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Abstract: Compared with vertical and horizontal wells, the solution and computation of transient
pressure responses of slanted wells are more complex. Vertical and horizontal wells are both simplified
cases of slanted wells at particular inclination, so the model for slanted wells is more general and more
complex than other models for vertical and horizontal wells. Many authors have studied unsteady-state
flow of fluids in slanted wells and various solutions have been proposed. However, until now, few of the
published results pertain to the computational efficiency. Whether in the time domain or in the Laplace
domain, the computation of integration of complex functions is necessary in obtaining pressure responses
of slanted wells, while the computation of the integration is complex and time-consuming. To obtain a
perfect type curve the computation time is unacceptable even with an aid of high-speed computers. The
purpose of this paper is to present an efficient algorithm to compute transient pressure distributions caused
by slanted wells in reservoirs. Based on rigorous derivation, the transient pressure solution for slanted
wells of any inclination angle is presented. Assuming an infinite-conductivity wellbore, the location of
the equivalent-pressure point is determined. More importantly, according to the characteristics of the
integrand in a transient pressure solution for slanted wells, the whole integral interval is partitioned into
several small integral intervals, and then the method of variable substitution and the variable step-size
piecewise numerical integration are employed. The amount of computation is significantly reduced and
the computational efficiency is greatly improved. The algorithm proposed in this paper thoroughly solved
the difficulty in the efficient and high-speed computation of transient pressure distribution of slanted wells
with any inclination angle.

Key words: Arbitrary inclination, slanted well, transient pressure behavior, efficient algorithm, variable
step-size, piecewise integration

1 Introduction

Many authors have studied unsteady-state flow of fluids
in slanted wells and various solutions have been proposed.
Early in the 1970s, Cinco et al (Cinco, 1974; Cinco et al,
1975a; 1975b) investigated the unsteady-state pressure
distribution created by a slanted well and presented a solution
in real space. However, all their derivations are done in real
space and the computation of transient pressure distribution
according to the final solution is time-consuming. Moreover,
the effects of wellbore storage and skin factor could not be
easily incorporated in the solution. Besson (1990) studied the
performance of horizontal and slanted wells in anisotropic
reservoirs. Khattab et al (1991) presented pressure transient
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responses for single and multiple-layered reservoirs. Chen
et al (1995) investigated the pressure distribution created
by a slanted well with elliptical inner boundary conditions.
Lu (1997) studied the transient pressure behavior of slanted
and horizontal wells in layered reservoirs with crossflow.
Various solutions for pressure responses of slanted wells were
proposed in the published literature. However, as pointed
out by Ozkan and Raghavan (2000), all the solutions are not
particularly useful because of numerical difficulties. They
presented a new computationally efficient solution to compute
pressure distributions caused by inclined or slanted wells,
but they only presented the final forms of the expression and
did not provide the derivation process. What is more, the
computational efficiency of their new solution sometimes
is not so satisfactory, and even big errors might occur when
it is applied to calculating limiting cases. Harmohan et al
(2007) designed numerical simulation studies to investigate
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the pressure transient behavior of horizontal and slant wells
that intersect high permeability layers sandwiched between
two lower permeability layers. Fair (2008) studied pressure
transient behavior of horizontal wells by adapting the slant
well solution to layered media. However, the numerical
difficulties still had not been solved successfully.

In addition to the above, some Chinese authors also have
studied the pressure transient behavior of slanted wells. Liao
(1998) proposed a mathematical model to describe the pseudo
steady state flow toward a slanted well in dual porosity
reservoirs. Wang et al (2005) pointed out that the pressure
response of an inclined multiwell system can be obtained
by superposing the pressure response of each inclined well
in different coordinate systems, and they investigated the
pressure distribution of an inclined multiwell system based
on this method. In 2006, Wang et al (2006a; 2006b) discussed
the computational efficiency and the multi-solution feature
of the slanted well test model. Li et al (2009) studied the
pressure transient behavior of inclined wells with complex
boundaries based on the source function and the Newman
product method.

It can be recognized that most authors mainly concentrate
on the construction of various well test models and neglect
the practical problem when applying theoretical models to
field production, i.e. the computational efficiency of the
traditional algorithm is low and the accuracy is poor.

The focus of this work is on computational issues. Based
on rigorous derivation, a transient pressure solution for
slanted wells is presented. Assuming an infinite-conductivity
wellbore, the location of the equivalent-pressure point is
determined. More importantly, according to the characteristics
of the integrand in a transient pressure solution for slanted
wells, the whole integral interval is partitioned into several
small integral intervals, and then the methods of variable
substitution and variable step-size piecewise numerical
integration are employed. The amount of computation
is greatly reduced and the computational efficiency is
significantly improved. The algorithm proposed in this paper
thoroughly solves the difficulty in the efficient and high-speed
computation of transient pressure distribution of slanted
wells.

2 Basic assumptions and mathematical
model for slanted wells

Fig. 1 shows a schematic for a slanted well in a
laterally infinite reservoir. The top and bottom boundaries
are impermeable. The formation thickness is 4. k, and k,
represent the permeability in the horizontal and vertical
directions, respectively. The length of the slanted well is L,
The definition of the coordinate system is shown in Fig. 1.
The axis of the slanted well is in the X-Z plane. The midpoint
of the slanted well is on the Z axis. The inclination angle
of the well, 6, is measured from the positive Z-axis in the
anticlockwise direction. The midpoint of the slanted well is
located at an elevation z,,,,.

The basic assumptions are as follows:

1) The slanted well produces at a constant rate g;

2) Single phase flow of slightly compressible fluid, with a

Fig. 1 Schematic of the slanted well model
with impermeable top and bottom boundaries

constant compressibility;

3) Darcy flow in the reservoir;

4) The pressure is uniform initially throughout the
reservoir and is equal to p;;

5) Gravitational and capillary effects are negligible.

3 Transient pressure responses of slanted
wells in anisotropic reservoirs

3.1 Continuous point-source solution in anisotropic
reservoirs

Ozkan and Raghavan (1991a; 1991b) derived the
instantaneous point-source solution for infinite porous media
in the Laplace domain with the generalized Dirac delta
function. Based on the result, the continuous point-source
solutions for infinite porous media in the Laplace domain
could be obtained by applying the principle of superposition.
Then the method of images and Poisson’s summation formula
were applied to getting the continuous point-source solutions
for laterally infinite reservoirs with impermeable top and
bottom boundaries. The continuous point-source solution is
given as follows:

Ap = 2‘15{; {KO (rD\/E) + 22 K, (r,a,)cos B, cos 5,1}
()

n=1

The terms in Eq. (1) are defined as follows:
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where k, is the permeability in the horizontal direction, m*;
k, is the permeability in the vertical direction, m*; L is the
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reference length of the system, and here L=0.5L,, m; ¢ is the
Laplace transform of ¢ ; ¢ is the production rate from the
continuous point source, m’/s ; Ap is the Laplace transform
of Ap with respect to the dimensionless time #y,;, and its
definition is given in Eq. (2), Pa; 7, is the dimensionless time
and its definition is given in Eq. (3), dimensionless; Ap is the
pressure difference in the reservoir, i.e., Ap=p,—p, Pa; p; is the
initial reservoir pressure, Pa; B is the formation volume factor,
dimensionless; y is the oil viscosity, Pa's; 4 is the formation
thickness, m; s is the Laplace transform variable with respect
to #,,, dimensionless; x, y and z are distances in the x, y and z
directions, respectively, m; x,, y,, and z, are the locations of
the point source in the x, y and z directions, respectively, m;
Z,m 18 the location of the well center (midpoint) in the vertical
direction, m.
The Laplace transform of Ap is given as follows:

Ap = J Ap exp(=sty, )d 1, @)
0

The dimensionless time 7, is defined as follows:

Ly
P gucr

€)

where 7 is the production time, s; ¢ is the porosity, fraction; C,
is the total compressibility, Pa™.

3.2 Slanted line-source solution in anisotropic
reservoirs

The slanted well in Fig. 1 can be assumed as a
slanted line-source well. The transient pressure response
corresponding to the fluid withdrawal from a line-source
can be obtained by integrating Eq. (1) along the axis of the
slanted well. Thus, we will have

__ (4B S
Ap = ! erkfh {KO (rD\/;)+2n§:l K, (r,a,)cos f, cosgn}dl
“)

where [ is the integration path of line source; ¢is the
production rate per unit length, m*/(s-m); § is the Laplace
transform of ¢; d/ is the differential element of the line,

di=y(dx,) +(dz, )" m.

The computation of the line integration in Eq. (4) is not
convenient, and it can be reduced to the integration of x,:

L,

—Lsinf - 2
Ap = 2 I 984 1+ dz,

L 2mkh dx,

——%sin@
2

®)
{KO ((rD\/E) + ZZw:KO (rya, )cos B, cose, } dx,

0<6<n/2 in the whole paper unless special statements are
made.
Because x,,= x,/L, so Eq. (5) can be transformed into:

Lisinﬁ _ 2
A — e GBulL L+ dz,
=) men\ T dx,

——Ysin6@
2L

(6)
{KO (er/E) + 2iK0 (e, )cos B, cosgn}dwa

It can be seen from Fig. 1 that on the inclined line source
the following conditions must be satisfied:

z, =z, —X, cotd (7)

w

Yy =0 (®)

where z,,, is the location of the well center in the vertical
direction, m.

In the distorted space, the dimensionless form of Eq. (7) is
as follows:

'wa = tan 0' (ZWD - Zme ) (9)

with

tan@'= k—v tan @
kh

With Eq. (7), Eq. (6) can be changed into:

(10)

Eq. (11) can be written in the following form: W
Ap =Ap, + Ap, (12)
The expression of the first item Ap, is:
o GBuL
Ap, —ij. gznkhhcsceKO(er/;)dwa (13)
~sin

qBuL csc@{i[(o (rye, )cos B, cos gﬂ}dwa

n=1

(14)

3.3 Line source solution with uniform flux wellbore

Theoretically speaking, it is more reasonable to treat the



Pet.Sci.(2012)9:212-222

215

slanted wellbore as an infinite-conductivity line source than
as a uniform flux line source. However, the wellbore pressure
solution of an infinite-conductivity slanted line source cannot
easily be obtained. Studies have shown that by choosing an
appropriate point at which the wellbore pressure response
is computed, the wellbore pressure solution of an infinite-
conductivity line source can be approximated by the pressure
solution of a uniform flux line source. So, we here first
investigate the transient pressure solution of a uniform flux
wellbore.

Assuming that the fluid withdrawal along the wellbore is
uniformly distributed, we have

(15)

=—= (16)

Let L=L,/2, and with Egs. (8) and (16), Eq. (13) can be
transformed into:

sin @
_
Ap = [ K, (\/(xD - X0 )2 +yp2s |dx,, (17)
—sin@
with
= qBu csch.
2k h

Similarly, with Eqs. (8), (9) and (16), Eq. (14) is
transformed into:

sin @ ©
Aﬁ2:i J |:ZK0(§(XWD’yD)an)COSﬂncosgn:|dwa
n=l1
(18)

—sin@

with

f(waﬂyD):\/(xD _wa)2 +y02

wa
& —ppland’ P
n —ho
Egs. (12), (17) and (18) denote the pressure drawdown
at any point in the reservoir created by a slanted well along
which the fluid withdrawal is uniformly distributed. One can
get the expression of transient pressure response of a slanted
well in real space by the method of inversion. In real space
the pressure dropdown is the function of space variables (i.e.,
Xp, Vp and zp) and time £,.

3.4 Bottom hole pressure of infinite-conductivity line
source (inclined well)

Theoretical analyses and practices have shown that the
fluid flow in the slanted wellbore at the perforated interval is

pipe flow, and the pressure drop in this process is negligible
compared to that caused by fluid flow in the porous medium.
That is the reason that we treat the slanted wellbore as an
infinite-conductivity line source. However, it is rather difficult
to directly establish a mathematical model to describe the
pressure drop created by a slanted well in a reservoir based
on the infinite-conductivity assumption. Studies have shown
that by choosing an appropriate point at which the wellbore
pressure response is computed, the wellbore pressure solution
of an infinite-conductivity line source can be approximated
by the pressure solution of a uniform flux line source. The
appropriate calculation point is defined as the equivalent-
pressure point.

At present, there are two methods of obtaining the bottom
hole pressure of the infinite-conductivity inclined well
from the response of a uniform flux inclined well. One is to
integrate the bottom hole pressure of the uniform flux inclined
well along the well trajectory. This method usually needs us
to regard the wellbore as a simple line source to avoid doing
the surface integral and area-weighted average in order to
obtain the bottom hole pressure of the infinite-conductivity
inclined well. This is because the pressure of the hole wall
will be non-uniform if the influence of well radius is taken
into account. This method is inaccurate due to neglecting
the influence on pressure of the well radius. In addition,
doing the surface integral will affect the computation speed.
Another method is the boundary integral method. This
method divides the line source well into many discrete
line elements and utilizes two relationships to establish an
algebraic equation group to obtain the pressure response of
the infinite-conductivity inclined well. One relationship is
that the pressure on the node of every discrete line element is
identical. Another relationship is that the sum of flux of every
discrete line element is equal to the total flux.

Cinco (1974) proposed a method to determine the
position of the equivalent-pressure point. He regarded the
inclined well as a cylinder with a fixed radius and length,
not an inclined line source. Then he calculated the pressure
at different positions with the aid of a computer to find the
point at which the pressure is approximately equal to the
average pressure of the whole wall of the cylinder. The found
point is called the equivalent-pressure point. Evidently, if the
equivalent-pressure point is found, the calculated amount will
significantly decrease. With extensive computation Cinco
found there are such two points on the elliptic circle which
is the intersecting line of any horizontal plane intersecting
the inclined well cylinder. The pressure at any one of the two
points is approximately equal to the average pressure of the
elliptic circle. The two points are located at angles of 90° and
270° around the well axis, respectively. For example, the two
points are A" and N’ on the top elliptic circle, respectively,
and the two points are D and N on the bottom elliptic circle,
respectively. In the line 4'D, there are these two points G and
G' on any one of which the pressure is approximately equal to
the average pressure of the line 4'D. So the average pressure
of the whole wall of the cylinder can be approximately
represented by the pressure at point G or G'. Point G or G’
is the equivalent-pressure point that we seek to find. Their
positions are showed as follows:
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If z,,,= 0.5A, then we have:
. 0.5h k_h B i k_h
o Liw kV LW kV
2

As Fig. 2 illustrates, B'E is the axis of the slanted well.
BE=AD=CF=L,, /A'B'C'=/ABC=/DEF =90" and
A'G'=DG=0.3L,. Based on previous studies (Cinco, 1974;
Ozkan and Raghavan, 2000) in the cylindrical coordinates,
in this paper, if we reason by analogy, the position of the
equivalent-pressure point can be determined. The point
G or G' in Fig. 2 is the equivalent-pressure point, and the
coordinates of the equivalent-pressure point are:

(19)

x=203L sind (20)
y=r, 21
z=z, F0.3L, cosb (22)

where 7, is the radius of the inclined well, m.

Fig. 2 Schematic of the equivalent-pressure point
of the infinite-conductivity slanted well

The coordinates of the equivalent-pressure point in the
distorted space are:

+ i + i
%, = +0.3L, sind _ +0.6L, sind 40.6sin0 (23)
L, /2 L,
— rW e
Yp = E wD (24)
2
+0.3L, sind 20.65i
- =L—wsm - =£;“9+ - 25)
TWtaHH' tan

Combining Egs. (23)-(25) and Egs. (12), (17), (18), the
bottom hole pressure drawdown Ap ~can be expressed as
follows:

Aﬁw = Aﬁwl + Aﬁw2 (26)

with

sin @

Ap,, :;_1 J- K, |:\/E§(xwo):|dwa

—sin@

27

sin@ ©
Ap,, = J {ZKO(ang(wa))cosﬂn cosgn}dwaQS)

—sing L n=1

E(xyp) = \/(0.6sin0 —xp ) 7

3.5 Computational considerations

It can be seen from Eqs. (27) and (28) that the
integral interval [—sind, sinf] contains the point 0.6siné.

The item\/(0.6sing_wa)2+er in the integrand

Ko[x/;\/(o.6sin9—wa)2+er} ranging between r,,
and (1.6sin 9)2 +r£D . It should be noted that a small

variation of argument x may cause a big variation of function
K(x). For example, K,(1)=0.42, while K(50)=3.41E-23 and
K,(100)=4.66E-45. Thus, if we want to obtain results accurate
enough with use of the conventional numerical integration
method, the integral interval must be divided into many small
segments which will cause problems in the computational
efficiency of integration. In this case the time that is
consumed to compute the wellbore pressure response of
slanted wells is far beyond people’s tolerance. However, there
is very limited published work available on this topic. Some
scholars have realized the complexity of the computational
issues in computing pressure responses of slanted wells and
have done some exploratory investigation, but a satisfactory
solution to this problem has not yet been found.

In this paper, according to the characteristics of the
integrand in a transient pressure solution for slanted wells,
the authors present a computationally efficient algorithm.
Concrete steps of the algorithm are as follows:

3.5.1 Partitioning integral interval and variable substitution

The integral interval in Eq. (27) can be partitioned as
follows:

0.6sin @

29)

We choose 0.6sinf as the point of divergence because
when x, varies from —sinf to 0.6sinf the value of
(0.6sin0 —x,, )2 is monotonously decreasing while when
x,p varies from 0.6sin to siné the value of (0.6sin @ —x, )’
is continuously increasing. Namely, when x,,,=0.6sind, the
value of (0.6sinf—x,,,)" is smallest. Hence we choose 0.6siné
as the point of divergence.
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Let X, =0.6sin6—x,

} Ko (Vo \En + 1 a5

C,
v
l 2S 1.6sin @
—0.4sin 6
+ J. KO(\/Ew/iwD2+r\jD)dwa}
0
c 1.6sin @
:2_]{ J. Ko(\/;\]yctz +r\5D )dng
S o

0.4sin @

+ I csc&KO(\/;\litzﬂ”jD )deD:|

0

(30)

_ We define the dimensionless pressures Pyip> Pyop and
Pyp as follows:

_ 2nk h
wip = ———Ap,,, 31)

qB

_ 2nk. h _

Pyop . Ap,, (32)
qBu

ﬁwD = 27tkhh pr (33)
qBu

Obviously, the dimensionless bottom hole pressure p,p
satisfies

Pup = Puinp + Pup (34)

Thus

B CSC@ 1.6sin @ \/» — 5 _

Pwip :2_S I Ko( S Xyp +er)dwa (35)
0

0.4sin@
v [ Ko(ﬁ,/wauer)dwa}
0

Similarly, we can get the following expression:

1.6sin@| o _
8p = {ZKo(fawD)an)cosﬂncosn}dfm

0

n=1

0.4sinf| o _ , _
+% _[ |:ZK0 (é(iwD)an)cosﬂn cosy, }dwa
0

n=1

(36)
with

g()’EWD) = \/itz + r\leD

0.6sin 6-x,
7/” _ tan 9/ wmbD

hD

0.6sin 0+x

— . T Zww
y'= tan &

hD

With the definition of dimensionless pressure Pp , we
have

B gl.ﬁsinﬁ ®© _ _
Pyop = = I |:ZK0 (é:(wa )an)cosﬂn cosy, }deD
0 n=1

CSC00.4sin¢9 0 _ V1
[ 12K (e, )eos B, cosy, (i,
n=1

G37)

+

0

3.5.2 Numerical integration with variable step sizes

First, the integral intervals [0, 1.6sind] and [0, 0.4sinf] are
partitioned into N small segments with variable step sizes. r,,
ry, I3 13, ..., and ry denote the N +1 end points created by the
partition.

Obviously, r,= 0 and r,= 1.6sind (or 0.4sind).

Let

h =4,
r=rd=a,d

n=rd= aoa’2 %)

_ _ N-1
vy =ty d=a,d

where d is the common ratio.
Given a constant a,, then we have

Iy _ govn

y (39)

0

The logarithm expression of Eq. (39) is

In EQJ = (N ~1)In(d) (40)

a

So we can obtain

d=exp {ln (ij /(N - l)}

If the total number (V) of small segments is given, the
value of d can be computed with Eq. (41), thus the value of
can be calculated. Then we have

(41)

[ /a5 =3 | FE)dRg @)

In each small integral segment [r,, r;,], the Gauss-
Legendre, Simpson or Runge-Kutta methods can be
employed to calculate the integration. Egs. (35) and (37) can
be efficiently computed with the algorithm proposed in this
paper, then the dimensionless bottom hole pressure of slanted
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wells com be oltained with Exy, (34}, =i, pregaurn wasiphin Fig-
Calculation practice has shown that the tofal number of g W A, et S Boop-sira

the small integral segmenis (i.¢, 8) partitioned by the variable & oy

step=size numerical mtegration proposed m this paper is much :! - e i

kess than that of the equal step-size numerical infegration with
the same accuracy. The algorithm proposed in this paper can
greatly save the compuistional time and the computational
pecuracy is also improved.
.53 Comparison of the computation anount
In order to verify the computativnal accuracy and

efficiency of the method called piecewise integration with
vatiable siep sizes proposed in this paper. we compared it
with the conventional piecewise mbegration with equal step
sizes, The parameters contrasted imclude the segmentfation
amount, the punber of limes for calculating the numerical
integration and the total time consumed in caleulation,
etc. Here we choose a horizontal well for computation
and comparison because the horizonial well 15 & pariicular
inclined well whose pressure response & familiar to people.
Fig. 3o and Fig. 3b show a comparison of typical curves
calculated by the two methods, Fig. 3a indicates that
when the variable sigp-size piecewise infegration is used
snd the number of segmentations “a " only equals 4, the
compuiaiional accuracy is already high enough. However
when the equal step-zize plecewise integration is used and the
number of segmentations “n," equals 4, the computational
accuracy 13 very low, and when the number of segmentations

m™ equaks 8 the compuiational accuracy is improved a Hitke
but is still low, Fig. 3b shows that for the equal siep-size
plecewise infegration, when the aumber of segmentations

“m reaches 16, the accuracy is cmpmlive i the one when
the number of segmentations *m," is 4 for the variable mp-
size piecewise infegration, The comparison of

results by the two methods is listed in Table 1. From Table
I we ¢an see the number of segmentations and the number
of tmes For calculating the numerical inlegration by this
method proposed in this paper iz only 1/4 of which by
the conventional method, and the total Hme consumed in
cakculation is only 1/3.7 of which consumed in calculation by
the conventional method, 20 the variable step-size piecewise
integration proposed in this paper may significantly reduce
the compulational amount and save a gread deal of Hme.,

—=— =i, wariable Shao-aim
—x— e, il -

—— n,=8, equal step-size
Pressure e i

% w pana®
Jv :ﬂl'b="===ﬂif,“|.;lil::‘.‘“zﬂﬂ'w!l‘lﬂ:ﬂ“ﬂ 1L

E a

=

W o 10’ ' Hr oW w o 1’

Fig. 3a A oomparison of computational results obiained by e variable
step-size piccewine Imtegration amd ihe cqual siep-size piccowise
intepration, respantively (Cp=20, 5-0.5, k=20 m. L_~BH m. &, k=05,
=Ll m, I-90°)

W Wt W iF ir W

Fig. 3B A conaparison of computational results obtained by the
varjable stcp-plee phecewise integration apd the oqual swep-size
pievewis: inbegration, respectively {,-20, 0.5 20 m, £ —500 m.
& =08, r, =001 m, 580

Table 1 A comparimn of computation amount and otal tose consomed i
calcwlanion by the varishl: sep-size pleoewise itegration sod the cqual stop-
Ciompatational methad o Hy  Hy

Vormble dcp-siye incgratien| 4 6 [0 3 oS0 )M =0
Equal sigp-siee integration | 16 &0 [0 3 056) 24480 =322
Rari L4 L)Ll 14 4 al:dT

L m T3

In this paper &, is the total number of segmentationg along
the inclined well, #,=24: 1, ia the number of the calculated
points; &, is the sum of terms practically selected in the
infinite saries of Eq, (37) when calculating; &, is the som of
terms selected in the series of Stehfest nomerical inversion
equation; i, is the total number of times of the integration
when n, points arc caleulated {not by numerical inversion),
R 2NN =R, ey, iy, 13 the fotal number of times of the
integration when x, points are calculated (by numerical
inversion), #,={2N+2N<n,) 228 N ig the number of
sepmentations along the half length of the inclined well; T is
the tota] time consnmed in calenlation.

3.6 Consideration of wellbore storage amd skin effects

The dimensionless bofiom hole pressure Peo mentioned
above is derived under the assumption of no wellbone storage
and skin effects, while the effects of wellbore sforage and
skin factor can be eagily incorporated in the pressure solution
with Eg,. (43) which was given by Van Everdingen and Hurst
(1949), The expression is derived by combining Duhamel’s
principle and the definitions of wellbore storage coefficienmt
and skin facbor,

= .r.p'}+.5'
P g+ Cpy 5[50, + 5)

where Pupy and P.p, are the dimensionless bottom hole
pressure which takes or not the wellbore storage and skin
factor into account, respectively: 5 is the skin factor; Cp,
is the dimensionless wellbore storage coefficient, Gy, is
expressed as follows:

C
Oy =—————
o 2mhgC L

(43)

(44)
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where  is the wellbore siorape coefficient, m'/Pa; C, is the
todal compressibility, Pa''; L is the reference length, m, and
here L=0.5L_ sccording the definition of L in the section
becfioec Eq. (17).

When the angle of inclination varies the range of L
alzo will vary. Eq. (44) indicates that Cp is the function
of the reference leagth L (ie. 0.50 ). To make sure the
dimensionless wellbore siorage coefficient has the same
expreasion under different well length L, so that it be able
to be measnred in the same scales, here we define another
dimenzionless wellbore storage cocfiicient O

Co= L 3
2nhglr,

From Eq. (45) we may see the definition of the
dimensionless wellbore storepe coefficient O, i based on the
well radius F . bnt not 1he balf-length 0.3L of the inclined
well. The definition of Cj is same with the traditional
definition of dimensionless wellbore storage cocfhicient for
vertical wells.

With Eq. (44) and Eq. {45), we obtain

(43)

S
Co=Cy [EE-] =Cyrdy (46)

Eq. (43) is transformed into the following expression:

B m ip_p +8
542 Cort(sp,, + 5)

(47)

4 Analyses of type curves and flow
mechanisms

The type curves of slanted wells with any inclination
angle in real space can be plofied with use of the Stehfest
nuneerical inversion algorithe (Stehfiest, 19707 Calcalation
practice has proved thaf the method proposed in this paper
can gignificantly save the computation time and improve the
computational accuracy.

Here we present some results to show the accuracy,
efficiency and the practical use of the alporithm mentioned
shove.

When drawisg the typical curves, the X-coordinate is 1o/
g, Y-coordinate is the dimensionless pressure p gy or the
dimensionless pressure derivative P, Io/Co.

In onder to avoid the influence of the angle of inclination
and the inclined well length, the dimenzionless Gme #;also &
defined based on the well radius r,. The definition of &, is as
Tollows:

r'[l -—i-.f—:
#'rcl rl
However from Eq. (2} we may see that the Laplace
transformation of the pressure solwton in this paper is with
respect W0 fp. 50 Pogy, A0d P oy “fo/Cp Which are caleulated
directly by numerical inwersion is corresponding to fy It
seems that &, creates a difficolty for ws, but in practice the

(43)

difficulty can be overcome. The method of resolving it is as
follows:

Apcording previous definitions, we obtain the following
relationship betwesn i, Cpand £y, !

%3
o, =[%] '{fnanJ'Cn=rm:'{ru'rcn}'cﬂ (49)

When giving the value of (/C,. the value of f, may
be obtained with Eq. (49). Then by numerical inversion,
the valnes of prgy and Py fp/Cy responding o £y may be
obtained. So the values of p o, and p_g, 7/'C, responding
to 15/ Cp may be obtained. The difficulty is overcome
immediately.

4.1 Several special cases and comparison of pressure
responses calculated by two metheds

4.1.1 Fully peneirating vertical well |#—0® and [_=k)

The model proposed in this paper cannot be numerically
evaluated for vertical wells {i.e. 8=07). It is, however, possible
to obiain the pressure responses of vertical wells by letting
&=¢g, while £ is sufficienty small. L, equals & for ventical
wells. Fig. 4 shows a comparison of pressure responses of a
vertical well calculated by the method proposed in this paper
and with commercial software, respectively. Fig. 4 shows
that the flow regimes identified in the ransient response arc
wellbore storage, transitional flow, and radial flow. The resulis
obtained by the two methods match. This indicates that for
vertical wells the pressure response caleulated by the method
proposed in this paper is very reasonable and reliable.

Though the pressure responses compared here are for
vertical wells, the method proposed in this paper used the
same pressure solution amd employed the same means of
numerical integration for vertical, horizontal and inclined
wells, the caleulation method does not change as the angle
of inclination varies, and so the calculation accuracy will not
be influenced by the change of angle of inclination. Namely
since the calculstion accuracy is very high for vertical wells,
the calenlation accuracy will still be high for those wells with
any anghe of inclination.

+ Pressure, method proposed in this paper
——Pressure, commercial software

+ Derivative, method proposed in this paper
—— Derivative, commercial software

Wellbore
‘ storage !
‘ i Transitional |

flow
i 0t L i 1F i il e i lig i

Flg. 4 A compariton of the presture regponses of 3 verneal well
calculated by the metissd proposed in this peper and the eommeroisl
poftwane, reipostively (L=i=20 m, Cp=20, F-0.5, k, the=006, ro=0.0mm,
==}

2 % % %

Radial flow

3

4,12 Horlizontal well (=907}

Fig. 5 shows a comparison of the pressure responses of
& horizontal well calcolated by the method proposed in this
paper and the commercial software, respectively,
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Fig. § indicaies that the results obtained by the two
methods are in good agreement. This indicates that for
horizental wells the pressure responses calculated by the
methed proposed in this paper is also reasonable and relinble.
The flow reginies (Fig. 5) mchude: (1) a pure wellbore storage
period whose pressure and detivative curves are straighi lines
of unit slope; (2) o transitional Aow period whose pressure
derivative curve appears a “hump™; (3] an early radial flow
peried whose pressure derivative curve is a horizental line:
(4) an intermedinte lingar flow period whose pressure and
derivative curves bave the common slope of “0.5%; (5} a laie
peeudo-radial flow period, and in this petiod the pressure
denvative curve is o horizontal line of which the height is 0.5,
¢ Praisoni. st peopossd in des papi

——  Derivative, commercial software
4) M
‘ ")

Mm@ e

01 ' 10 10’ 10" w 10° 0

Flg. 5 A comparison of the pressure responses of a horeontal
well caleylsted by the method proposed i this paper and with
commercial software, meprctively (Cp=20, 5=0.5, h=20 o, &,/
=t py=ih, | L=800 m, S0

Fig. & shows the effect of b, on pressure responses of
horizontal wells obtained by our algorithm. The bigger the
value of fiy is, the higher the pressure derivalive corve in
the early radial flow period ig, and the height of pressore
derivative curve is about kg4, The results obtained by our
alporithm are in good agreement with those published in the
literature (Ozkan et al, 199 1a; 199 1h; 20005

h,=0.4, pressure —— f,=0.4, derivative
—— hy=0.2, pressure —%—h,=0.2, derivative
— h,=0.1, pressure —— h,=0.1, derivative

Fig. & Effect of by an pressure respomses off horizomdal wells
obtsimed by the algoriden propossd o this paper (Cy—20, 5-0U5,
oS, T, =l Sy, 00

4.1.3 Partially penetrating vertical well (#—0° and
0=L <k}

Fig. 7 shows a comparison of the pressure responses of &
partially pedetruting verfical well calculated by the method
proposed in this paper and the source function method,
respectively. and the perforation degree Lk is 0.5, From
Fig. 7 we see there 18 an apparent spherical flow peniod in the
whole flow process of o partially penectrating vertical well.
The pressure derivative curve in the spherical flow period is &
stmaight line of a slope of 0.5, which reflects that the well s
partially penctrated.

= Pressure, method proposed in this paper
Pressure, source function method
. Derivative, method proposed in this paper

Derivative, source functlon method

3

Spherlcai
flow i

8

Poge il g LMy
8

i
=

w0 ' w10 W W

s

Fig. T A camparison of the pressare respomses of 8 partially penetrating
vertical will calculsed by the metbod proposid in this paper and by souxs
fonction method, respectively (Cu=20, $=1, k=20 m, L =k =10 m. & &=0.1,
ro=01 M theg—ell, 8—F, £ T=0.5)

The above comparizon and analysis proved that the
calculation accursey of the method proposed in this paper is
high, and the calculation results are also reliable.

4.2 Slanted wells with any inclination angle (0°<f<9%0°
and 0<L <h/cosd)

Fig. 8 shows a comparizon of the pressore responses of
slanied wells with an inclinaion angle of 85* obtained by the
algorithm proposed in this paper and commercial software,
respectively.

10 S Pressure, method proposed in this paper
l;f — Pressure, commercial software
] y — Derivative, method proposed in this paper
=/ 1 . Derivative, commercial software
'!2 0
it

i6* 10" ' i’ 10° i ' 1 1

Fig. B A comparssos of dee pressue: responsds of an indined well caleulned
by the method proposed in dhis peper and & commercial softwure package,
raspectivily (0, =20, 5=0.5, fr=20 m. L, =220 m, & =06, r,=0.1 m, (=357}

The comparison indicates thaiz 1) The pressure responde
curves obtained by both methods have similar festures, In
the sarly period, there is a short radial flow period followed
by a long trangitional flow behavior and then & linear flow
at later times. 2) The curves in the transitionsl and livear
flow periods obtained by the two means have some minor
difference, In the previons discussion we bad already made
some analysis and known that thoogh the pressure responses
compared here are for vertical welly, the method proposad in
this paper used the same pressure solution and employed the
same means of numerical integration for vertical, horizontal
and inclined wells, the caleulation methad does not change as
the inclination angle varies, and so the calculation accuracy
will not be significantly influenced by the change of the
inclination angle. Mamely since the calculation sccuracy is
very high for verfical wells, the caleulation accuracy is still
high for those wells with any inclination angle. Hence there is
some difference in that the accuracy of the method proposed
in this paper is higher fhan that of the commerclal soffware. In
addition, the commercial software is not ahle to compute the
pressure response of inclined wells with £5°-00°inclination
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angle, but the method proposed in this paper is able to
compute it and is more flexible than the commercial software.

Fig. 9(a) is the pressure responses of inclined wells with
70°-90°inclination angle calculated by the method proposed
in this paper.

1-L,=58 m, 6 =70"
3-L,=115m, 6 =80"

2-L,=77m, 6 =75"
4-L,=229 m, 6 =85"

A

o 5-L,=382m, 6=87° 6-L,=600 m, 6 =90
O
=
=
;ém
Q H
'C ZBZ
c -1
@ 10
T
3 E
Q D
A BB
10*
10” 10" 10° 10’ 10° 10° 10°  10° 10° 10
t/Cy

Fig. 9a Pressure responses of inclined wells with 70°-90°inclination angle
calculated by the method proposed in this paper ( C,=20, S=0.5, /=20 m, k,/
/,=0.6, r,=0.1 m)

There are six groups of curves in Fig. 9a and each of
them corresponds to a different inclination angle and well
length. From top to bottom, the inclination angle increases
from 70° to 90°. When the inclination angle 6 equals 90°, the
transitional flow period between the early radial flow and the
linear flow is the shortest. When 6 is much smaller than 90°
the transitional flow period apparently becomes long. For
example, both DD, and FF, are longer than BB,. The smaller
the 6 is, the shorter the linear flow period is, for example
F\F,<D\D,<B\B,.

Fig. 9b is the pressure responses of inclined wells with
0°-60°inclination angle calculated by the method proposed in
this paper. When 0 is smaller than 60° the linear flow period
is indistinct, and when 6 is close to 0° the radial flow in the
early period and the linear flow in the middle period will
vanish completely to display a single radial flow period in
the late period because the radial flow direction in the early
period is the same as the flow direction of the radial flow in
the late period. In the late radial flow period, the pressure
derivative displays a horizontal line of height 0.5.

Pressure

Puon and waH"tD/CD

t/Cy

Fig. 9b Pressure responses of inclined wells with 0°-60°inclination
angle calculated by the method proposed in this paper

Fig. 10 shows the influence of inclination angle on the
pressure response of inclined wells with the same well
length. From Fig. 10 we see that the smaller the inclination

angle is, the shorter the early radial flow period is, such as
AB\<AB,<AB,, and the longer the transitional flow period
between the early radial flow and the linear flow is, such as
B,C>B,C>B;C.

Pressure

Derivative

Pup and waH"tD/CD

t/Cp

Fig. 10 Influence of the inclination angle on the pressure response of
inclined wells with the same well length (L,=115 m, C,=20, $=0.5, #=20
m, k,/k,=0.6, r,=0.1 m)

5 Conclusions

1) Based on rigorous derivation, a transient pressure
solution for slanted wells is presented. Assuming an infinite-
conductivity wellbore, the location of the equivalent-pressure
point is determined.

2) According to the characteristics of the integrand in
the transient pressure solution for slanted wells, the whole
integral interval is partitioned into several small integral
intervals, and then the method of variable substitution and
the variable-step size numerical integration are employed.
The amount of computation is greatly reduced and the
computational efficiency is greatly improved. The algorithm
proposed in this paper thoroughly solved the difficulty in the
efficient and high-speed computation of transient pressure
distribution of slanted wells with any inclination angle.

3) Several special cases are computed by the model
and the efficient algorithm proposed in this paper, such as
horizontal wells, fully penetrating vertical wells and partially
penetrating vertical wells. The results are compared with
those published in the literature and are in good agreement. In
addition, the pressure responses of slanted wells with different
inclination angles are computed and analyzed. Results show
that the model and the algorithm proposed in this paper is
computationally efficient with high accuracy.

Note: The authors can provide the efficient calculation
program written in Visual Basic if required.

Acknowledgements

The authors are grateful for financial support from
the special fund of China’s central government for the
development of local colleges and universities—the project
of national first-level discipline in Oil and Gas Engineering,
the National Science Fund for Distinguished Young Scholars
of China (Grant No. 51125019) and the National Program on
Key fundamental Research Project (973 Program, Grant No.
2011CB201005).

References

Besson J. Performance of slanted and horizontal wells in an anisotropic



222

Pet.Sci.(2012)9:212-222

medium. Paper SPE 20965 presented at the European Petroleum
Conference, 21-24 October 1990, The Hague
Chen G, Tehrani D H and Peden J M. Pressure distribution created by
a slanted well with elliptic inner boundary condition. Paper SPE
29121 presented at the SPE Symposium on Reservoir Simulation,
12-15 February 1995, San Antonio
Cinco H. Unsteady-state pressure distributions created by a slanted
well or a well with an inclined fracture. Ph.D Dissertation. Stanford
University, Stanford, California. 1974
Cinco H, Miller F G and Ramey Jr H J. Unsteady-state pressure
distribution created by a directionally drilled well. Journal of
Petroleum Technology. 1975a. 27(11): 1392-1400
Cinco H, Ramey Jr H J and Miller F G. Pseudoskin factors for partially
penetrating, directionally drilled wells. Paper SPE 5589 presented at
the Fall Meeting of the Society of Petroleum Engineers of AIME, 28
September-1 October, 1975b, Dallas
Fair P S. Horizontal well pressure transient analysis for Gulf of Mexico
reservoirs (adapting the slant well solution to layered media). SPE
104480, 2008
Harmohan G, Rayed A, Mohammed BI, et al. Pressure transient behavior
of horizontal and slant wells intersecting a high permeability layer.
Paper SPE 105616 presented at the SPE Middle East Oil and Gas
Show and Conference, 11-14 March 2007, Kingdom of Bahrain
Khattab H A, Yeh N S and Agarwd R G. Pressure transient behavior of
slanted wells in single and multiple-layered systems. Paper SPE
22730 presented at the SPE Annual Technical Conference and
Exhibition, 6-9 October 1991, Dallas
Liao X W. Discussion of a slanted well test model in dual porosity
reservoirs with pseudo steady state flow. Petroleum Explorationand
Development. 1998. 25(5): 57-61 (in Chinese)

LiW, Lu D T, Wang L, et al. A transient pressure solution for inclined
wells with complex boundaries. Well Testing. 2009. 18(6): 1-5 (in
Chinese)

Lu P. Horizontal and slanted wells in layered reservoirs with crossflow.

MS Thesis. Stanford University, Stanford, California. 1997

Ozkan E and Raghavan R. New solutions for well-test-analysis
problems: Part 1—Analytical considerations. SPEFE. 1991a. 6(3):
359-368

Ozkan E and Raghavan R. New solutions for well-test-analysis
problems: Part 2—Computational considerations and applications.
SPEFE. 1991b. 6(3): 369-378

Ozkan E and Raghavan R. A computationally efficient transient-pressure
solution for inclined wells. SPE Reservoir Evaluation& Engineering.
2000. 3(5): 414-425

Stehfest H. Numerical inversion of Laplace transform. Communications

of the ACM. 1970. 13(1): 47-49

Van Everdingen A F and Hurst W. The application of the Laplace
transformation to flow problems in reservoirs. Transaction of
American Institute of Mining, Metallurgical, and Petroleum
Engineers (Trans. AIME). 1949. 186: 305-324

Wang D S, Nie L X, Li Z M. Study of the analytic method for the well
testing of deflecting wells. Journal of Xi’an Shiyou University
(Natural Science Edition). 2006. 21(5): 51-54 (in Chinese)

Wang D S, Nie L X, Li Z M. Well test analysis by using a well
drawdown curve in a multiple-deviated well system. Journal of Oil
and Gas Technology. 2006. 28(1): 95-97 (in Chinese)

Wang D S, Zhang L, Nie L X, et al. A computationally efficient transient
pressure solution for an inclined multiwell system. Journal of
Hydrodynamics. 2005. 20(4): 527-530 (in Chinese)

(Edited by Sun Yanhua)



