2014). Numerous 
investigations on geochemistry (e.g., Xu et al., 2001, 2004, 2007; Zhang 
et al., 2006; Kamenetsky et al., 2012), geochronology (e.g., He et al., 
2007, 2010; Zhong et al., 2014; Huang et al., 2018; Deng et al., 2020; 
Shellnutt et al., 2020), geophysics (e.g., Xu et al., 2007; Chen et al., 
2015, Chen et al., 2017), crustal uplifting (He et al., 2003; Zhu et al., 
2018b) and paleoenvironment (e.g., Jerram et al., 2016; Wignall et al., 
2009; Zhang et al., 2015; Chen and Xu, 2019; Zhu et al., 2021a, 2021b) 
of the ELIP have shown that the igneous rocks are likely correlated to a 
mantle plume (e.g., Xu et al., 2004, 2007; Ali et al., 2010; Shellnutt, 
2014). However, the spatial extent and volume of ELIP (~3 × 105 km2, 
~3 × 105 km3; Peate and Bryan, 2008; Shellnutt et al., 2020) are rela
tively dwarf in comparison with other typical LIPs, i.e., Siberian Traps 
(~7 × 106 km2, ~4 × 106 km3; Ivanov, 2007), Deccan Traps (~2 × 106 

km2, ~3 × 106 km3; Sen, 2001) and Central Atlantic Magmatic Province 
(~1 × 107 km2, ~3 × 106 km3; Marzoli et al., 2018), casting doubts on 
the causal relationship between the proposed plume scenario and the 
end-Guadalupian mass extinction. Despite that recent studies have 
found several scattered Emeishan volcanic-plutonic rocks exposed 
outside the ELIP, such as the Tubagou basalts in the Baoxing area along 
the southeastern margin of the Songpan-Ganzi terrane (Li et al., 2016), 
the Yanghe basalts in the northeastern Sichuan Basin (SCB) (Li et al., 
2017) and the Tu Le rhyolite in northern Vietnam (Shellnutt et al., 
2020), it is still inadequate to estimate the dimension of the ELIP based 
on outcrops due to the influence of substantial deformation associated 
with multi-stage tectonic events in the Mesozoic and Cenozoic and the 
cover of younger strata (Charvet, 2013; Liu et al., 2021). 

Over the past decade, many Permian basaltic rocks were penetrated 
by deep industrial boreholes in the SCB as the hydrocarbon exploration 
of ancient marine strata progressed (Fig. 1; Tian et al., 2017). Recent 
studies have proposed that these basaltic rocks are temporally associated 
with the eruption of Emeishan flood basalts (Lu et al., 2019; Ma et al., 

2019; Li et al., 2020), indicating that the ELIP may have covered a 
substantially larger area than previously thought, because those exposed 
parts have been partially concealed beneath younger strata. Likewise, 
the reconstruction of paleo-heat flow using both geodynamic modeling 
(Wang et al., 2018; He, 2020) and thermal indicators (Zhu et al., 2010, 
2016, 2018a; Jiang et al., 2018; Xu et al., 2018) displays a significant 
thermal perturbation (~100 mW/m2) at the Late Permian in the basin, 
indicating a potentially larger scale of the ELIP. However, despite 
numerous studies, systematic geochemical investigations of Permian 
basaltic rocks recovered from the boreholes are scarce, and their 
petrogenesis has not yet been addressed in detail. Identifying the 
mechanism that produced such extensive magmatism in the SCB is 
crucial for understanding the deep plumbing systems of the ELIP and 
tectonic evolution of the region. 

In this contribution, we outline the spatial distribution of Permian 
volcanism in the SCB and present new whole-rock major and trace 
element and Sr-Nd-Pb isotope data for the Permian basalts and dolerites 
from boreholes in different parts of the basin. Based on these results, we 
attempt to constrain the nature of magma sources and mantle melting 
parameters, track the geodynamic setting of these rocks and estimate the 
spatial extents of the concealed ELIP, yielding a better understanding of 
the linkage between the Emeishan volcanism and the hydrocarbon 
occurrence and mass extinction event. 

2. Geological background 

2.1. Emeishan large igneous province 

A comprehensive review of the ELIP was presented by Shellnutt 
(2014). Most of the ELIP lies on the western edge of the Yangtze Craton, 
SW China, bounded by the Longmenshan thrust belt to the northwest 
and the Ailaoshan-Red River fault to the southwest (Fig. 1b). The 
province was emplaced in the Late Permian (258–259 Ma; Zhong et al., 
2014; Huang et al., 2018; Deng et al., 2020) with a short eruption 
duration for the main part of the province (probably ~1 Ma; Shellnutt 

Fig. 1. (a) Global paleogeographic plate reconstruction in Middle-Late Permian (modified from Cocks and Torsvik, 2013). (b) Distribution of the Late-Permian 
Emeishan flood basalts in SW China with locations of studied boreholes indicated by blue stars (modified from Li et al., 2017; Jiang et al., 2018 and references 
therein). (c) Map of the Sichuan Basin region, showing the locations and thicknesses of Permian basalts from boreholes and the distribution of major deep-seated 
faults. The outlines of outcropping strata and faults are modified from Xiong et al. (2015) and Li et al. (2020), respectively. Drilling data are collected from Pet
roChina and SINOPEC. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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et al., 2012, Shellnutt, 2014; Huang et al., 2016; Zhu et al., 2021b) and 
subsequently dissected by substantial deformation and uplift during the 
Mesozoic and Cenozoic associated with the collision of the North and 
South China blocks and the India-Eurasian collision (Chung and Jahn, 
1995; Chung et al., 1998; Zhang et al., 2006). The known area of 
remaining exposed volcanic rocks is considered to cover ~3 × 105 km2 

from southwest China to North Vietnam with a diameter of ~500 km 
(Fig. 1b; Shellnutt et al., 2020). The province is predominantly 
composed of flood basalts and contemporaneous felsic plutons, layered 
mafic-ultramafic intrusions and mafic dyke swarms (Chung and Jahn, 
1995; Xu et al., 2001; Shellnutt, 2014; Li et al., 2015). The volcanic 
sequences in the eastern part of ELIP unconformably overlie the 
carbonate-dominated Middle Permian Maokou Formation and are, in 
turn, directly overlain by the Upper Permian terrestrial to marine clastic 
rocks of the Xuanwei Formation and Longtan Formation (He et al., 2007; 
Zhong et al., 2014). Based on the erosional state of the Maokou lime
stone, the province has been structurally subdivided into inner, inter
mediate, and outer zones (Fig. 1b; He et al., 2003; Xu et al., 2004). The 
flood basalts of this province are generally further classified into low-Ti 
and high-Ti geochemical series, which are considered to be located 
mostly in the inner zone and outer zone, respectively (e.g. Xu et al., 
2001, 2004; Xiao et al., 2004). However, the classification scheme of 
these two series and the clear boundary in spatial and temporal distri
bution between low-Ti and high-Ti basalts have also been questioned by 
some scholars (e.g. Hou et al., 2011; Shellnutt and Jahn, 2011; Shellnutt, 
2014). 

2.2. The Sichuan Basin 

The SCB is a polycyclic superimposed sedimentary basin located to 
the northeast of the ELIP in the northwestern Upper Yangtze Craton with 
an area of 2.3 × 105 km2 and it is the main gas-producing region in 
China (Fig. 1c; Dai et al., 2014; Zhao et al., 2018). Many deep-seated 

faults have developed in and around the SCB, particularly the NE- 
trending Huayingshan Fault, which is the only lithospheric-scale fault 
cutting across the basin (Fig. 1c; Li, 2020). The basin was formed on the 
Precambrian crystalline basement and accommodated the lower marine 
carbonate sequences (from Neoproterozoic to Middle Triassic) and the 
upper continental clastic sequences (from Late Triassic to Eocene; Liu 
et al., 2021) with locally intercalated late Paleozoic volcanic rocks (Li 
et al., 2017; Xia et al., 2020). The pre-Late Triassic marine sequences are 
the exploration targets and main production strata and contain multiple 
source rocks (i.e. Upper Sinian mudstone, Lower Cambrian shale, Lower 
Silurian shale, Upper Permian coal and mudstone; Zou et al., 2014). 
During the Middle-Late Permian, the basin was dominated by carbonate 
platform deposits with the development of intra-platform depressions 
(e.g., Kaijiang-Liangping intracratonic sag; Liu et al., 2021; Huang et al., 
2021) in an extensional setting containing Qixia Formation (dolomite, 
limestone), Maokou Formation (limestone, dolomite) and Longtan For
mation (limestone, shale) from the bottom up (Yang et al., 2020; Feng 
et al., 2021). Borehole data indicates that the stratigraphic relationships 
of the Permian volcanic rocks are consistent with those of the eastern 
part of the ELIP (Fig. 2; Tian et al., 2017; Ma et al., 2019). 

3. Samples and analytical methods 

3.1. Sample descriptions 

The basaltic rocks obtained for this study were collected from five 
industrial boreholes in the SCB (Fig. 1b, c). Boreholes YT 1 and ZJ 1 are 
located around the Longquanshan fault and boreholes ZG 1 and JS 1 
border the Emei-Yibin fault in the western SCB, while borehole TD 004 is 
close to the Huayingshan fault in the northeastern SCB (Fig. 1b). The 
sampling intervals depended on the availability of drill cores and 
resulted in discontinuous sampling and difficulties in covering complete 
eruptive cycles. The samples were collected from the central part of the 

Fig. 2. Stratigraphic correlation of volcanic sequences and modal mineral abundances of studied samples in boreholes across the Sichuan Basin. The scale on the 
borehole indicates meters below the surface. 
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most massive lava flows with least alteration and amygdules. The depth 
and modal mineral abundances of samples are shown in Fig. 2. These 
rocks are overlain by limestone and shale of the Middle Permian Maokou 
Formation or Kuhfeng Formation (different facies with same deposition 
age in northeastern SCB), and underlain by bauxite mudstone and shale 
of the Late Permian Longtan Formation (Fig. 2). The samples from 
boreholes ZG 1, JS 1 and ZJ 1 are aphyric basalts and have an inter
granular or intersertal texture with randomly oriented microcrysts of 
plagioclase (45–62%), clinopyroxene (25–42%), plus minor Fe-Ti oxides 
and volcanic glass (Figs. 2 and 3). The samples from boreholes TD 004 
and YT 1 are mainly dolerites, showing characteristic interlocking of 
fine-grained plagioclase (51–56%) and clinopyroxene (30–36%) with a 
minor amount of olivine, hornblende and Fe-Ti oxides (Figs. 2 and 3). 

3.2. Analytical methods 

A total of twenty-two volcanic rock samples from studied boreholes 
in the SCB were crushed into ~200-mesh size using agate mortars for 
whole-rock major and trace element concentrations, and whole-rock 
powders (~100 mg) of twelve samples from boreholes YT 1, ZG 1 and 
TD 004 were selected for Sr-Nd-Pb isotopic analyses. Whole-rock 
geochemical and Sr-Nd-Pb isotopic analyses were conducted at the 
Wuhan Sample Solution Analytical Technology Co., Ltd., Wuhan, China. 
Detailed procedures of the analyses and data processing are described 
below. 

Major element oxides were analyzed on fused glass beads using X-ray 
fluorescence (XRF) spectrometry using a Primus II instrument (RIGAKU, 
Osaka, Japan) and ferrous iron was determined by the wet chemical 
method. Trace element determinations were measured on an Agilent 
7700e inductively coupled plasma-mass spectrometer (ICP-MS) (Agilent 
Technologies, Tokyo, Japan). The detailed procedures of major and 
trace element compositions are the same as in Xu et al. (2020). The 
analytical uncertainties for major oxides were better than ~5% and 

analytical errors for trace elements were 2–6%. The accuracy of the data 
was evaluated from the average values of repeated analysis of the 
standard BHVO-1. 

Sr-Nd-Pb isotope analyses were performed on a Neptune Plus multi 
collector (MC)-ICP-MS instrument (Thermo Fisher Scientific, Dreieich, 
Germany). The chemical preparations were made on class 100 work 
benches within a class 1000 over-pressured clean laboratory. The sam
ple powders were acid-leached prior to isotopic analysis following Weis 
et al. (2005). The detailed methods and instrumentation for Sr-Nd and 
Pb isotopic measurements are described in Li et al. (2012) and Baker 
et al. (2004), respectively. Reproducibility and accuracy of Sr-Nd 
isotope runs were periodically checked by running the Standard Refer
ence Material NBS 987 and Laboratory Standard La Jolla, with a mean 
87Sr/86Sr ratio of 0.710244 ± 22 (2σ, n = 32) and a mean 143Nd/144Nd 
value of 0.512118 ± 15 (2σ, n = 31), which are identical within error to 
their published values (reference data: 87Sr/86Sr = 0.710241 ± 12, 
143Nd/144Nd = 0.512115 ± 07; Thirlwall, 1991; Tanaka et al., 2000, 
respectively). Measured 20xPb/204Pb ratios were normalized to results of 
the well-accepted Standard Reference Material NBS 981 values of 
208Pb/204Pb = 36.7262 ± 31, 207Pb/204Pb = 15.5000 ± 13, 206Pb/204Pb 
= 16.9416 ± 13 (Baker et al., 2004). One NBS SRM 981 standard was 
measured every ten samples analyzed. Analyses of the NBS SRM 981 
standard yielded external precisions of 0.03% (2RSD) for 20xPb/204Pb 
ratios. In addition, the USGS reference material BCR-2 (basalt) yielded 
results of 208Pb/204Pb = 38.737 ± 28，207Pb/204Pb = 15.628 ±
3，206Pb/204Pb = 18.757 ± 22 (2σ, n = 61), which is identical within 
error of 0.03% to their published values (Weis et al., 2006). Total blank 
levels during the analytical procedure were below 1.22 ng for Sr, 0.05 ng 
for Nd and 0.36 ng for Pb. 

Fig. 3. Representative photographs of basaltic samples from studied boreholes in the Sichuan Basin. Drill core hand specimen from borehole TD 004 at 4346.6 m (a). 
Thin-section photomicrographs of basalts from boreholes JS 1 (b), ZG 1 (c), ZJ 1 (d) and dolerites from boreholes YT 1 (e) and TD 004 (f) under cross-polarized light. 
Mineral abbreviations: Cpx, clinopyroxene; Pl, plagioclase; Ol, olivine; and Fe-Ti, Fe-Ti oxides. 
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Table 1 
Major and trace element abundances of Permian basalts from studied boreholes in SCB.  

Borehole YT 1 ZG 1 JS 1 TD 004 ZJ 1 

Sample no. YT1-1 YT1-2 YT1-4 YT1-7 YT1-8 ZG1-1 ZG1-2 ZG1-3 ZG1-4 ZG1-5 JS1-1 JS1-2 JS1-3 JS1-4 TD004-1 TD004-2 TD004-3 TD004-4 ZJ1-1 ZJ1-2 ZJ1-3 ZJ1-4 

Depth (m) 5763.1 5786.8 5797.2 5821.3 5850.5 2878.1 2913.4 2948.6 2977.1 3001.5 2189.9 2206.8 2227.2 2243.5 4351.8 4360.1 4368.2 4377.5 5460.2 5468.5 5479.9 5492.3 
Major elements (wt%) 
SiO2 39.96 48.51 48.31 48.22 48.44 48.00 47.14 49.94 49.31 49.40 47.64 49.48 50.17 48.66 46.86 48.30 46.85 46.81 48.46 48.42 47.95 48.37 
TiO2 2.07 3.56 3.38 4.06 4.10 4.01 4.11 3.82 3.85 3.87 4.20 4.13 4.12 4.18 3.04 3.19 3.06 3.08 3.95 3.91 3.78 4.10 
Al2O3 6.69 13.74 13.89 13.61 13.86 13.25 13.19 13.07 13.47 13.46 13.64 13.30 13.46 13.39 12.75 13.12 13.09 13.26 13.61 13.58 13.68 13.47 
Fe2O3T 2.89 11.81 12.77 13.17 12.98 14.99 14.50 12.78 13.18 13.18 14.04 13.11 13.14 13.98 16.72 14.76 15.36 15.57 13.05 13.04 13.85 13.76 
MnO 0.06 0.15 0.15 0.18 0.18 0.19 0.15 0.16 0.16 0.16 0.15 0.14 0.15 0.14 0.23 0.19 0.19 0.19 0.17 0.17 0.18 0.17 
MgO 1.27 4.14 4.90 4.87 4.34 4.67 4.97 4.56 4.72 4.72 5.05 4.79 4.82 4.95 4.93 4.77 5.14 5.20 4.56 4.58 4.37 4.72 
CaO 33.87 8.24 7.60 6.56 6.89 6.80 8.71 6.90 8.55 8.57 7.95 7.40 7.31 7.61 8.53 8.63 9.08 8.95 8.44 8.43 8.21 8.57 
Na2O 1.86 3.09 2.72 3.72 3.36 2.96 3.86 2.58 2.06 2.08 3.25 3.09 3.04 3.12 2.77 2.98 2.90 2.91 4.36 3.86 3.52 3.55 
K2O 0.19 1.99 2.09 2.09 2.65 1.46 1.26 2.17 1.30 1.31 0.78 0.84 0.98 0.82 0.28 0.29 0.24 0.25 1.07 1.57 1.63 1.42 
P2O5 0.25 0.42 0.41 0.43 0.43 0.42 0.45 0.41 0.42 0.43 0.44 0.44 0.44 0.45 0.38 0.40 0.42 0.43 0.41 0.41 0.42 0.43 
LOI 8.56 2.49 1.73 2.78 1.99 2.68 2.95 2.99 2.50 2.39 2.75 2.80 2.79 2.70 2.99 3.00 2.99 2.98 2.96 2.74 2.40 2.59 
Total 97.68 98.13 97.95 99.69 99.23 99.42 101.28 99.38 99.53 99.55 99.89 99.52 100.42 100.00 99.48 99.63 99.33 99.64 101.04 100.70 99.99 101.15 
Mg# 29.2 41.0 43.2 42.3 39.9 38.2 40.4 41.4 41.5 41.5 41.6 42.0 42.1 41.2 36.9 39.0 39.9 39.8 40.9 41.0 38.5 40.5  

Trace elements (ppm) 
Sc 6.59 22.8 20.3 23.7 24.4 26.0 27.3 23.8 24.1 23.6 24.8 24.1 24.2 24.5 28.1 28.7 28.9 29.0 23.2 22.8 21.9 24.3 
V 109 337 336 372 377 397 404 363 363 366 390 385 385 392 402 403 399 405 376 366 375 368 
Cr 58.2 99.0 92.2 62.3 63.8 79.8 83.5 74.1 79.4 79.5 51.9 51.2 50.0 51.9 34.2 33.8 35.6 34.6 61.5 61.7 59.7 64.3 
Co 8.2 34.3 42.6 39.6 38.8 42.6 44.2 37.1 39.6 39.9 40.1 39.0 39.4 39.7 50.8 41.9 44.8 45.8 38.9 38.3 38.1 39.2 
Ni 19.6 67.6 99.5 80.6 79.4 70.3 70.1 74.4 79.5 81.5 52.4 52.0 50.8 52.1 53.2 47.3 53.3 54.6 81.7 82.2 76.3 84.2 
Cu 54 209 230 219 222 198 247 209 206 209 185 208 223 199 248 304 288 289 32 31 32 31 
Zn 38 122 126 118 113 127 123 114 118 120 130 124 122 129 150 132 129 131 119 113 114 124 
Rb 3.46 49.01 49.92 46.90 57.55 48.01 31.57 76.36 32.36 32.59 22.50 24.78 28.72 26.70 3.00 2.96 2.64 2.75 2.75 2.57 2.66 2.87 
Sr 506 739 635 1017 933 436 372 585 502 501 696 708 734 721 508 547 533 542 366 359 355 364 
Y 13.75 37.40 35.90 38.72 38.94 44.52 38.87 37.35 38.09 38.26 39.69 39.61 39.76 39.90 39.13 39.20 38.00 38.78 35.46 34.89 36.60 35.20 
Zr 114 356 338 374 379 359 374 350 357 356 382 375 380 379 243 254 247 252 356 349 358 351 
Nb 11.77 39.08 37.67 42.89 43.37 40.86 43.44 40.19 40.90 41.02 43.06 41.76 39.55 42.20 37.85 40.19 38.11 39.19 41.63 38.81 42.10 39.20 
Ta 0.72 2.37 2.33 2.71 2.65 2.45 2.63 2.42 2.46 2.51 2.68 2.51 2.41 2.65 2.16 2.36 2.26 2.34 2.72 2.48 2.67 2.63 
Ba 1044 6793 7482 1982 3187 626 346 689 452 451 509 535 663 556 264 281 214 224 58 58 69 85 
La 27.02 47.24 45.82 48.21 48.53 45.35 43.25 48.24 46.43 47.18 46.93 47.22 48.88 47.90 34.32 37.83 36.84 38.38 49.93 48.55 48.70 47.60 
Ce 48.90 103.41 101.32 108.61 106.71 100.88 98.44 104.25 103.53 104.36 105.76 103.95 107.60 102.00 74.38 79.59 77.96 79.25 106.98 104.14 108.00 101.00 
Pr 5.49 12.99 12.78 13.57 13.76 12.67 12.82 13.20 13.18 13.18 13.29 13.16 13.59 13.40 9.05 9.73 9.48 9.66 13.78 13.33 13.10 13.50 
Nd 22.53 55.50 53.68 57.91 59.25 53.60 55.40 56.46 56.83 56.23 57.19 57.03 57.62 57.40 38.15 40.78 40.18 41.31 57.90 56.06 58.90 57.10 
Sm 4.55 11.68 11.45 12.15 12.23 11.43 11.66 11.56 11.65 11.55 11.64 11.51 11.90 11.70 8.34 8.95 8.73 9.01 12.29 12.09 12.10 12.00 
Eu 1.60 3.50 3.33 3.15 3.48 3.30 3.41 3.14 3.12 3.19 3.42 3.24 3.42 3.37 2.31 2.54 2.50 2.79 3.76 3.57 3.42 3.66 
Gd 4.83 10.45 9.93 10.44 10.18 10.75 9.88 9.64 9.83 9.92 10.10 10.13 10.45 10.20 7.69 8.25 7.94 8.11 10.08 9.79 10.20 10.00 
Tb 0.50 1.39 1.33 1.44 1.37 1.52 1.39 1.31 1.34 1.36 1.45 1.48 1.52 1.39 1.19 1.34 1.22 1.29 1.36 1.35 1.53 1.37 
Dy 2.85 7.85 7.45 8.02 7.92 8.65 8.06 7.54 7.79 7.76 8.31 7.80 8.29 7.99 7.45 7.63 7.20 7.60 7.90 7.60 7.83 7.57 
Ho 0.48 1.40 1.30 1.45 1.41 1.60 1.47 1.42 1.39 1.41 1.41 1.44 1.44 1.39 1.33 1.43 1.37 1.38 1.34 1.26 1.39 1.37 
Er 1.32 3.65 3.49 3.82 3.72 4.17 3.72 3.60 3.67 3.64 3.73 3.67 3.70 3.72 3.84 3.88 3.74 3.91 3.61 3.34 3.45 3.55 
Tm 0.17 0.47 0.45 0.52 0.51 0.56 0.50 0.47 0.50 0.49 0.49 0.47 0.48 0.51 0.52 0.53 0.51 0.53 0.45 0.44 0.51 0.47 
Yb 0.99 2.92 2.79 3.06 3.07 3.27 3.01 2.98 3.00 2.99 3.12 3.02 3.13 2.98 3.45 3.51 3.33 3.46 2.75 2.70 2.79 2.89 
Lu 0.16 0.42 0.39 0.43 0.44 0.45 0.43 0.42 0.43 0.42 0.43 0.43 0.44 0.45 0.50 0.49 0.49 0.50 0.41 0.39 0.43 0.49 
Hf 2.76 9.09 8.53 9.56 9.57 8.97 9.58 9.02 9.13 9.29 9.37 8.98 9.08 8.57 5.86 6.05 5.92 6.38 9.17 8.94 9.08 8.85 
Pb 15.43 24.6 15.5 6.48 6.43 6.85 17.7 8.05 8.31 8.21 7.45 7.42 7.06 7.37 5.69 4.75 5.05 5.12 5.95 5.98 5.89 6.11 
Th 2.48 7.44 7.14 7.48 7.77 6.98 7.33 7.61 7.53 7.75 7.04 6.89 7.09 7.00 5.27 5.51 5.36 5.56 7.25 7.06 6.95 7.34 
U 1.30 1.84 1.83 1.72 1.82 1.64 1.69 1.75 1.78 1.72 1.62 1.61 1.61 1.59 1.19 1.25 1.21 1.25 1.34 1.29 1.46 1.35 

LOI: weight loss on ignition to 1000 ◦C. Mg# = Mg2+/(Mg2++Fe2+) in atomic ratio, assuming 15% of total iron oxide is ferric. 

X. Liu et al.                                                                                                                                                                                                                                      
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4. Results 

4.1. Whole-rock major and trace elements 

The concentrations of major and trace elements of the studied lava 
samples are listed in Table 1 and illustrated in Figs. 4 and 5. The samples 
show some degree of alteration in thin sections, so the whole-rock raw 
data has been normalized to 100% on a volatile-free basis by correcting 
for LOI, and the sample YT1–1 was discarded in this study due to the 
high LOI value (8.56 wt%). We use the normalized values in the 
following discussions. 

All of the rocks have a narrow range of major oxide compositions and 
have SiO2 = 46.81–50.17 wt%, Al2O3 = 12.75–13.89 wt%, CaO =
6.56–9.08 wt%, P2O5 = 0.38–0.45 wt%, high Fe2O3

T = 11.81–16.72 wt 
% and total alkali contents (Na2O + K2O = 3.05–6.01 wt%). The Mg# 

values of the samples range from 36.9 to 43.2 with MgO contents of 
4.14–5.20 wt%, indicative of evolved magmas. On the Nb/Y vs. Zr/TiO2 
diagram, all of the samples plot in the field of alkaline basalts (Fig. 4a). 
The Emeishan continental flood basalts are commonly divided into high- 
Ti (Ti/Y > 500) and low-Ti (Ti/Y < 500) series (Xu et al., 2001). Our 
data show that the samples from the western SCB belong to the high-Ti 
series (Ti/Y = 558–709), which is a notable character of the outer zone 
of ELIP (e.g., Han et al., 2009; Liao et al., 2012; Li et al., 2017), whereas 
the samples from borehole TD 004 display moderate Ti/Y ratios 
(483–505) (Fig. 4b; published data from GEOROC database; http://geor 
oc.mpch-mainz.gwdg.de/georoc/). 

All of the samples show uniform chondrite-normalized rare earth 
element (REE) patterns with apparent enrichment in LREEs and no or 
slightly negative Eu anomalies (Eu/Eu* = 0.84–1.00; Fig. 5a). Among 
these, the rocks from borehole TD 004 show relatively less LREE 
enrichment ((La/Yb)N = 7.13–7.96) and HREE depletion ((Dy/Yb)N =

1.84–1.98) than those of other boreholes ((La/Yb)N = 9.95–13.02; (Dy/ 
Yb)N = 2.67–3.03). Among the trace elements, mobile elements (e.g., 
Rb, Ba, Sr and K) display considerable variability relative to the 
alteration-resistant immobile elements such as Th, Nb, Zr and P (all 
incompatible in basaltic melts in early crystallizing phases). Especially 
the large negative anomalies of Rb and K in borehole TD 004 and ZJ 1, as 
well as the positive anomalies of Ba, K and Sr in borehole YT 1 (Fig. 5b), 
indicate that the concentrations of mobile elements may be modified by 
post-magmatic alteration. In a primitive mantle-normalized multi- 

element diagram (Fig. 5b), they generally exhibit OIB-like trace element 
patterns with enrichment in some high field strength elements (HFSEs) 
(e.g., Th, U, Zr and Hf), whereas the samples from borehole TD 004 are 
characterized by slightly lower concentrations of HFSEs and LREEs 
relative to the samples from the other boreholes. The samples display 
large ion lithophile element (LILEs) enrichment, except for borehole TD 
004 and ZJ 1 (Fig. 5b). Notably, most of the samples are characterized by 
no negative Nb-Ta anomalies and prominent K, P and Sr depletion. They 
also exhibit generally low Cr (33.8–99.0 ppm) and Ni (47.3–99.5 ppm) 
contents, consistent with evolved magmas as indicated by the low Mg# 

values. Overall, the basalt samples from different boreholes in the SCB 
have REE and trace element patterns similar to both the average OIB 
composition and those of the basaltic outcropping sections within the 
ELIP. 

4.2. Sr-Nd-Pb isotopes 

Our new Sr, Nd and Pb isotope data of basaltic rocks from boreholes 
YT 1, ZG 1 and TD 004 in SCB are listed in Table 2 and plotted in Fig. 6. 
The εNd(t) and initial isotopic ratios have been recalculated at 260 Ma 
(Zhong et al., 2014). Since the Rb/Sr ratios may have been affected by 
secondary alteration, as indicated by the significant scatter in Rb/Sr of 
the ELIP and the studied basalts (Fig. 7a), this could affect the calculated 
age-corrected Sr isotope ratios. Thus, the Rb/Sr ratios of the least altered 
samples with low LOI (Rb/Sr = 0.03; LOI = 0.55; Li et al., 2017) was 
used to calculate the age-corrected Sr isotope ratios in all samples. The 
samples from borehole ZG 1 display a range of initial 87Sr/86Sr ratios 
between 0.706045 and 0.706801 and positive to slightly negative εNd(t) 
values ranging from − 0.03 to 1.35. The borehole YT 1 samples have 
slightly more scattered initial 87Sr/86Sr ratios ranging from 0.706623 to 
0.706945, and relatively low εNd(t) values from − 0.01 to 0.33. In 
contrast, the borehole TD 004 samples show different slightly lower 
initial 87Sr/86Sr ratios of 0.705068–0.705244 and much higher εNd(t) 
values of 1.81–2.12 than borehole ZG 1 and YT 1. In the εNd(t) vs. 
(87Sr/86Sr)i diagram (Fig. 6a), the studied samples overlap with the 
fields of OIB and Emeishan flood basalts, in distinct contrast to the 
depleted mantle (DM). They also show relatively small ranges of age- 
corrected 206Pb/204Pb(t) (ZG 1 = 18.167–18.636, YT 1 =

18.059–18.175 and TD 004 = 18.131–18.213), 207Pb/204Pb(t) (ZG 1 =
15.581–15.608, YT 1 = 15.574–15.641 and TD 004 = 15.555–15.559) 

Fig. 4. Diagrams of (a) Zr/TiO2 × 0.0001 vs. Nb/Y (after Winchester and Floyd, 1977) and (b) MgO vs. Ti/Y for the basaltic samples in the Sichuan Basin. Literature 
data of Emeishan low-Ti and high-Ti basalts came from GEOROC database (http://georoc.mpch-mainz.gwdg.de/georoc/). The boundary of Emeishan low-Ti and 
high-Ti basalts (pink dashed line) is from Xu et al. (2001). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version 
of this article.) 

X. Liu et al.                                                                                                                                                                                                                                      
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and 208Pb/204Pb(t) (ZG 1 = 38.537–38.984, YT 1 = 38.326–38.408 and 
TD 004 = 38.402–38.544) and fall within the OIB field in both the 
207Pb/204Pb(t) vs. 206Pb/204Pb(t) and 208Pb/204Pb(t) vs. 206Pb/204Pb(t) 
diagrams (Fig. 6b and c). The samples overlap the DUPAL anomaly in 
Pb-isotopic space and have elevated 207Pb/204Pb(t) and 208Pb/204Pb(t) at 
a given 206Pb/204Pb(t) relative to the Northern Hemisphere Reference 
Line (NHRL; Zindler and Hart, 1986; Fig. 6b and c). 

5. Discussion 

5.1. Spatial distribution of Permian basalts in the SCB 

In recent decades, a large number of deep exploratory boreholes 
have been drilled in the SCB to gain understanding of hydrocarbon 
accumulation (Zou et al., 2014; Yang et al., 2021). These boreholes, 
which penetrated the deeply buried Permian basalt flows, revealed the 
presence of volcanic rocks, which lie outside the conventional areal 

Fig. 5. (a) Chondrite-normalized REE patterns and (b) primitive mantle- 
normalized trace element patterns for the basaltic samples from boreholes in 
the Sichuan Basin. Chondrite and primitive mantle normalization values and 
OIB data (red dashed line) are from Sun and McDonough (1989). Data source 
for the Emeishan low-Ti and high-Ti basalts are the same as Fig. 4. Symbols as 
in Fig. 4. (For interpretation of the references to colour in this figure legend, the 
reader is referred to the web version of this article.) 
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extent of the ELIP, and thus provide us with sufficient information to 
draw a sketch map of Permian magmatic activity in the SCB (Ma et al., 
2019; Xia et al., 2020). Based on drilling data collected from PetroChina 
and SINOPEC, the location and basalt thickness of boreholes in the SCB 
are illustrated in Fig. 1c. There are numerous boreholes (>100) that 
penetrated Permian basalts in the SCB and most of them are distributed 
in the southwestern (i.e. Emei and Yibin areas) and adjacent mid- 
western SCB (i.e. Chengdu and Santai areas). Notably, in addition to 
sporadic basalt outcrops in the Yanghe area (Li et al., 2017; Liu et al., 
2020), Permian basaltic rocks have also been revealed in numerous 

boreholes near the eastern boundary of the SCB (i.e. Liangping and 
Kaijiang areas), which was regarded as being located outside the known 
extent of the province. As shown by the stratigraphic correlation be
tween volcanic sequences (Fig. 2), the studied basalts recovered from 
the SCB unconformably overlie the Middle Permian Maokou Formation 
or Kuhfeng Formation and are covered by the Late Permian Longtan 
Formation, indicating a contemporaneous relationship with the flood 
basalts in ELIP (He et al., 2007; Fan et al., 2008; Zhong et al., 2014; 
Huang et al., 2018). The comparable stratigraphical relations suggests 
that the Late Permian basalts in SCB may be a synchronous magmatic 
event with ELIP. The type, facies and thickness of volcanic rock se
quences display significant variation from the southwestern part 
(200–350 m; large-scale overflow facies basaltic lavas) to the mid- 
western part (~200 m; eruptive facies pyroclastic rocks, basaltic lavas 
and diabase) and to the eastern part of the SCB (~60 m; basaltic lavas, 
minor diabase and dolerite dykes; Fig. 1c). Based on the lithology and 
thickness from available drilling data, the area and volume of concealed 
Permian SCB basaltic rocks, which was underestimated in previous 
studies, can be conservatively estimated to 6.5 × 104 km2 and 2.4 × 103 

km3, respectively. 

5.2. Effects of alteration 

As mentioned above, the studied samples have been variably altered, 
which makes it necessary to assess the relative mobility of elements to 
avoid pitfalls in the following discussion. The fluid-mobile elements 
(LILEs) and their ratios (e.g., Rb, K and Rb/Sr) display increased scatter 
for the higher LOI samples (Fig. 7a and b), which is a common feature of 
both high-Ti and low-Ti basalts in the ELIP (e.g., Xu et al., 2001, 2004, 
2007; Zhang et al., 2006; Zhou et al., 2008; Kamenetsky et al., 2012; Li 
et al., 2016, 2017). Moreover, the mobile elements also show clear 
scatter when compared with immobile elements that are incompatible in 
early crystallizing phases of basaltic melts (e.g., Zr; Fig. 7d). In contrast, 
the strong linear correlations intersecting the origin between Zr and 
other immobile elements, such as La, irrespective of LOI (Fig. 7c), 
indicate that the magmas did not originate from distinct sources but by 
varying degrees of melting and variable extends of crystal fractionation 
(Zhang et al., 2006; Li et al., 2016). This suggests that in particular K and 
Rb concentrations have been altered by secondary processes. Some ba
salts from the borehole YT 1 and ZG 1 have elevated Rb, K and Sr con
centrations, and the YT 1 also shows extremely high Ba concentrations, 
which could stem from zeolites and clay minerals in the vesicles 
(Fig. 5b), as has been documented in altered basalts elsewhere (e.g., 
Fleming et al., 1992; Søager and Holm, 2011; Millett et al., 2017). But 
for the basalts from boreholes TD 004 and ZJ 1, the mobile elements (e. 
g., Rb, Ba, K and Sr) are extremely depleted (e.g., K in TD 004 rocks and 
Ba in ZJ 1 rocks) resulting in Ba/Th ratios for the ZJ 1 rocks of 7–11 and 
K/Nb ratios of 53–61 for the TD 004 rocks. This is lower than even in the 
most extreme HIMU-type trace element patterns, e.g., the nephelinites of 
the Cape Verde islands (Barker et al., 2009; Holm et al., 2006). 
Furthermore, the trace element patterns of the ZJ 1 rocks are otherwise 
very similar to the YT 1, ZG 1 and JS 1 rocks indicating that they have 
not been generated from distinct mantle sources. Instead, the LILEs have 
probably been leached out of the samples from borehole TD 004 and ZJ 
1 during secondary alteration. Therefore, we conclude that the mobile 
elements are unreliable and focus on the immobile elements in the 
following discussion. 

5.3. Petrogenesis 

5.3.1. Fractional crystallization and crustal contamination 
The samples have low Mg# (36.9–43.2 ppm), Cr (34–99 ppm) and Ni 

(47–100 ppm) values, which are notably lower than those of primitive 
unfractionated magmas from the mantle (Mg# = 73–81, Cr > 1000 ppm, 
Ni > 400 ppm; Wilson, 1989), suggesting that the magmas underwent 
extensive fractional crystallization. Due to the quantitative limitation of 

Fig. 6. Diagrams of (a) εNd(t) vs. (87Sr/86Sr)i, (b) 207Pb/204Pb(t) vs. 
206Pb/204Pb(t) and (c) 208Pb/204Pb(t) vs. 206Pb/204Pb(t) for basaltic rocks from 
boreholes in the Sichuan Basin. The field of OIB, Dupal OIB, DM, MORB, HIMU, 
EMI and EMII are after Hawkesworth et al. (1984), Hart (1988), Hamelin and 
Allègre (1985) and Weaver (1991). The NHRL and LoNd array are from Hart 
(1984). The Yangtze Block crustal compositions are taken from Chen and Jahn 
(1998), Gao et al. (1999), Ma et al. (2000) and Zhang et al. (2008). Data source 
for the Emeishan low-Ti and high-Ti basalts are the same as Fig. 4. Symbols as 
in Fig. 4. 
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core samples from borehole sampling, the fractionation trends in the 
Harker diagrams are not well constrained. However, we can still 
recognize positive correlations between Ni and Cr contents and CaO/ 
Al2O3 ratios with MgO content in most of samples, which can be 
explained by fractionation of olivine and clinopyroxene respectively 
(Krienitz et al., 2006). The slightly negative anomalies of Eu (Eu/Eu* =
0.84–1.00) and depletion of Sr as shown in Fig. 5, suggest fractional 
crystallization of plagioclase. 

The age-corrected Sr isotope ratios (i.e., (87Sr/86Sr)i) of both the 
studied samples and high-Ti basalts in the ELIP display positive corre
lations with indicative trace element ratios for crustal contamination 
such as Th/Nb, La/Nb and Th/Yb and a negative correlation with Nb/U 
(Fig. 8). Moreover, the Sr isotope and trace element ratios extend to 
values outside the range of typical OIBs, indicating that the relatively 
high Sr-isotopic component may be derived from the crust and/or 
metasomatized subcontinental lithospheric mantle (SCLM), for example 
in the form of lamproitic/lamprophyric melts (McKenzie, 1989). One of 
the reasons why crustal contamination has been regarded as insignifi
cant in the ELIP is because isotope and trace element ratios show poor 
correlations with indicators of magma fractionation, such as MgO, 
which could suggest that the geochemical variations were inherited 
from the mantle sources (Xiao et al., 2004; Fan et al., 2008; Li et al., 
2016). The rare MgO-rich samples do show a significant variation, 
which would support this view (Fig. 9b). However, the majority of high- 

Ti rocks have MgO < 7 wt% and have experienced extensive processing 
in magma chambers. In this group, the samples with elevated Th/Nb and 
Th/Yb and lower Nb/U also have some of the lowest MgO and highest 
SiO2 (Fig. 9b–d), but the MgO contents generally show limited variation. 
In large magma chambers with recurrent recharge, evacuation, and 
fractional crystallization, the magmas evolve to increasingly high 
incompatible element contents while the MgO contents remain rather 
constant due to the repeated mafic recharge events (Lee et al., 2014; 
O’Hara, 1977). If concurrent crustal assimilation takes place in the 
magma chamber, the magmas will develop increasingly more crustal 
isotope and trace element ratios and higher SiO2 with time without a 
large change in MgO. This was for example seen in LIP basalts from East 
Greenland in the North Atlantic Igneous Province (Hansen and Nielsen, 
1999). It is a viable explanation for the large geochemical variations at 
almost constant MgO seen in the ELIP high-Ti basalts. However, dis
tinguishing this process from magma evolution from a range of primitive 
magma compositions is very difficult and beyond the scope of this paper. 
But given the high flux of very hot magmas (up to >1500 ◦C; Yao et al., 
2021) into the lower crust during the ELIP event, the most likely sce
nario is that crustal contamination was important and it should be 
considered seriously in future work. 

As shown in Fig. 8, the correlations between (87Sr/86Sr)i and several 
trace element ratios can be modeled by assimilation and fractional 
crystallization (AFC) style contamination (DePaolo, 1981) similar to 

Fig. 7. Diagrams of (a) mobile elements Rb and Rb/Sr ratios vs. LOI, (b) K2O vs. LOI, (c) incompatible elements La vs. incompatible elements Zr and (d) Rb vs. Zr. 
Data source for the Emeishan low-Ti and high-Ti basalts are the same as Fig. 4. Symbols as in Fig. 4. 
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what has been proposed for other LIPs (e.g., Heinonen et al., 2016, 
2019). In this model, the ratio between the fractionating minerals 
olivine: plagioclase: clinopyroxene has been set to 0.1: 0.45: 0.45 ac
cording to the eutectic composition at 1 atm in the anorthite-diopside- 
forsterite system (Osborn and Tait, 1952). The r-value was set to 0.5 
to obtain the necessary change in trace element and isotope composi
tions at the point when 55% melt remains. As starting composition, 
sample Gj2151B from Munteanu et al. (2017) with 8.5 wt% MgO was 
used, which means that the initial phase of crystallization dominated by 
olivine and clinopyroxene is not represented in this model. The partition 
coefficients used are from Mollo et al. (2013) (clinopyroxene), Sun et al. 
(2017) (plagioclase) and Jeffries et al. (1995) (olivine). Details of trace 
element and isotope compositions for the AFC modeling are listed in 
Table 3. 

The observed correlations cannot be modeled by assimilation of 
upper crustal type material (here represented by the bulk average upper 
continental crust, UCC; Rudnick and Gao, 2003). UCC assimilation 
would cause too strong increase in Th relative to Nb and Ta and too little 
decrease in 1/Sr to explain the observed trends (Figs. 9a and 10b). 
Therefore, crustal contamination has hitherto been regarded as 

insignificant in the ELIP high-Ti basalts (Wang et al., 2007; Lai et al., 
2012; Li et al., 2017). However, assimilation of lower crustal melts (LCC 
melts), here represented by the experimental melt of average LCC 
(Rudnick and Gao, 2003) at 900 ◦C and 1.5 GPa (Qian and Hermann, 
2013) (model lines shown in the diagrams), or average tonalitic–
trondhjemitic–granodioritic (TTG) rocks can convincingly explain the 
observed trends (Figs. 8, 9 and 10). In a plot of (87Sr/86Sr)i vs. 1/Sr 
(Fig. 9a), AFC and mixing models form straight lines. Therefore, if the 
negative trend formed by the ELIP high-Ti basalts and the TD 004 and YT 
1 samples was produced by AFC, then the contaminant plots at the 
extension of the dominant sample trend at lower 1/Sr and higher Sr 
isotope values. This means that it cannot have had a higher Sr isotope 
value than ~0.710 because this is where the line intercepts the x-axis. 
The contaminating melt is, however, unlikely to have had a 1/Sr close to 
zero. Therefore, the 87Sr/86Sr of the contaminant was set to 0.709 in the 
model (Table 3). The Yangtze TTG basement rocks (Gao et al., 1999; 
Zhang, 2008) would be likely candidates as contaminants, but the Nd 
and Pb isotope values of these rocks are too unradiogenic to fit the model 
using the given element concentrations and 87Sr/86Sr of 0.709. Instead, 
the contaminant should have 143Nd/144Nd ~ 0.5118 and Pb-isotope 

Fig. 8. Diagrams of (a) Th/Nb, (b) La/Nb, (c) Th/Yb and (d) Nb/U vs. (87Sr/86Sr)i for the basaltic samples from boreholes in the Sichuan Basin and for the literature 
dataset of Emeishan high-Ti basalts. The range of OIB compositions are from Willbold and Stracke (2006) and Hofmann (2007) and reference therein. The pink dotted 
curves represent the percentage of assimilation of LCC melt (Qian and Hermann, 2013) based on the AFC modeling (DePaolo, 1981). The least contaminated basalt 
sample used as starting composition for the AFC model comes from Munteanu et al. (2017). The green dotted curves represent the mixing lines between a typical 
MgO-rich lamproite melt (Prelević et al., 2008) and the least contaminated basalt above. Data source for the Emeishan high-Ti basalts are the same as Fig. 4. Symbols 
as in Fig. 4. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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ratios very similar to the basalts. Mafic lithologies such as gabbros in the 
lower crust could well have isotopic compositions like those indicated 
by the model, but it is, to our knowledge, not known if such composi
tions do exist in the Yangtze lower crust. 

The model indicates up to more than 20% crust assimilation to 
explain the observed trends with the samples from boreholes in the 
western SCB (i.e., ZG 1, YT 1, ZJ 1 and JS 1) indicating higher amounts 
of crust assimilation than borehole TD 004 from the northeastern SCB. 
Such amounts seem unreasonably high, but we note that similar results 
were obtained for the Karoo basalts by simple AFC modeling (Luttinen 
et al., 1998; Luttinen and Furnes, 2000). It has later been shown that 
modeling by energy-constrained AFC (Bohrson and Spera, 2001; Spera 
and Bohrson, 2001) significantly reduces the required amount of crust 
assimilated (Heinonen et al., 2016, 2019). Therefore, a detailed 
modeling of both major and trace elements during fractionation and 
assimilation processes in, for example, the Magma Chamber Simulator 
software (Heinonen et al., 2019) should be undertaken to convincingly 
resolve the issue of the importance of crustal contamination. 

An alternative possibility is that the observed correlations between 

Sr isotopes and trace element ratios were formed by mixing between 
asthenospheric mantle melts and SCLM melts with higher 87Sr/86Sr. An 
SCLM-type melt, which would increase Th/Nb, La/Nb, Th/Yb and 
87Sr/86Sr and lower Nb/U could be a potassic melt, such as a lamproite 
melt, which owe their compositions to the addition of subducted sedi
ments to their mantle source (Prelević et al., 2013). Both Himalayan and 
Mediterranean lamproites are extremely enriched in Th and U but have 
only moderate Sr-isotopes (~0.703–0.720) and most Himalayan lamp
roites cluster around 87Sr/86Sr ≈ 0.708 (Prelević et al., 2013). In Figs. 8, 
9a and 10b, we have shown mixing lines between a typical MgO-rich 
lamproite melt (sample 03CX02 from Cancarix; Prelević et al., 2008), 
to which we have assigned a 87Sr/86Sr = 0.708, and high-Ti sample 
Gj2151B from Munteanu et al. (2017). It is clear that the mixing lines do 
not reproduce the sample trends and we evaluate that lamproite melts 
are unlikely to contribute to the ELIP high-Ti basalts. The same is the 
case for the less potassic calc-alkaline lamprophyres from the North 
China Craton from Ma et al. (2014), which share the strong Th-U 
enrichment at moderate 87Sr/86Sr (~0.710) of the lamproites. Alkaline 
lamprophyres have similar or higher Nb/U as the ELIP high-Ti basalts 

Fig. 9. Diagrams of (a) (87Sr/86Sr)i vs. (1/Sr) × 103, (b) MgO vs. Th/Yb, (c) SiO2 vs. Nb/U and (d) SiO2 vs. Th/Nb for the basaltic samples from boreholes in the 
Sichuan Basin. The grey dotted curve shows the percentage of assimilation of bulk UCC ((87Sr/86Sr)i = 0.720; Rudnick and Gao, 2003) using the AFC model. Pa
rameters of the pink dotted curve of the AFC model and the green dotted mixing lines are same as Fig. 8. In (a), the blue dashed line highlights the negative trend of 
the main part of the data. Data for LCC are from Rudnick and Gao (2003) and reference therein. Data source for the Emeishan high-Ti basalts are the same as Fig. 4. 
Symbols as in Fig. 4. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Table 3 
Trace element and isotope compositions used for the AFC modeling.   

87Sr/86Sr Sr Ta U Nb La Th Yb Reference 

Starting magma 0.7043 371 1.17 0.49 19.2 20.6 2.2 1.80 Munteanu et al., 2017 
LCC melt 0.7090* 538 0.84 0.90 11.1 32.5 5.7 0.20 Qian and Hermann, 2013 

Qian and Hermann, 2013 Average TTG 0.7090* 488 0.84§ 0.94 5.2 23.1 5.2 0.73 
UCC 0.7200# 320 0.90 2.70 12.0 31.0 10.5 2.00 Rudnick and Gao, 2003 

The Sr-isotope values of TTG and LCC melt marked by * are values chosen on the basis of data constraints and this value of UCC marked by # is a chosen value typical of 
upper continental crust. § value from Condie (2005). 
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and lower La/Nb (e.g., Batki et al., 2014; Bayat and Torabi, 2011; 
Orejana et al., 2008) and mixing with such melts would thus not lower 
the Nb/U and increase the La/Nb. Therefore, we favor the explanation 
that the trace element trends of the ELIP high-Ti basalts were generated 
by AFC processes in the crust. 

5.3.2. Nature of mantle source 
Primitive mantle-normalized trace element diagrams and chondrite- 

normalized REE diagrams (Fig. 5) suggest OIB-like magma sources for 
the basalts from both the western and northeastern SCB. As shown in 
Fig. 10, incompatible element ratios fall in the field of OIB and strongly 
resemble those of the Emeishan high-Ti basalts (e.g., Xu et al., 2001; 
Hanski et al., 2004; Fan et al., 2008; Shellnutt, 2014; Li et al., 2016, 
2017). Although the samples may have been overprinted by crustal 
contamination, OIB-like isotopic characteristics of the studied basalts 
still can be identified in the plots of initial Sr-Nd-Pb isotopes (Fig. 6), 
indicating a genetic relation with the Emeishan flood basalts. Moreover, 
the crystallization temperature of clinopyroxenes, which can be used as 
an indicator for the thermal state of the mantle source for evolved 
magma (Putirka, 2008; Li et al., 2016), ranges from 1368 to 1432 ◦C for 
the Yanghe basalts (Li et al., 2017). Compared with the normal 
asthenospheric mantle (McKenzie and Bickle, 1988), the higher thermal 
state in the SCB is consistent with its location in the peripheral area of 
ELIP (Li et al., 2016, 2017). The basalts in the northeastern SCB (i.e. 
borehole TD 004 and Yanghe area; Li et al., 2017) are distinctly different 
from the basalts in the western SCB in that they have less steep REE 
patterns and lower abundances of incompatible trace elements. It is 
widely accepted that the ELIP is a typical plume-derived LIP and the 
basalts could be derived from heterogeneous mantle sources and with 
variable degrees of crustal contamination (Fan et al., 2008; Zhang et al., 
2008; Lai et al., 2012; Shellnutt, 2014). As mentioned above, the similar 
incompatible element ratios and Sr-Nd-Pb isotopic values of most of the 
studied samples precludes the possibility that they originated from 
completely different mantle sources (Wang et al., 2004; Li et al., 2016). 

The degree of partial mantle melting has been demonstrated by 
ample geochemical and geophysical studies to be highly dependent on 
the initial depth of melting (Niu and Batiza, 1991; Ellam, 1992; Lang
muir et al., 1992; DePaolo and Daley, 2000; Zhang et al., 2019). Distinct 
REE patterns as well as ratios (e.g., Sm/Yb, Dy/Yb and Tb/Yb) enable an 
estimation of the degree of partial melting and also degree of magma 
source enrichment (Aldanmaz et al., 2000; Hellebrand et al., 2002). 
Compared with the borehole TD 004 basalts (Dy/Yb = 2.16–2.20), the 
samples from boreholes in the western SCB have relatively high Dy/Yb 

ratios (2.53–2.87) suggesting more garnet in the partial melting residue 
and thus deeper mantle melting (Duggen et al., 2005; Jiang et al., 2009). 
Moreover, the western SCB data, similar to the high-Ti basalts in the 
eastern ELIP, lie closer to a melting trajectory with higher garnet con
tents (garnet/spinel>1), whereas the northeastern basalts plot at the 
trajectory for the source with equal quantities of spinel and garnet (i.e., 
spinel and garnet transition; Aldanmaz et al., 2000; Wang et al., 2007; Qi 
and Zhou, 2008; Fig. 11a). On the basis of (Tb/Yb)p (normalized to 
primitive mantle; Sun and McDonough, 1989) vs. (Yb/Sm)p, the data in 
the western SCB are consistent with more residual garnet (~70%) 
relative to spinel in the source compared with the northeastern samples 
(~50%; Fig. 11b). Based on the assumptions of model calculations, the 
degrees of partial melting were probably ~5% and less than ~3% for the 
parental magmas of the basalts from boreholes in the northeastern and 
western SCB, respectively (Fig. 11). 

5.4. Insight into the origin of Emeishan basalts in the SCB and 
environmental implications 

The Emeishan basalts are generally considered as the products of 
melting of a mantle plume with possible interactions between the plume 
melts and lithospheric sources such as crustal materials and SCLM 
components (e.g., Xu et al., 2001; Xiao et al., 2004; Fan et al., 2008). 
Interestingly, in contrast to the basalts in the western SCB, melts that 
generated the northeastern SCB basalts seem to have formed at a shal
lower depth, which is inconsistent with the generally accepted Emeishan 
model (e.g., Xu et al., 2001). Thus, what kind of geodynamic mechanism 
is responsible for the Emeishan basalts in the SCB?The analysis of the 
Late Paleozoic tectonic evolution in the Upper Yangtze block may 
enlighten this question. Paleozoic plate reconstructions show that the 
Upper Yangtze region in the South China Block was located in the 
eastern Paleotethyan realm near the equator (~2.4◦N; Cocks and Tors
vik, 2013; Jerram et al., 2016; Huang et al., 2021; Fig. 1a), and was 
separated from the North China Block and the Simao-Indochina Block by 
the Mianlue Ocean in the north and the Jinshajiang-Ailaoshan Ocean in 
the south (Cai and Zhang, 2009; Metcalfe, 2013; Zhao et al., 2018). It is 
worth noting that, in addition to the well-known Emeishan taphro
genesis in the western Upper Yangtze block, the northern part of this 
block (i.e., the northern SCB) was a passive margin at 300–250 Ma, due 
to northward subduction of the Mianlue oceanic plate towards the North 
China Block (Zhang et al., 1996, 2003, 2013; Li et al., 2019; Liu et al., 
2021). This led to an extensional tectonic setting in the SCB during 
Middle-Late Permian. As mentioned earlier, there is a good correlation 

Fig. 10. Diagrams of Th/Yb vs. Ta/Yb (after Wilson, 1989 and Shellnutt, 2014) for the basaltic samples from boreholes in the Sichuan Basin. Data for N-MORB, E- 
MORB, OIB and PM are from Sun and McDonough (1989). (b) is a larger version of the area marked by the square in (a) to show the results of the contamination from 
LCC melts and bulk UCC by the AFC model and the mixing with lamproite melt. Parameters for the grey, pink, and green dotted curves as in Fig. 8. Data source for the 
Emeishan low-Ti and high-Ti basalts are the same as Fig. 4. Symbols as in Fig. 4. (For interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.) 
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between the distribution of the Late Permian basalts and the intersection 
of the NE-trending Huayingshan basement fault and the NW-trending 
faulting system in the eastern SCB (Fig. 1c). Finite element simulation 
and stress-field data has confirmed that the extension in the fault sys
tems can result in the large-scale crustal density contrast as well as the 
sudden change of transient pressure, providing a decompression mech
anism to generate melts in areas where mantle rocks are already close to 
their solidus (Connor et al., 2000; Geoffroy et al., 2015). Thus, we 
propose a possible integrated tectonic model to explain the spatio- 
temporal scenario and geochemical variation of the Emeishan basalts 
in the SCB (Fig. 12). 

In the Middle-Late Permian, the impingement of the Emeishan 
mantle plume on the lithosphere caused a regional-scale updoming in 
the southwestern Upper Yangtze block, leading to decompression 
melting of mantle and emplacement of thick piles of flood basalts, 
including the basalts in the western SCB (Fig. 12a). Meanwhile, signif
icant regional extension caused by both the Emeishan plume and the 

Mianlue Ocean subduction had affected the lithosphere of the SCB, 
resulting in the reactivation of pre-existing basement faults in this basin. 
Magmas were generated from the periphery of the plume head below 
these weakness zones of thinned lithosphere by decompression melting 
and emplaced in discrete areas (i.e. borehole TD 004 and Yanghe area) 
separate from the large-scale flood basalts in the ELIP (Fig. 12b). 

The emplacement of voluminous LIP magmas, as widely confirmed 
in the 251 Ma Siberian Traps, 201 Ma Central Atlantic Magmatic 
Province and 66 Ma Deccan Traps, could trigger massive releases of 
particulate and gasses (e.g., SO2, CO2 and halogens), leading to the 
environmental catastrophes and even mass extinction events throughout 
Earths history (Ganino and Arndt, 2009; Svensen et al., 2009; Sobolev 
et al., 2011; Ernst and Youbi, 2017; (Elkins-Tanton et al., 2020) and 
reference therein). Recent studies suggested that the carbon and sulfur 
degassing from the Emeishan mantle plume directly contributed to the 
end-Guadalupian abrupt climatic change and mass extinction event 
(Ganino and Arndt, 2009; Zhu et al., 2021a, 2021b). The identification 
of widespread Emeishan basalts in the SCB broadens the previous un
derstanding of areal extent and volume of the ELIP. The radius of the 
ELIP is ~100 km larger, i.e., 700–800 km measured directly, than the 
previous estimates (e.g., Li et al., 2017). Combined with previous ana
lyses of Emeishan volcanic rocks (including the northern Vietnam vol
canic rocks; Shellnutt et al., 2020), we infer that the spatial extent of the 
ELIP might be larger than the 1 × 106 km2 as proposed by Li et al. 
(2017). Moreover, the same origin of basalts in the SCB as the ELIP may 
be the most reasonable explanation for the abrupt elevation of the 
thermal state of the basin sedimentary rocks in the SCB during the 
Middle-Late Permian (Zhu et al., 2016, Zhu et al., 2018a, 2018b; Jiang 
et al., 2018; Xu et al., 2018). Thus, not only the mantle-derived magmas 
degassed, the extensive heating of multiple dolomites, evaporites and 
organic-rich shales of ancient marine sequences in the SCB may also 
have released large quantities of greenhouse and toxic gases (Ganino 
and Arndt, 2009; Svensen et al., 2009; Sobolev et al., 2011; Jones et al., 
2016). So even though the stature of the ELIP is not as big as the Siberian 
Traps, it still can be speculated that the extension of the ELIP in the SCB 
led to the release of large quantities of carbon and sulfur to the atmo
sphere. Accordingly, our study may further strengthen the possible link 
between the Emeishan volcanism and Middle-Late Permian climate 
change as well as the end-Guadalupian mass extinction and may shed 
some light on the study of the interaction between plume melts and 
sedimentary basins. 

6. Conclusions 

(1) The basaltic flows interlayered with Middle-Late Permian sedi
mentary rocks in the SCB can be geochemically subdivided into 
two groups. The western SCB group had a deep source predom
inantly in the garnet stability field, whereas the northeastern SCB 
group came from a shallower magma source in the spinel-garnet 
transition zone. All these basalts were derived from an OIB-like 
mantle plume source and were possibly overprinted by LCC 
contamination.  

(2) The Permian basalts in the SCB were likely generated in response 
to plume-lithosphere interaction in which the weakness zones of 
the lithosphere may have had a significant impact on the distri
bution of these basalts, indicating that ELIP may extend over a 
substantially broader region than previously estimated.  

(3) Such large-scale emplacement of mafic magmas from the 
Emeishan mantle plume in a petroliferous basin was a possible 
contributor to climate changes as well as the biological crisis at 
the end-Guadalupian. 

Declaration of Competing Interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 

Fig. 11. Diagrams of (a) Sm/Yb vs. Sm and (b) (Yb/Sm)p vs. (Tb/Yb)p showing 
mantle melting curves relevant for the basaltic samples from boreholes in the 
Sichuan Basin, after Aldanmaz et al. (2000), Zhang et al. (2006) and references 
therein. Melt curves in (a) are drawn for spinel lherzolite and garnet lherzolite; 
Numbers on the melt curves refer to percentages of melting in a given mantle 
source as Aldanmaz et al. (2000). The grid in (b) indicates the range of model 
melt compositions produced by aggregated fractional melting of peridotite; the 
solid lines indicate constant melt fraction. The dotted curves show the per
centage of melt contribution from garnet-facies mantle vs. spinel-facies mantle. 
Mineral/matrix partition coefficients and DM are from McKenzie and O’Nions 
(1991, 1995). PM, N-MORB and E-MORB compositions are from Sun and 
McDonough (1989) and Workman and Hart (2005). Data sources for the 
Emeishan low-Ti and high-Ti basalts are the same as Fig. 4. Symbols as in Fig. 4. 
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the work reported in this paper. 
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Luttinen, A.V., Rämö, O.T., Huhma, H., 1998. Neodymium and strontium isotopic and 
trace element composition of a Mesozoic CFB suite from Dronning Maud Land, 
Antarctica: implications for lithosphere and asthenosphere contributions to Karoo 
magmatism. Geochim. Cosmochim. Acta 62, 2701–2714. 

Ma, C.Q., Ehlers, C., Xu, C.H., 2000. The roots of the Dabieshan ultrahigh-pressure 
metamorphic terrain: constraints from geochemistry and Nd-Sr isotope systematics. 
Precambrian Res. 102, 279–301. 

Ma, L., Jiang, S.-Y., Hou, M.-L., Dai, B.-Z., Jiang, Y.-H., Yang, T., Zhao, K.-D., Pu, W., 
Zhu, Z.-Y., Xu, B., 2014. Geochemistry of Early Cretaceous calc-alkaline 
lamprophyres in the Jiaodong Peninsula: implication for lithospheric evolution of 
the eastern North China Craton. Gondwana Res. 25, 859–872. 

Ma, X.H., Li, G.H., Ying, D.L., Zhang, B.J., Li, Y., Dai, X., Fan, Y., Zeng, Y.X., 2019. 
Distribution and gas-bearing properties of Permian igneous rocks in Sichuan Basin, 
SW China. Pet. Explor. Dev. 46 (02), 216–225 (in Chinese with English abstract).  

Marzoli, A., Callegaro, S., Dal Corso, J., Davies, J.H., Chiaradia, M., Youbi, N., 
Jourdan, F., 2018. The Central Atlantic Magmatic Province (CAMP): A Review. The 
Late Triassic World, pp. 91–125. 

McKenzie, D., 1989. Some remarks on the movement of small melt fractions in the 
mantle. Earth Planet. Sci. Lett. 95, 53–72. 

McKenzie, D., Bickle, M.J., 1988. The volume and composition of melt generated by 
extension of the Lithosphere. J. Petrol. 29, 625–679. 

McKenzie, D.P., O’Nions, R.K., 1991. Partial melt distribution from inversion of rare 
earth element concentrations. J. Petrol. 32, 1021–1991. 

McKenzie, D.P., O’Nions, R.K., 1995. The source regions of ocean island basalts. J. Petrol. 
36, 133–159. 

Metcalfe, I., 2013. Gondwana dispersion and Asian accretion: tectonic and 
palaeogeographic evolution of eastern Tethys. J. Asian Earth Sci. 66, 1–33. 

Millett, J.M., Hole, M.J., Jolley, D.W., Passey, S.R., 2017. Geochemical stratigraphy and 
correlation within large igneous provinces: the final preserved stages of the Faroe 
Islands Basalt Group. Lithos 286, 1–15. 

Mollo, S., Blundy, J.D., Iezzi, G., Scarlato, P., Langone, A., 2013. The partitioning of trace 
elements between clinopyroxene and trachybasaltic melt during rapid cooling and 
crystal growth. Contrib. Mineral. Petrol. 166, 1633–1654. 

Munteanu, M., Wilson, A.H., Costin, G., Yao, Y., Lum, J.E., Jiang, S.Y., Jourdan, F., 
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