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Abstract: In past decades dynamic programming, genetic algorithms, ant colony optimization algorithms
and some gradient algorithms have been applied to power optimization of gas pipelines. In this paper a
power optimization model for gas pipelines is developed and an improved particle swarm optimization
algorithm is applied. Based on the testing of the parameters involved in the algorithm which need to be
defined artificially, the values of these parameters have been recommended which can make the algorithm
reach efficiently the approximate optimum solution with required accuracy. Some examples have shown
that the relative error of the particle swarm optimization over ant colony optimization and dynamic
programming is less than 1% and the computation time is much less than that of ant colony optimization

and dynamic programming.
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1 Introduction

Compressors provide the pressure necessary to transport
natural gas via a pipeline. The prime mover consumes much
power when driving the compressor. So power optimization is
very important for improving the operational economy of gas
pipelines.

The objective function of power optimization is non-
linear and non-convex. Many constraints are non-linear.
It is difficult to solve this kind of optimization problems.
Dynamic programming (DP) (Wong and Larson, 1968a;
1968b; Peretti and Toth, 1982; Carter, 1998; Rios-Mercado
et al, 20006), artificial intelligence (Sun et al, 2000) and some
gradient algorithms (Percell and Ryan, 1987; Wu et al, 2000)
have been applied to power optimization of gas pipelines.
These methods are effective. However, the application range
of traditional algorithms is limited and the computation
time is long. Particle swarm optimization (PSO) algorithm
is a colony intelligence calculation technique developed by
Kennedy and Eberhart in 1995. It is inspired by the social
behavior of organisms such as bird flocking (Yu et al, 2009).
The PSO belongs to evolution algorithms. Like genetic
algorithm it also begins with some random solutions and
searches for the optimum solution by iterative computation.
The PSO also evaluates solutions by the fitness function, but
it does not have the process of crossover and mutation. The
PSO searches for the optimum solution by tracking the best
positions of individual and colony after evolution for one
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generation. Because the convergence of PSO is fast and the
accuracy is high, the researchers pay much attention to the
PSO. It is one of the most popular optimization algorithms
presently (Van den Bergh and Engelbrecht, 2006; Liu et al,
2007; Perez and Behdinan, 2007; Chen et al, 2010).

In this paper an improved PSO is introduced. Because
the colony information is very important, after evolution for
one generation, the best position of the particle swarm will
be sought again n times around itself. If a better position
can be found, it will be the new best position of the particle
swarm. If no better position can be found, the best position
of the particle swarm will not be changed. It is good for
the algorithm to avoid local solutions effectively and the
accuracy can be improved. The improved PSO is applied to
the power optimization of gas pipelines. Some parameters
of the algorithm are tested in order to get the most fitting
values for the power optimization. Some cases show that the
computation time can be significantly saved compared to ant
colony optimization (ACO) and DP.

2 Power optimization model of gas pipelines

In power optimization of a gas pipeline (as shown in
Fig. 1), the objective function is minimizing the total energy
consumed by all the compressor units and the decision
variables are the discharge pressures of compressor stations.
The constraints include hydraulic constraints and thermal
constraints of gas flow in the pipe, the characteristic equations
of compressors, the maximum allowable discharge pressure
and the minimum allowable suction pressure of compressor
stations, the minimum allowable delivery pressure at the
delivery terminal, the flow rate and speed limits of every
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online compressor, etc. The problem can be formulated as
follows:
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where num_sta represents the number of compressor stations
along the pipeline system; J represents the number of online

Compressor station

compressor units in each compressor station; Q is the volume
flow rate in the pipeline, m’/s; m is the gas adiabatic index;
R is the gas constant, kJ/(kmol-K); p; is the density of the
natural gas at the suction condition of station i, kg/m3; Z is
the gas compressibility factor; 7 is the gas temperature at the
suction condition of the stations, K; H,, is the adiabatic head,
kJ/kg; n, represents the adiabatic efficiency of compressor
k in station i; 7, represents the efficiency of the gas turbine;
E,;. is the low calorific value of gas, kJ/m’; p, and p, are the
discharge pressure and the suction pressure of a compressor
station, Pa; p, is the end pressure of a pipe segment between
compressor stations, Pa; pgiey 1S the supply pressure at
the delivery terminal, Pa; p,.. is the maximum allowable
discharge pressure of a compressor station, Pa; p,.., is the
minimum allowable suction pressure of a compressor station,
Pa; p,.in 18 the minimum allowable delivery pressure at the
delivery terminal, Pa; f represents the resistance of pipe
segments between compressor stations; a,, a,, a,, by, by, b,
are coefficients of characteristic equations for a centrifugal
compressor; n,, and n, represent the rated speed and the
actual speed of compressor k in station i, respectively, rpm;
Noinge and 7., are the minimum speed and the maximum
speed of compressor & in station i, rpm; O, and Q.. , are
the surge flow rate and the stonewall flow rate of compressor
k in station i, m’/s.

Delivery

terminal

Fig. 1 A gas pipeline system
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3 PSO algorithm

3.1 Traditional PSO algorithm

A particle swarm containing M particles flies in D
dimensional space. X,(x,,X,,,X;, ", X,,) represents the

position of particle i in the space. V,(V;, Viy, Vizo Vi)
represents the velocity of particle i. P,(Py»> Pias Pis»**> Pip)
and Pe(Pgs Pyr> Pe3s s Pyp) are the best positions of
particle i and the particle swarm presently. The velocity
and position of particle i in the space are adjusted by the

following equations (Du and Li, 2008).

Vit =WVig i At (P — xid,t—l) +orn (pgd, -1~ xid,t—l)
(2)
xid,r = xid,t—l + vid,r (3)

where i=1,2,---,M; d=1,2,---,D; t represents the
evolution generation up to now; w represents the weight
factor; ¢, and ¢, are the acceleration constants; r, and r, are
the random numbers between [0, 1].

3.2 An improved PSO algorithm

Because the traditional PSO may converge to a local
optimum solution and the accuracy is poor (Jiang et al, 2007),
an improved PSO is introduced here.

From Eq. (2) it can be seen that the particles are updated
by tracking the best positions of individuals and the colony.
So the two best positions are very important for the algorithm.
The acceleration constants ¢, and ¢, represent the biggest
step flying to the best positions of individuals and the colony,
respectively. The influence of individuals and the colony on
the particles is decided by them. If ¢,=0, the particles only
have colony experience, the convergence will be very fast
and may obtain a local solution. If ¢,=0, the particles do
not have colony experiences, the particles fly in the space
independently, the optimum solution can not be obtained.
The colony information is very important for the algorithm
to obtain the global solution. So in the improved PSO after
every iterative computation the best position of the particle
swarm will be sought again around itself. If a better position
can be found, it will be the new best position of the particle
swarm. If no better position can be found after searching for
n times, the best position of the particle swarm will not be
changed. The searching process around p, is as follows:
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Pea = Pga(1+ (2rand —1)m) 4)

m= mima + mmin (5)
N

a =exp(-30x (;) ) (6)

where rand is a random number between [0, 1]; ¢ represents
the evolution generation up to now; T represents the set total
evolution generations; S belongs to [1, 20]; m,,, can be set at
0.01; m,, will be defined artificially.

In the early stage, a is big, the searching step is large, so
the convergence is fast and is good for the algorithm to avoid
the local solution. In the late stage, a is small, the searching
step is small, the searching around the best position of the
colony is accurate, so it is good for the algorithm to increase
the optimization accuracy.

4 Testing about parameters of the algorithm

The improved PSO is coded by FORTRAN90. Some
parameters of the algorithm need to be set artificially and
the values of the parameters should be fit for the problems to
be solved. A case of gas pipeline power optimization with a
simple topological structure is taken to test the parameters.

Fig. 2 is the topological structure of the gas pipeline.
The gas pipeline is composed of three compressor stations
and one delivery terminal. The gas source pressure is 6.1
MPa at the suction of station 1. For every compressor station
the maximum allowable discharge pressure is 10 MPa, and
the minimum allowable suction pressure is 4.7 MPa. The
minimum allowable delivery pressure is 4 MPa at the end
of the pipeline. The design flow rate is 32.7x10° m’/d. The
pipeline is 1,016 mm in outside diameter, 14.6 mm in wall
thickness and 0.01 mm in pipe roughness. The objective
function is minimizing the total power of all the compressor
units and the decision variables are the discharge pressures of
all the compressor stations.

Station 1 Station 2 Station 3 Delivery terminal

200 km 250 km 180 km

Fig. 2 Topological structure of the gas pipeline

The parameters required to test include ¢, ¢, n, and my,.
According to the properties of the algorithm, the best possible
value of these parameters can be defined. With ¢,, ¢, € {0.2,
04,0.6,0.8,1,2,3}, n€ {5, 10, 20, 30, 40, 50}, m;, € {0.5,
1, 2, 3, 4, 10}, the optimal objective function values will be
observed to select the best combination of these parameters.

Firstly we can choose n=40, m,,=1, when ¢,=c,=0.6, 0.8,
1, 2 the optimal objective value obtained by the algorithm is
smallest, it equals 43.45 MW. ¢,=1, ¢,=1 can be defined.

With ¢=1, ¢,=1, m;,=1, when n=30, 40, 50 the optimal
objective value obtained by the algorithm is smallest, it equals
43.45 MW. To pursue the shortest computation time #=30 is
defined.

With ¢,=1, ¢,=1, n=30, when m,,=0.5, 1, 2, 3, 4 the
optimal objective value obtained by the algorithm is smallest,
it equals 43.45 MW.

So the best combination of these parameters can be chosen
as ¢;=1, c,=1, n=30, m;,=1.

5 Case analysis

Fig. 3 is the topological structure of the gas pipeline. The
pipeline is composed of five pipe segments connected in
series by five compressor stations and one delivery terminal.
The basic data of the pipeline is shown in Table 1.

Station 1 Station 2 Station 3 Station4  Station 5 Delivery terminal

Fig. 3 Compressor stations over the gas pipeline

Table 1 Basic data for the pipeline

(1.4824,1.7154, 1.4613,

Pipe segment resistances f 2.1601,2.3296)10°

Gas constant R, kJ/(kmol-K) 8.314
Gas source pressure, MPa 5
Maximum allowable discharge 72
pressure p,..., MPa '
Minimum allowable suction pressure p,,,, MPa 4.7
Minimum allowable delivery pressure p,;,,, MPa 4.2

According to the PSO, the optimal operation scheme for
the flow rate of 1.15x10° kg/h can be obtained.

Table 2 indicates that the discharge pressures of all
stations except Station 5 are 7.2 MPa, the maximum discharge
pressure, and the discharge pressure of Station 5 only needs
to assure that the pressure at the delivery terminal equals the
minimum allowable delivery pressure.

Table 2 Optimal operation scheme

Discharge pressure, MPa Total gas consumption

m’/d

Station 1 Station 2 Station 3 Station 4 Station 5

7.2 7.2 7.2 7.2 6.4 3.278x10°

To test the performance of the PSO the optimization
results of five flow rates obtained by PSO are compared with
ACO and DP.

Table 3 shows for 5 stations the relative error of PSO over
ACO and DP is less than 0.5%, but the computation time is 8
to 9 times less than that of ACO and more than 60 times less
than that of DP.

When the stations are increased to 11, the optimization
results of three algorithms are shown in Table 4.

Table 4 shows for 11 stations the relative error of PSO
over ACO and DP is less than 1%, but the computation time
is 4 to 7 times less than that of ACO and about 100 times less
than that of DP.
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Table 3 The optimization results of three algorithms for 5 stations

Computation time, s Gas consumption, 10° m’/d

Flow rate

kg/h PSO ACO  DP PSO ACO  DP
9.5x10° 24 200 1727 1353 1350 1350
1.00x10° 23 203 1170 1849 1853  1.852
1.05x10° 23 199 1446 2226 2232 2230
1.10x10° 23 195 1544 2679 2.690  2.689
1.15x10° 23 185 1766 3278 3283 3282

Table 4 The optimization results of three algorithms for 11 stations

Computation time, s Gas consumption, 10°m’/d

Flow rate
kg/h PSO ACO  DP PSO ACO  DP
9.5x10° 107 721 10332 3882  3.864  3.856
1.00x10° 106 509 11533 4831 4839 4831
1.05%10° 106 477 11779 5801 5764 5751
1.10x10° 106 445 11335 678 6833  6.826
115%10° 106 418 11150 8181 8145 8134

When the stations are increased to 17, the optimization
results of three algorithms are shown in Table 5.

Table 5 The optimization results of three algorithms for 17 stations

Computation time, s Gas consumption, 10° m’/d

Flow rate

kgh  pso  Aco  pp PSO  ACO DP
95x10° 166 1251 28262 6385 6371 6363
1.00x10° 163 1114 30405 7788 7842 7810
1.05x10° 162 1069 29886 9261 9289 9274
1.10x10° 163 977 28560 10958 11.010  10.968
115x10° 162 649 27522 12.940  13.024  12.958

Table 5 shows for 17 stations the relative error of PSO
over ACO and DP is less than 1%, but the computation time
is 4 to 8 times less than that of ACO and 170 times less than
that of DP.

6 Conclusions

In this paper an improved PSO algorithm is applied to
gas pipeline power optimization. The optimization results
obtained by the algorithm differ from those from ACO and
DP by less than 1%, but the computation time can be saved
greatly compared with ACO and DP. This will enable us to

design a fast and effective decision aid tool to assist operators
to make appropriate decisions within a shorter time. For
different kinds of optimization problems the parameters
involved in the algorithm need to be tested, the values
adopted are those that can get better results. This research
encourages us to apply PSO to gas network optimization and
other difficult optimization problems.
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