
Geological-petrophysical
insights in the deep Cambrian
dolostone reservoirs in Tarim
Basin, China
Jin Lai, ShichenLiu, YiXin, SongWang,ChengwenXiao,
QiuqiangSong,XuChen,KefuYang,GuiwenWang,and
Xiujian Ding

ABSTRACT

Cores, thin sections, and cathodoluminescence analysis were inte-
gratedtodocumenttheoccurrenceandpetrologyofdolomites,and
their pore systems in theCambrianofTarimBasin,China.Deposi-
tional facies, pore types, and dolomitization processes of various
dolostone reservoir types are determined. Six types of dolomite
are recognized, includingmicrobial dolomite, dolomicrite, fabric-
retentive dolomite, fabric-obliterative dolomite, fine to medium
crystallinedolomitecement,andsaddledolomitecement.Poresys-
temsaredominantlyvugs,anhydritedissolutionpores, intercrystal-
line pores, intercrystalline dissolution pores, fabric dissolution
pores, and microfractures. Four porous dolostone reservoirs
include sabkha dolostone, seepage-reflux dolostone, burial dolo-
stone,andhydrothermaldolostone.Fracturesarean important fac-
tor in enhancing reservoir quality in dolostone reservoirs.

Conventional wire-line logs and image logs are calibrated with
cores and related thin sections. Sabkha dolostone reservoirs are
characterized by dark and bright spots on the image logs.
Seepage-reflux dolostone reservoirs are related to high-energy
depositional facies and are characterizedby lowgamma-rayampli-
tude, increasing sonic transit time andneutron porosity but reduc-
ing bulk density values. Evident dark spots (vugs) are recognized
on image logs, and all threeporosity logs suggest relativelyhigh res-
ervoir quality in burial dolostone reservoirs. Hydrothermal dolo-
stone reservoirs are recognized by high gamma-ray response
caused by hydrothermal minerals (fluorite), and porosity curves
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indicate good reservoir quality, which is supported by dark spots
(vugs) on the image logs. Rapid decrease in resistivity, increasing
in sonic transit time values, and the dark sinusoidal waves on the
image logs are typical of fractured dolostone reservoirs. The distri-
bution of dolostone reservoirs in each well is predicted using a
comprehensive analysis of conventional and image logs, and they
are calibrated with oil test data. The research provides insights in
the analysis of geneticmodel of deeply buried dolostone reservoirs
and establishes the predictablemodel for reservoir quality in dolo-
stones via well logs.

INTRODUCTION

Dolostones are globally important hydrocarbon-bearing reservoir
rocks and are attracting substantial and persistent interest because
of their exploration potential (Warren, 2000; Ehrenberg et al.,
2006;Roth et al., 2011;Nabawy, 2013;Wen et al., 2014; Bai et al.,
2016; El Sharawy andNabawy, 2016; Li et al., 2016; Aschwanden
et al., 2019; Lai et al., 2019b; Pires et al., 2019; Jafari et al., 2020).
Deeply buried Cambrian dolostone reservoirs are currently key
explorationtargets in theTarimBasinofwesternChina(Zhaoetal.,
2012, 2014;Wang et al., 2014; Jiang et al., 2016, 2018; Shen et al.,
2016;Tianetal.,2018).Numerousstudieshaveconsideredthetec-
tonic evolution (Zhang et al., 2009; Du et al., 2018), depositional
facies (Gao and Fan, 2015;Wang et al., 2018), dolomitization pro-
cess (Jiang et al., 2016), diagenetic evolution (Li et al., 2016; Jiang
et al., 2018), fluid alteration (Dong et al., 2013; Jiang et al., 2015),
and petroleum geology (Zhu et al., 2015a, 2018) of the Cambrian
dolostones in Tarim Basin.

Despitebeingdeeplyburied,hydrocarbonexplorationhascon-
firmed that abundant hydrocarbon resources are hosted in these
ancient dolostone reservoirs (Wang et al., 2014; Jiang et al.,
2016). The initial discovery well, Zhongshen (Zs) 1, was drilled
in 2012 and tested gas from two zones. The lower Cambrian
Xiaoerbulake Formation flowed gas at the rate of 30,000 m3/day
(1060 MCFGD) and 34 m3/day (214 BWPD) water. The middle
Cambrian Awatage Formation tested oil from perforations at the
rate of 15.4 m3/day (96 BOPD) and gas at the rate of
173–10,301 m3/day (61–363 MCFGD) (Shen et al., 2016). In
2013, in the lower–middle Cambrian dolostone reservoirs of well
ZS 1C, flowed natural gas at the rate of 158,545 m3/day (5600
MCFGD) (drawdown pressure: 40MPa [5800 psi]) was obtained
(Wang et al., 2014; Zhu et al., 2016, 2018). Liquid hydrocarbons
were also produced inwell Zs 5,with a daily natural gas production
of 11,804m3/day (417MCFGD) and oil production of 24.17m3/
day (152 BOPD) through a 6-mm choke after acid fracturing
(He et al., 2016). Additionally, many other exploratory wells
have discovered high-quality dolostones with pores and vugs
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containing liquid hydrocarbon and natural gas in the deeply buried
Cambrian dolostones (Zhu et al., 2015a).

Dolomite forms in various environmental settings and
diagenetic conditions (Ngia et al., 2019) and is identified by signifi-
cant heterogeneity at numerous scales (Mollajan and Memarian,
2016; Tian et al., 2019). The lack of clarity in geologically genetic
models and lack of geophysical characterization methods hinder
further exploration and production of the ancient dolostone reser-
voirs buried to 8000 m (Jiang et al., 2016; Tian et al., 2019).
Although the total thicknessofCambrian–LowerOrdoviciandolo-
stones in the TarimBasin ismore than 1000m (Zheng et al., 2013;
Gao and Fan, 2015; Li et al., 2016), most of the dolostones have
poor reservoir quality because of the deepburial and intensemulti-
phasediageneticmodifications (Jiangetal., 2016;Liet al., 2016;Lu
et al., 2017). Therefore, it is essential for successful exploration
of the dolostone reservoirs and it is necessary to understand the
origin and mechanisms that maintain high porosity in dolo-
stones buried to such a great depth inTarimBasin.Additionally,
predicting porous dolostones usingwell-log data remains a chal-
lenging task.

The purpose of this studywas to unravel the geneticmodels of
various dolostone reservoirs through construction of well-log char-
acterization methods via integration of cores, conventional well
logs, and image logs, thus closing the gap between geological
description and petrophysical characterization.

Specifically, the following two questions are addressed:

1. Howmany different types of dolostone reservoirs are there in
Cambrian strata of theTarimBasin, andwhat are their genetic
models?

2. Can dolostone reservoirs be predicted using well logs?

GEOLOGICAL SETTING

TheTarimBasin, located in the southern part of theXinjiang Prov-
ince (Uygur Autonomous Region), is the largest petroliferous
superposed basin in China, occupying an area of 56 · 104 km2

(Figure 1) (Chen et al., 2000; Qiu et al., 2012; Jiang et al., 2015;
Gao et al., 2016; Lai et al., 2017a). Several structural units (three
uplifts: northern, central, and southern; and four depressions: the
Kuqa, northern, southwestern, and southeastern) are present in
the TarimBasin because of a series of tectonic events (Caledonian,
Hercynian, Indosinian, andHimalayan cycles) (Figure 1) (Jin et al.,
2009; Zhang et al., 2009, 2018;Gao et al., 2015; Zhu et al., 2015a;
Duetal., 2018;Guoetal., 2018;Ngiaet al., 2019).FromtheSinian
to the Ordovician, the Tarim Basin was a large, shallow carbonate
platform, and thick-bedded dolostones were deposited from the
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late Cambrian to the Early Ordovician (Gao and Fan, 2015;
Hu et al., 2019; Lai et al., 2020).

TheCambrian can be subdivided into six formations frombot-
tom to top, including the Yuertusi Formation (fi1y), Xiaoerbulake
Formation (fi1x), Wusonggeer Formation (fi1w), Sayilike Forma-
tion (fi2s), Awatage Formation (fi2a), and Qiulitage Formation
(fi3q) (Figure 2) (Gao and Fan, 2015; Jiang et al., 2016). Six
third-order sequences (SQ1–SQ6) in theCambrian are recognized
through a combination of core and outcrop observation and well-
log and seismic-based facies analysis (Jiang et al., 2018). The lower
Cambrian(fi1xandfi1w) iscomposedmainlyofdolomite, themid-
dle Cambrian (fi2s and fi2a) is dominated by evaporite-bearing
sequences (anhydrites, dolomites, andmudstones), and the Upper
Cambrian (fi3q) consists mainly of an approximately 600-m-thick
dolomite (Zhang et al., 2009). Fromwest to east, the depositional
facies of the Cambrian–Ordovician formations are recognized as
large shallow carbonate platform, slope facies (limestone andmarl-
stone), and basinal facies (mudstone and shale) (Du et al., 2018).

Theburial and geothermal history reconstructionwasbasedon
theworkofCai et al. (2001).Cambrian stratahadbeen rapidlybur-
ied to a depth of 4000 m during late Ordovician and subsequently
continuously buried to a maximum depth of 7000 m or deeper,
reaching maximum temperatures of >180�C (>356�F) (Figure 3).
Hydrocarbons migrating from the lower to middle Cambrian and
Middle to Upper Ordovician source rocks accumulated in the
Ordovician carbonates (Pang et al., 2013). Ordovician strata are
mainly composed of limestones, and only the Lower Ordovician
Penglaiba Formation contains dolostones (Dong et al., 2013;
Zhang et al., 2018; Fu, 2019). The underlying lower Cambrian,
basin-wide distributed mudstones and black shales are the main
source rocks for theoverlyingdolostone reservoir.Theorganicmat-
ter isdominatedbytypeIandII1kerogens,withtotalorganiccarbon
ranging between 1.0 and 3.0wt. % and vitrinite reflectance greater
than1.5%(Cai et al., 2015; Jianget al., 2018).Abundantoil andgas
was generated in theCambrianfi1y source rocks (Zhuet al., 2018).
Active faults and fractures act as the hydrocarbon migration path-
ways from lower Cambrian source rocks into the overlying
Cambrian and Ordovician dolomite reservoirs (Jiang et al., 2015).

DATA AND METHODS

Atotal of200coreplugs (mostlydolostones)were taken fromcores
inwells Zs 5,Hetian2,Chutan1, Shutan1,Madong (Md)5,Md8,
Zhonggu (Zg) 5, Zg 582, Zg 58, Zg 61, Luosi 2, and Zhonghan 1
(Zh) 1. Routine core analysis (porosity and permeability) was con-
ducted on theplug samples 2.5 cm indiameter and5 cm in length).
Before thin-section preparation, blue or red fluorescent epoxywas
impregnated into rock samples to aid in identifying pores and
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microfractures. Thin sections (0.03 mm in thickness)
were stained with Alizarin Red S and potassium
ferricyanide to differentiate between calcite (Fe-cal-
cite) and dolomite. All thin sections were examined
by optical transmitted light and cathodoluminescence
(CL) microscopy.

Conventional well-log data include natural
gamma ray (GR), caliper (CAL), spontaneous poten-
tial, lithodensity, deep resistivity, shallow resistivity,
bulk density (DEN), neutron porosity (CNL), and
acoustic porosity (AC). Fullbore formation microim-
ager (FMI) and extended-range microimager
(XRMI) imager tool was used to acquire the high-
resolution images of the boreholes. The FMI or
XRMI tool has two perpendicular pairs of CAL
arms, and each arm hosts a pad and attached flap,
and 24–25 electrodes are located on each of the eight
or six pads (Rajabi et al., 2010; Folkestad et al., 2012;
Brekke et al., 2017; Nian et al., 2018). Therefore, a
total of 192 or 150 microresistivity curves can be
recorded during logging, and themicroresistivity fluc-
tuations around the borehole wall provide important
information for geological interpretation of logged

intervals (Folkestad et al., 2012; Brekke et al., 2017;
Lai et al., 2018b). Structural characteristics (borehole
breakout, fractures, faults), lithology, and sedimentary
structures can be identified on the images (Xu et al.,
2009; Folkestad et al., 2012; Khoshbakht et al.,
2012; Nian et al., 2017; Lai et al., 2018b).

RESULTS

Occurrence and Petrology of Dolomites

The Cambrian–Lower Ordovician in the Tarim Basin
is primarily composed of dolostones (Gao and Fan,
2015; Zhu et al., 2015a, b). The Lower Ordovician
Penglaiba Formation consists of massive dolostones
interbedded with minor limestone layers in the upper
part, whereas the Cambrian strata are dominantly
composed of dolomite based on the observations of
Keping field outcrops and well cores (hand specimen
and thin sections) (Zhu et al., 2015a; Jiang et al.,
2016; Hu et al., 2019). The Cambrian dolostones
include dolomicrite (Figure 4A), dolograinstone

Figure1. Structural divisionmapof the TarimBasinwithinChina (Gaoet al., 2015;GaoandFan, 2015; Jiang et al., 2016). Ct5Chutan;Ht5
Hetian; Ls5 Luosi; Md5 Madong; Y5 Ya; Yh5 Yaha; Ym5 Yingmai; Yt5 Yingtan; Zg5 Zhonggu; Zh5 Zhonghan; Zs5 Zhongshen.
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Figure 2. The sequence (SQ) stratigraphy, lithology association, and reservoir description of the Cambrian strata in the Tarim Basin (Jiang
et al., 2018).
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(ooid grains, intraclasts, etc.) (Figure 4B), and crystal-
line dolostone (very fine, fine-medium-coarse crystal-
line dolostone) (Figure 4C, D), as well as microbial
dolostones (Zhu et al., 2015b; Jiang et al., 2016;
Ngia et al., 2019). The fine crystalline dolostones are
dark gray to brown-gray in color, whereas the
medium-to-coarse crystalline dolostones are pale
brown and light gray (Figure 4) (Zhu et al., 2015a).
Gypsum nodules are common in the crystalline dolo-
stone (Figure 4E), and some of the grain dolostones
(dolograinstone) and crystalline dolostones contain
abundant vugs (enlarge dissolution pores) (Figure 4F)
(Jiang et al., 2016; Ngia et al., 2019; Lai et al., 2020).

Petrographic observation and CL analysis indi-
cates that there are six types of dolomites (including
four types of matrix dolomite, one cement dolomite,
and one saddle dolomite). These are recognized in
terms of crystal size and presence of grains: (1) micro-
bial dolomite (D1) (Figure 5A, B), (2) dolomicrite or
very finely crystalline dolomite (D2) (Figure 5C), (3)
fabric-retentive dolomite (D3) (Figure 5D), (4)
fabric-obliterative (crystalline) dolomite (D4) (Figure
5E, F), (5) finely to medium crystalline cement dolo-
mite (Cd) (Figure 5G), and (6) saddle dolomite
cements (Sd) (Figure 5H) (Dong et al., 2013; Zhu

et al., 2015a; Jiang et al., 2016; Du et al., 2018; Lai
et al., 2020). Matrix dolomites are dominated by fine
tomediumand coarse crystalline dolomite (Zhu et al.,
2015b). Many dolostones are composed of multiple
types of dolomite according to field and microscopic
observations (Zhu et al., 2015a; Du et al., 2018; Hu
et al., 2019).

The D1 dolomites (algal-laminated) are mainly
found in the Keping-Bachu uplift of the Tarim Basin
(Figure 5A, B) (Zheng et al., 2013; Hu et al., 2014;
Huang et al., 2014; You et al., 2014; Jiang et al.,
2016; Wang et al., 2018; Ngia et al., 2019). The
D2 dolomite (dolomicrite) is commonly associated
with anhydrite, and under low magnification of pet-
rographic observations, the primary sedimentary fab-
ric of precursor limestones can be identified (Figure
5C) (Du et al., 2018). The D2 dolomites, which
are near-micritic crystals, are the predominant dolo-
mite in low-energy, restricted facies (Jiang et al.,
2016). The D3 dolomite (fabric-retentive) implies
high-energy depositional facies (oolitic shoal and
reef facies), in which the primary fabrics (ooids,
intraclasts) are fuzzy but visible by petrographic
observation (Figure 5D) (Jiang et al., 2016). The
D4 dolomite (fabric-obliterative) is characterized

Figure 3. The reconstructed burial and geothermal history of well Tacan 1 in Tazhong uplift (Cai et al., 2001). fi5 Cambrian; C1 = early
Carboniferous; C25 late Carboniferous; D5 Devonian; E5 Paleogene; J5 Jurassic; K5 Cretaceous; N5Neogene; O5Ordovician; P5
Permian; S5 Silurian; T5 Triassic.
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Figure4. Coredata showing the various types of dolostones.Note thepore spaces (redarrows). (A)Dolomicrites,wellMadong8, 4786.2m,
Cambrian Xiaqiulitage Formation (fi3xq). (B) Intraclast dolostones, well Hetian 2, 6495.44 m,fi. (C) Fine crystalline dolostone, well Zhonggu
(Zg) 5, 6224.38 m,fi. (D) Fine crystalline dolostone, well Zg 58, 3610.49 m,fi3xq. (E) Gypsum bearing fine crystalline dolostone, well Zg 5,
6545.44 m, fi. (F) Vugs in the crystalline dolostone, well Zg 5, 6189.76 m, fi.
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by fine to medium-to-coarse crystalline dolomite
rhombs (Figure 5E), in which the primary fabric is
indiscernible and fully destroyed by intense recrystal-
lization or replacement during burial diagenesis (Fig-
ure 5F). The dolomite crystals generally exhibit crys-
tal mosaics with curved crystal surfaces (Du et al.,
2018). The Cd grow into open pores or are filling
in fractures (Figure 5G). The Sd have planar subhe-
dral to nonplanar anhedral textures, and they occur
as filling in vugs, fractures, or matrix replacement
(Figure 5H) (Du et al., 2018). Saddle dolomites
are closely related to a regional hydrothermal event.

Pore Systems

The Cambrian dolostones contain various pore types
(Zhu et al., 2015b; Li et al., 2016; Jiang et al., 2018;
Lai et al., 2020). Vugs, which are easily detected by
core observation (Figure 4F), are also apparent in thin-
section petrography and occur as irregular dissolution-
enlarged interparticle pores (Figure 6A). The gypsum
(anhydrite)-bearingdolostonescontainanhydritedisso-
lution pores, in which the gypsum (anhydrite) was
almost completely dissolved. In some cases, there are
gypsum remnants within the dissolution pores, espe-
cially in the northern uplift of Tarim Basin (Figure 6B)
(Zhenget al., 2012;Shenet al., 2015,2016;Zhaoet al.,
2015; Lai et al., 2020). The anhydrite dissolution pores
significantly enhance porosity in the evaporite-bearing
dolostones (Jiang et al., 2018). However, gypsum
(anhydrite) also occurs as beds or nodules (Figure 4E),
or even pore-filling cements, and in some cases
completely fills the pore space (Jiang et al., 2016).
None of the beds and nodules are leached in the Cam-
brian dolostones in the Tazhong uplift. In well Zs 5,
thegypsumnodules significantly reducethe intergranu-
lar pore volume (Figure 6C, D).

Various amounts of intercrystalline porosity
(polygonal) are seen in the crystalline dolomite because
of various degrees of dolomitization (Figure 6E), and
additionally, dissolution sometimes occurs along the
intercrystalline pore boundaries creating intercrystal-
line dissolution pores (Figure 6F). The fine to medium
crystalline dolomite, with lighter color, commonly has
higher porosity than dolomicrite or very finely crystal-
line dolostones because of their abundance in intercrys-
talline pores (Zhu et al., 2015a; Li et al., 2016). Abun-
dant intercrystalline pores were detected under the
microscope in the medium-to-coarse dolostones

(Figures 5F, 6E). Most of the porous dolostones in the
Tarim Basin contain intercrystalline porosity (Jiang
et al., 2018). In some cases, the fabrics (ooids and intra-
clasts)may be leached, forming fabric dissolutionpores
(Figure 6G, H). Microfractures (open) are also impor-
tant pore spaces in the Cambrian dolostones (Figure
6I). However, dolomite, calcite, silica, and fluorite
cements may fill the pore space (Figure 6J) (Lai et al.,
2020).

DISCUSSION

Genetic Types of Porous
Dolostone Reservoirs

The Cambrian dolostones are deeply buried
(3500–8000 m) (Jiang et al., 2018), and the reservoir
quality is poor because of various diagenetic changes
(intensivecompaction,aswellascementationbycalcite,
gypsum, dolomite, and quartz) (Jiang et al., 2016;
Li et al., 2016). Therefore, the secondary porosity cre-
ated by leaching and fracturing is an important factor
creating porosity in the deeply buried dolomite reser-
voirs (Jin et al., 2009; Jiang et al., 2016; Li et al.,
2016). Dissolution in dolostones can be associated
with early, near-surface diagenetic processes and sub-
aerial exposure, related meteoric water dissolution,
and hydrothermal fluids under deep burial conditions
or thermochemical sulfate reduction (TSR) (Loucks,
1999; Worden et al., 2000; Wierzbicki et al., 2006;
Jiang et al., 2014, 2016, 2018; Zhu et al., 2015a;
Lietal., 2016).Thecarbon,oxygen,andstrontiumiso-
tope compositions as well as fluid inclusion data all
confirm that two types of fluids (including meteoric
water andhydrothermalfluid) have affected the lower
Paleozoic dolomite reservoirs in the Tarim Basin
(Zhu et al., 2015a). However, abundant intercrystal-
lineporositywas created in thefine tomediumcrystal-
line dolostones because of multiphase dolomitization
(Jiang et al., 2016; Lai et al., 2019a). Therefore, there
are someporousdolostone reservoirswithhighporosity
intheCambriandolostonesdespitetheirdeepburialand
old geological age (Zhao et al., 2014; Jiang et al., 2016;
Li et al., 2016; Zhu et al., 2018; Ngia et al., 2019).

Four types of porous dolostone reservoirs—sab-
kha, seepage-reflux, burial, and hydrothermal—are
recognized according to their genetic (dolomitization
and dissolution) models identified from thin-section
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Figure 5. Thin-section images showing the various types of dolomites (You et al., 2013; Hu et al., 2014). (A) Microbial dolomite, Cambrian
(fi), well Shutan (St) 1. (B) Microbial dolomite, fi, well St 1. (C) Very finely crystalline dolomites, well Hetian (Ht) 2, 39 5045 m, Cambrian
Xiaoerbulake Formation. (D) Fabric-retentive dolomite (D2), well Ht 2, 5075 m, fi. (E) The D2, well Zhonggu (Zg) 582 3626.98 m, fi. (F)
Fabric-obliterative dolomite, well Zg 61, 3549.51 m, fi. (G) Finely to medium crystalline dolomite cement filling in the fractures, Madong
(Md) 8 4786.27 m,fi. (H) Saddle dolomite cements, well Md 8, 4787.13 m, fi.
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petrography, CL analysis, and isotopic composition
(Zhaoetal.,2012,2014;Zhengetal.,2012;Shenetal.,
2016; Du et al., 2018).

Sabkha Dolostone Reservoirs
Anhydrite dissolution pores predominate in sabkha
dolostone reservoirs. Related lithologies are evaporite-
bearing dolomicrite or very finely crystalline dolostone
(Table 1) deposited in a restricted lagoonal and tidal-
flat environment (Zheng et al., 2012; Zhao et al., 2014;
Jiang et al., 2016; Shen et al., 2016). Anhydrite is com-
mon in these low-energy, restricted environments (Jiang
etal.,2016).Abundantanhydritesignificantlydecreases
porosity (Jiang et al., 2018) and will likely be trans-
formed intogypsumduringburial.Exposureand intru-
sionofmeteoricwaterwillcausedepositionalanhydrite
todissolve, forminganhydritedissolutionporosity.The
sabkha dolomites display nonluminescent or dull-red
color patterns under CL (Figure 7A), suggesting
that the dolomitization is syndepositional (early
meteoric diagenesis) (Jiang et al., 2018). The d13C
and d18O values (Vienna Peedee belemnite
[VPDB]) of the sabkha dolomites are negative but
not depleted. This suggests a subaerial exposure
and meteoric water percolation, in other words,
the sabkha capillary zone dolomitization model
(Figure 8) (Zhao et al., 2012, 2014; Zheng et al.,
2013; Jiang et al., 2016).

Seepage-Reflux Dolostone Reservoirs
Seepage-reflux dolostone reservoirs are dominantly
grain dolostone and crystalline dolostone, which
includeD3 andD4dolomites (Table 1). The pore sys-
tems are fabric (algal) selectively dissolution pores
(Figure 9A). The seepage-reflux dolostone reservoirs
were likely deposited in high-energy environments
(platform margin: shoal and reef facies) (Jiang et al.,
2016). The seepage-reflux dolomites exhibit dull-red
to orange color patterns under CL (Figure 7B), imply-
ingthatdolomitizationoccurredatshallowburialenvi-
ronments. The positive carbon composition and
relatively heavy oxygen composition of the dolostones
support reflux dolomitization (Figure 8) (Zhao et al.,
2012, 2014; Zheng et al., 2013; Jiang et al., 2018). In
arid climates, the evaporitic brine percolates into the
underlying porous carbonates and dolomitizes lime-
stone under shallow burial conditions (Jones and
Xiao,2005;MooreandWade,2013; Jiangetal., 2018)

Burial Dolostone Reservoirs
Burialdolostone reservoirs also includeD4andcrystal-
line(medium-to-coarsecrystalline)dolomite(Figure9B;
Table 1). Fabric (ooid and intraclasts)-enlarged dissolu-
tion pores (vuggy pores) (Figure 6G, H) as well as the
intercrystalline (dissolution) pores (Figures 5F, 6E) are
the predominant pore systems in burial dolostone reser-
voirs. Fabric-enlarged dissolution pores are commonly
formed during seepage-reflux stage near the surface
(Figure 6G, H). The pores formed in the seepage-
reflux stage are further altered by burial dissolution,
forming enlarged vugs (Figure 6G, H). In addition, the
dolomites with cloudy cores but clear rims are typical
of burial dolostone reservoirs (Figure 9B). Elevated
temperatures at depth promote burial dolomitization
(Haas et al., 2014; Jiang et al., 2016). Intense recrystalli-
zation or replacement during progressive burial obliter-
ates the primary fabric (Jiang et al., 2016), and this
type of dolostone reservoir generally has dull-red to red
CLpatterns (Figure 7C). The presence of fabric dissolu-
tionporesareconsideredtobeinheritedfromdissolution
pores formed during shallow burial.

Six third-order sequences (SQ1–SQ6) were rec-
ognized in the Cambrian strata (Jiang et al., 2018).
Meteoric dissolution leads to the formation of dissolu-
tion pores (Zhu et al., 2015a), and these dissolution
pores can be preserved as the dolomite is buried. In
addition, burial-related dissolution as well as TSR can
also enhance porosity (Jiang et al., 2016). Recrystalli-
zation during subsequent burial and elevated temper-
atures result in a depleted d18OVPDB value (Li et al.,
2016); therefore, burial dolostone reservoirs are char-
acterized by depleted d18O values (Figure 8) (Zhao
et al., 2012, 2014; Zheng et al., 2013; Jiang et al.,
2016) (Table 1).

Hydrothermal Dolostone Reservoirs
Saddle dolomite filling fractures and vugs are typical of
hydrothermal dolostone reservoirs (Figure 5H) (Jiang
et al., 2016). The presence of saddle dolomite is closely
related to a regional hydrothermal event (high tempera-
ture conditions) (Al-Aasm et al., 2002; Zhang et al.,
2009; Jiang et al., 2016). The lowest d18O values sup-
port this interpretation (Figure 8) (Zhang et al., 2009;
Zhao et al., 2012, 2014; Zheng et al., 2013). Addition-
ally, fluorite minerals fill the dissolution pores and frac-
tures, which is typical of hydrothermal dolostone reser-
voirs (Figure 9C) (Table 1). The host dolomite is
dissolved by hydrothermal fluids, resulting in

LAI ET AL. 2273

Downloaded from http://pubs.geoscienceworld.org/aapgbull/article-pdf/105/11/2263/5431410/bltn19135.pdf
by China University of Geosciences Beijing user
on 23 October 2021



Figure 6. Thin section showing the pore systems in dolostones. (A) Dissolution-enlarged interparticle pores (vugs), well Zhonggu (Zg) 58,
3708.9m,Cambrian (fi). (B)Dissolutionpores in gypsum-bearingdolostones,well Yaha10. (C)Gypsumnodulesfilling thepore volumes,well
Zhongshen (Zs) 5, 6543.9 m,fi. (D) The same field view of (C) under the cross-polarized light. (E) Intercrystalline pores in the fine crystalline
dolostones, well Zg 61, 3548.41m,fi. (F) Intercrystalline dissolution pores, well Zg 61, 3548.76m,fi. (G) Fabric dissolution pores, well Chutan
1, 7770.25m,fi. (H) Fabric dissolutionpores,wellMadong (Md)8, 4785.28m,fi. (I)Microfractures,wellMd8, 4783.72m,fi. (J) Calcite, silica,
and fluorite cements fill the pores and microfractures, well Md 8, 4786.4 m,fi.
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secondary porosity (intercrystalline dissolution pores,
hydrothermal-related, large dissolution pores, and
fracture-enlarged pores) (Figure 9D), aswell as the pre-
cipitation of Sd (Zhang et al., 2009; Zhu et al., 2015b).
Saddledolomites typicallydisplaybrightorangeCLpat-
terns (Figure 7D). Hydrothermal fluids migrate up
throughfaultsandfractures(Jiangetal.,2015;Zhuetal.,
2015b),andcarbonatesnear the faults aredissolved, and
limestonesdolomitized(Iapponiet al., 2014; Jiangetal.,
2015). Enlarged dissolution along the fractures is com-
mon (Figure 9E), and calcite, quartz, saddle dolomite,
and fluorite are precipitated (Figures 6J, 9C).

Fractured Reservoirs

Fractures are important and enhance reservoir quality
(Aghli et al., 2020). If effective fractures are devel-
oped, the four typesofdolostonecandevelop into frac-
tured dolostone reservoirs. Abundant microfractures
are detected by thin-section petrography (Figures 6I,

J; 9E, F). Cambrian dolomites experienced multiple
episodes of intense tectonic activity during the
Caledonian, Hercynian, Indosinian, and Himalayan
orogeny events (Jin et al., 2009; Zhang et al., 2009,
2018;Zhuetal., 2015b;Ngiaet al., 2019).Manyfaults
and fractures form in deep dolostone reservoirs during
multiphase tectonic activity, and the presence of frac-
tures greatlyenhancesporosity andpermeabilityof the
deepdolostone reservoirs (Zhuet al., 2015b; Lai et al.,
2021). Additionally, fractures as well as faults can act
as the conduits along which dolomitizing fluids flow
(Warren, 2000; Wilson et al., 2007; Zhang et al.,
2009; Zhu et al., 2015b; Lyu et al., 2017). The fault
or fracture-relatedfluids are responsible for the forma-
tion of hydrothermal dolostone reservoirs, and the Sd
(Guo et al., 2016), forming fractured hydrothermal
dolostone reservoirs (Luczaj et al., 2006). However,
the fractures also contribute to dissolution, and
dissolution-enlargedpores are commonalong the frac-
tures, which can be seen in thin section (Figure 9E, F).

Figure 6. Continued.
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Geologically Genetic Model

The sabkha dolostone reservoirs are associated with
theevaporite-enricheddolomicriteorveryfinecrystal-
line dolostone deposited in supratidal environments
(Jiang et al., 2018). Leaching by meteoric water cre-
atedanhydritedissolutionpores (selectivedissolution)
shortlyafterburial (Figure6B) (Zhuetal., 2015a).The
anhydrite-bearing precursor limestones below (third-
order) sequence stratigraphic boundaries were
exposedat thesurfaceandexperiencedmeteoricwater
dissolution (Zhao et al. 2014; Zhu et al., 2015a). Con-
sequently, theanhydritedissolutionpores formed, and
these pores were preserved during burial (Figure 10)
(Zhu et al., 2015a). Meteoric dissolution can also be
caused by regional uplift and karstification, which
will result in the formation of anhydrite dissolution

pores, cavities, and fractures (Figure 10) (Loucks,
1999; Jiang et al., 2015, 2018; Zhu et al., 2015a).

Seepage-reflux dolostone reservoirs are formed in
platformmargin environments (shoal and reef facies),
inwhich the fabricdissolutionpores (also selectivedis-
solution) are common (Figure 9B) (Jiang et al., 2016).
Similarly, with the sabkha dolostone reservoirs, the
pore systems (dissolution pores) of the seepage-
reflux dolostones are formed by exposure tometeoric
water shortly after deposition exposure caused by
uplift (Figure 10). Refluxing brine could reach under-
lying porous formations and cause limestone to be
dolomitized under shallow burial conditions
(JonesandXiao,2005;Ngia et al., 2019).Corrosion fab-
ricsareprobablyalteredbylate-stageregionalhydrother-
mal activity (Jiang et al., 2016). In addition to the fabric
dissolutionpores, someof the intercrystallinepores form

Figure 7. Cathodoluminescence (CL) photomicrographs showing different kinds of dolostone reservoirs in the Tarim Basin. (A) Sabkha
dolostone reservoirs, well Tazhong 1, 4305.40 m (Zhao et al., 2012). (B) Seepage-reflux dolomites showing dull-red CL patterns. (C) Burial
dolostone reservoirs, well Ma 2, 2317.60 m (Zhao et al., 2014). (D) Saddle dolomites showing bright orange, Chutan 1.
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by seepage-reflux dolomitization, and the intercrystal-
line pores will be further dissolved (Figure 10).

Burial dolomitization and intense recrystallization
during progressive burial result in the formation of
burial dolostone reservoirs, which are characteristic
of dolomites having cloudy cores but clear rims, and
coarse crystalline dolomites. Intercrystalline pores
and intercrystalline dissolution pores dominate burial
dolostone reservoirs (Zheng et al., 2012; Zhao et al.,
2014; Shen et al., 2016). Mesogenetic dissolution is
another important cause of dissolution pores in burial
dolostonereservoirs (Ehrenbergetal.,2012;Zhuetal.,
2015a). Dissolution related to hydrocarbon generated
by Cambrian source rocks and TSR could contribute
to the development of intergranular dissolution (non-
selective) pores (Figure 10) (Zhao et al., 2014;
Zhu et al., 2015a; Jiang et al., 2016). Fabric-enlarged
dissolution pores are evident because of burial dissolu-
tion (Figure 6G, H).

Hydrothermal dolostone reservoirs are mainly
distributed along the faults and related fractures,
allowing hydrothermal fluids to migrate upward
(Figure 10) (Zhang et al., 2009; Zhu et al., 2015b).
Hydrothermal-related and fracture-related vuggy dis-
solution pores are common (Jiang et al., 2016). These
fluids migrate vertically through deep faults or frac-
tures andwill continuously dissolve dolomiteminerals
and form large dissolution pores (Zhu et al., 2015b).
The rim of some dolomite crystals is serrated and

hydrothermal minerals (fluorite) fill the pores (Figure
9D, E), indicating that the dolomite has experienced
hydrothermal dissolution (Zhu et al., 2015b; Guo
et al., 2016). The hydrothermal activity in the Tarim
Basin is thought tobePermianand tohave significantly
affected the reservoir porosity in the deeply buried
Cambrian dolomites (Jiang et al., 2015; Zhu et al.,
2015a; Li et al., 2016).

Well-Log Response in Various
Dolostone Reservoirs

Sabkha dolostone reservoirs, which contain anhy-
drite dissolution pores and gypsum remnants, are
obvious in thin sections (Figure 11). The dark and
bright spots on the images are caused by conductive
anhydrite dissolution pores and resistive gypsum
nodules, respectively (Lai et al., 2020) (Figure 11).
Low-amplitude and straight natural GR curves
(<20�API) are typical of this unit, and resistivityfluc-
tuates greatly in sabkha dolostone reservoirs. Sonic
and neutron curves show little variation, but DEN
is affected by anhydrite dissolution pores (Figure
11). Sabkha dolostone reservoirs are commonly
found in the northern uplift (for instance, well
Yaha 10) or the Ordovician Yingshan Formation
(Figure 11) (Zhao et al., 2014; Shen et al., 2016).
Gypsum-bearingdolostonesmayhavepoor reservoir
quality because gypsum occurs as beds or nodules,

Figure 8. Scatter diagram showing the oxygen versus carbon stable isotopes for various dolostone reservoirs (Zhao et al., 2012, 2014;
Zheng et al., 2013).
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Figure 9. Characteristics of the lithology and pore systems of various porous dolostone reservoirs. (A) Fabric-obliterative dolomites
and dissolution pores, well Chutan (Ct) 1, 7770.56 m, Cambrian (fi). (B) Dolomites with cloudy core and clear rims, and dissolution pores,
well Zhonggu (Zg) 61 3550.42 m,fi. (C) Fluorite filling the dissolution pores, well Zg 61, 3548.6 m,fi. (D) Large dissolution pores, well Ct 1,
7769.26 m,fi. (E) Dissolution along the fracture surfaces, well Zg 582, 3603.24 m,fi. (F) Microfracture, well Zg 61, 3550.95 m,fi.
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and the gypsum is not dissolved (Figure 12). Thin-
section analysis reveals that onlyminor pores are pre-
sentwhen samples contain abundant gypsum(Figure
6C, D). The gypsum-bearing dolostone intervals are
characterized by lowGR, high resistivity (>200 ohm
m),moderate to high photoelectric absorption cross-
section index (Pe) value (>5 b/e), and high DEN
(>2.9 g/cm3) indicating low porosity (Figure 12).
Additionally, white spots recognized in the image

logs are caused by the high-resistivity gypsum (Fig-
ure 12).

Seepage-reflux dolostone reservoirs are associated
with high-energy depositional environments. The GR
curve has low amplitude (<25� API). The fabric
dissolution pores, seen in thin section, are large dissolu-
tionporesorvugs,appearingasdarkspotsthatarevisible
on image logs (Figure13).The reservoir is characterized
by medium-high resistivity (>100 ohm m) but low Pe

Figure10. Genetic models of various porous dolostone reservoirs (Zheng et al., 2013, 2015; Zhao et al., 2012, 2014; Shen et al., 2016). The
sedimentary facies model is based on the work of Du and Pan (2016). fi5 Cambrian; fi1x5 Cambrian Xiaoerbulake Formation; fi1y5
Cambrian Yuertusi Formation; Ct5 Chutan; O5 Ordovician; S5 Silurian; Si5 Silica; Yh5 Yaha.
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value (<5 b/e). Both the sonic and neutron curves are
variable in seepage-reflux dolostone reservoirs, and the
DEN is significantly reduced (Figure 13).

Burial (dissolution) dolostone reservoirs are char-
acterized by intercrystalline porosity and enlarged dis-
solution pores (vugs) in thin section (Figure 14). Like
seepage-reflux dolostone reservoirs, the burial dolo-
stone reservoirs were deposited in high-energy deposi-
tionalenvironments.Theserocksarecharacterizedbya
low-amplitudeGR curve (<15� API) and low Pe value
(<5 b/e) (Figure 14). The three porosity logs (highAC
values, high CNL values, but low DEN) give the

signature of relatively high reservoir quality (10%
porosity is high for Cambrian dolostone reservoirs in
Tarim Basin). Porosity is particularly evident in the
CNL log. Resistivity values are dependent on fluid
properties (i.e., high resistivity if they are hydrocarbon
bearing, or low resistivity if they are water bearing)
(Figure 14). In addition, dark spots on image logs are
associatedwith dissolution vugs (Lai et al., 2020) (Fig-
ure 14).

Hydrothermal dolostone reservoirs are also recog-
nized by dissolution pores (vugs) as well as minerals
such as fluorite and saddle dolomites filling the pores,

Figure17. Calibration of predicted dolostone reservoir types with core and thin section (well Zhonghan 1). AC5 acoustic porosity; CAL5
caliper; CNL5 neutron porosity; DEN5 bulk density; FMI5 fullbore formationmicroimager; GR5 gamma ray; Pe5 lithodensity; RLLD5
deep resistivity; RLLS5 shallow resistivity.
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as is similarwith theburial dolostone reservoirs. Image
logs exhibit dark spots (vugs) (Figure 15). Addition-
ally, hydrothermal dolostone reservoirs are commonly
associated with the fractures (conduits for hydrother-
mal fluid flow) (Figure 15), and the presence of frac-
tures is an important part of enhancing dissolution
(Laubach, 2003; Zeng and Li, 2009; Lai et al.,

2018b). Compared with the burial dolostone reser-
voirs and seepage-reflux dolostone reservoirs, the
hydrothermal dolostone reservoirs display distinctive
GR log response (medium to high amplitude) (>30�

API) caused by the presence of radioactive minerals
(fluorite) (Figure 15). In addition, the sonic, neutron,
and density curves indicate good reservoir quality.

Figure 18. Prediction of dolostone reservoir types using well logs (well Zhonggu 582). AC 5 acoustic porosity; CAL5 caliper; CNL5
neutron porosity; DEN5 bulk density; FMI5 fullbore formationmicroimager; GR5 gamma ray; Pe5 lithodensity; RLLD5 deep resistivity;
RLLS5 shallow resistivity.
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Resistivity values are generally low (<100 ohm m)
(Figure15)unless theporesarehydrocarbonsaturated.

Fractures are easily recognized in the conven-
tional well logs as well as image logs (Khoshbakht
et al., 2012; Lai et al., 2017b, 2018a, b; Lyu et al.,
2016). Rapid decrease in the resistivity, increase in

the AC traveltime, and a decrease in DEN are all
characteristics of fractures (Khoshbakht et al.,
2009; Zeng, 2010; Aghli et al., 2016; Lai et al.,
2017b; Nian et al., 2017). In addition, the fractures
are recognized as sine waves (conductive fractures
appearing as dark sinusoidal waves) on image logs

Figure19. Predictionofdolostone reservoir typesusingwell logs (well Zhonggu61).Note that highpermeability canbeencountered in low-
porosity layers becauseof thepresenceof fractures. AC5 acoustic porosity; CAL5 caliper; CNL5 neutronporosity; DEN5 bulk density; FMI
5 fullbore formation microimager; GR5 gamma ray; Pe5 lithodensity; RLLD5 deep resistivity; RLLS5 shallow resistivity.
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(Kosari et al., 2015; Wilson et al., 2015; Lai et al.,
2018b) (Figure 16).

Well-Log Prediction of
Dolostone Reservoirs

Table 1 lists the characteristics of the four types of
dolostone reservoirs (Figures 11–16).

Thewell Zh1 is chosen to test the establishedpre-
dictable model, and the predictable results are

calibrated with the core and thin-section data (Figure
17). Layer 1 (marked as 1) in Figure 17 is characterized
by low-medium GR, medium CNL values, but low
DEN, and the dark spots on the image logs suggest
vugs, so all logs suggest the presence of burial dolostone
reservoirs. Vugs are documented by core and thin-
section study, which is typical of burial dolostone
reservoirs (Figure 17). In addition, layer 2 (marked as
2), which is characterized by low GR, low DEN, high
CNL, and medium-high resistivity, is a typical

Figure 20. Cross section of the well Zhonghan (Zh) 1-Zhongshen (Zg) 5 and related image logs. The cross-section map is based
on the work of petroleum exploration and development of PetroChina Tarim Oilfield Company. Each image log stands for 2 m thick.
fi1x 5 Cambrian Xiaoerbulake Formation; fi2a 5 Cambrian Awatage Formation; fi3xq 5 Cambrian Xiaqiulitage Formation; C 5
Cambrian; O1y

3-4 5 third and fourth members of Ordovician Yingshan Formation; O3l 5 Ordovician Lianglitage Formation; O3s
5 Ordovician Sangtamu Formation; O1p 5 Ordovician Penglaiba Formation; O1y

1-2 5 first and second members of Ordovician Ying-
shan Formation; S 5 Silurian.
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seepage-reflux dolostone reservoir and has minor dark
spots. When calibrated with the thin sections, it is con-
firmed that only fabric dissolution pores are presented,
indicating that the layer 2 is a typical seepage-reflux
dolostone reservoir (Figure 17).

The following discussion demonstrates how the
distribution of porous dolostone reservoirs in wells
Zg 582 and Zg 61 can be recognized by comprehen-
sive analysis of conventional well logs (GR, three
porosity logs, and resistivity log) and image logs.
Vugs in the well Zg 582 are evident in cores and
thin sections, and two types of dolostone reservoirs
(burial dolostone reservoirs and fractures) are pre-
sent. The porous dolostone is plotted with conven-
tional well and image logs (Figure 18). Burial dolo-
stone reservoirs are present as dark spots on the
image logs. The GR curve has low variability and
is straight. The three porosity logs show the favor-
able reservoir quality in the porous intervals, and
the medium to high-resistivity logs suggest hydrocar-
bons are present (Figure 18). Fractured dolostone
intervals are recognized by rapidly decreasing resis-
tivity and increasing AC transit time. Dark sinusoidal
waves on the image logs indicate the presence of
fractures. Dark spots are observed along the fracture
surface on the image logs, indicating dissolution
along the fracture plane, further enhancing reservoir
quality (Figure 18). In the interval X599.0 to
X626.0 m, there are six intervals in which the
dolostone reservoirs exist. These intervals flowed
hydrocarbons at the rate of 18.9 m3/day (118.9
BOPD) and natural gas at the rate of 51,078 m3/
day (1800 MCFGD).

Intercrystalline pores and dissolution-enlarged
pores (vugs on core observation) (Figure 6E, F) were
identified in thin sections inwell Zg 61.Hydrothermal
fluorite (Figure 9C) is present in the pores. Analysis of
well logs identifies three types of dolostone reservoirs
(Figure 19). The first is burial dolostone reservoir, in
which thepore systemsaredominantly intercrystalline
(dissolution) pores. The burial dolostone reservoir is
distributed in the top intervals of Zg 61, and well-log
responses in these zones are similar to the burial dolo-
stone reservoir in Figure 18. The second is hydrother-
mal dolostone reservoir, which has both large dissolu-
tionpores and fracture-enlargedpores (Figures 6J; 6C,
D) that show up as large dark spots on the image logs,
and the three porosity logs have higher porosity values
(Figure 19). The degree of dissolution along fracture

planes isalsohigh, resulting inthedevelopmentof frac-
turedhydrothermaldolostone reservoirs (Luczaj et al.,
2006). Four dolostone reservoir intervals are recog-
nized in the interval fromX550.0 toX565.0m.These
zonesflowedoil at the rate of 3.08m3/day (19BOPD)
and natural gas production of 728 m3/day (25.7
MCFGD) (drawdown pressure: 0.534 MPa [77.45
psi]; choke width: 6 mm). The intervals, in which no
“reservoir types” are divided in Figures 18 and 19, are
tight dolostone with little or no porosity.

The cross section Zh 1-Zs 5-Zg 58 (interpreted
from seismic profile) reveals that the wells Zg 58 and
Zs 5 are drilled in the faulted zones, and the dolo-
stones are highly fractured, forming fractured dolo-
stone reservoirs. The image logs confirm that the frac-
tures are abundant inwells Zg 58 andZs 5; conversely,
dark spots, orvugs, aremuch less common(Figure20).

Well Zh 1 had not been drilled into the faulted
zones. However, igneous rocks and related hydro-
thermal fluids intruded into the surrounding rocks.
Therefore, the dolostones contain abundant vugs
and fabric-enlarged dissolution pores, which are
commonly detected by core and thin sections (Fig-
ure 17), and they are also evident in the image logs
(Figure 20). Therefore, the dolostone types in well
Zh 1 are mainly burial dolostones and hydrother-
mal dolostones, but there are no evident fractures
encountered (Figure 20).

CONCLUSIONS

Six types of dolomite are recognized in termsof crystal
size and presence of residual grains, includingD1,D2,
D3 (oolites, intraclasts),D4,Cd, and Sd. Four types of
porousdolostonereservoirsarerecognizedintheCam-
brian dolostones of Tarim Basin identified by thin sec-
tion, CL analysis, and isotopic composition. These are
sabkha dolostones, seepage-reflux dolostones, burial
dolostones, and hydrothermal dolostones. The pore
systems include anhydrite dissolution pores, intercrys-
talline pores, intercrystalline dissolution pores, fabric
dissolution pores, and microfractures.

Understanding the dolomitization process thr-
ough depositional facies analysis, sequence stratigra-
phy, burial dissolution, hydrothermal geofluids, and
tectonic evolution builds a geological genetic model
of the four dolostone reservoirs and fractures. The
various dolomite reservoir types can be recognized in
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well logs by calibrating image logs and conventional
well logs with core study and thin sections. The distri-
bution of porous dolostone reservoir types and frac-
tured dolostone reservoirs in wells of the Tarim Basin
is confirmed by high hydrocarbon flow rates in the
wells.
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