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Abstract: In the time-frequency analysis of seismic signals, the matching pursuit algorithm is an 
effective tool for non-stationary signals, and has high time-frequency resolution and a transient structure 
with local self-adaption. We expand the time-frequency dictionary library with Ricker, Morlet, and 
mixed phase seismic wavelets, to make the method more suitable for seismic signal time-frequency 
decomposition. In this paper, we demonstrated the algorithm theory using synthetic seismic data, and 
tested the method using synthetic data with 25% noise. We compared the matching pursuit results of 
the time-frequency dictionaries. The results indicated that the dictionary which matched the signal 
characteristics better would obtain better results, and can reflect the information of seismic data 
effectively. 
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1 Introduction
Time-frequency analysis of seismic data is very important 

in processing and interpretation, such as measurements 
of seismic attenuation, detection of hydrocarbon, and 
improvement of resolution. The short time Fourier transform 
(STFT) is used widely in time-frequency analysis, but due 
to the limitation of Heisenberg’s uncertainty principle, it is 
difficult to consider the needs of both time and frequency 
resolution. Liu et al (2011) proposed the local attributes 
time-frequency analysis method by shaping regularization 
on the basis of the conventional Fourier transform, and 
applied it successfully to detecting low-frequency shadows 
and ancient river sediments. Wavelet transform is also used 
widely in time-frequency analysis. Chakraborty and Okaya 
(1995) compared the difference between wavelet transform 
and Fourier transform in time-frequency analysis, and they 
pointed out that wavelet transform can improve the spectral 
resolution. Stockwell et al (1996) proposed the S transform. 
This method can overcome the shortcomings of STFT, at the 
same time it introduced multi-resolution analysis of wavelet 
transform. It has good time-frequency analysis capability, but 
it is limited in practical applications due to the fixed form of 
the basic wavelet function. 

Matching pursuit has high time-frequency resolution and 

a transient structure with local self-adaption, and is used in 
many areas (Du and Shen, 2006; He et al, 2010; Fan et al, 
2009; Wang, 2007; 2010; Zhang et al, 2010). It has the ability 
to extract more signal characteristics and is not affected by 
the noise in signals. It can overcome the shortcomings of 
traditional Fourier transform, windowed Fourier transform, 
wavelet transform and S transform (Li, 2006; Liu et al, 2004b; 
Xu, 2000; Zhang et al, 2006; Zou et al, 2004). In the seismic 
exploration, the time and frequency dictionaries of matching 
pursuit are limited. Castagna et al used matching pursuit to 
process 2D seismic signals, and further used the method to 
detect low-frequency shadows associated with hydrocarbons 
(Castagna et al, 2003; Nguyen and Castagna, 2000). Liu et al 
used matching pursuit based on Morlet and Ricker wavelet 
dictionaries to do time-frequency decomposition (Liu et 
al, 2004a; Liu and Marfurt, 2005). Wang and Yang (2010) 
used the improved Ricker wavelet dictionary to sparsely 
decompose the actual seismic signals. However, most of 
the actual seismic wavelets are mixed-phase, and matching 
pursuit needs to scan the whole time and frequency domains 
of the signal, so the atom dictionary must be over-complete in 
order to decompose and reconstruct the signal best. Therefore, 
we should add some new dictionaries which are mixed-phase 
to match the time and frequency characteristics of seismic 
signals better.

2 Matching pursuit
The principle of matching pursuit is to decompose any 
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signal into a linear expansion of waveforms that belong to 
a redundant dictionary of functions. These waveforms can 
match the signal structure best. The signal is decomposed into 
waveforms selected from a time-frequency atom dictionary, 
which is obtained by extension, translation, and modulation 
of signal window functions. By adding the Wigner 
distribution to the selected atom dictionary, we can obtain 
a time-frequency energy distribution. Because there are no 
interference terms in the distribution, we can obtain a clear 
picture in the time-frequency plane. 

The L2(R) is the Hilbert space of complex valued function. 
The time-frequency atom dictionary is built by extending, 
translating, and modulating the signal window function 
such as 

noise in signals. It can overcome the shortcomings of traditional Fourier transform, windowed Fourier 

transform, wavelet transform and S transform (Li, 2006; Liu et al, 2004b; Xu, 2000; Zhang et al, 2006; 

Zou et al, 2004). In the seismic exploration, the time and frequency dictionaries of matching pursuit are 

limited. Castagna et al used matching pursuit to process 2D seismic signals, and further used the method 

to detect low-frequency shadows associated with hydrocarbons (Castagna et al, 2003; Nguyen and 

Castagna, 2000). Liu et al used matching pursuit based on Morlet and Ricker wavelet dictionaries to do 

time-frequency decomposition (Liu et al, 2004a; Liu and Marfurt, 2005). Wang and Yang (2010) used 

the improved Ricker wavelet dictionary to sparsely decompose the actual seismic signals. However, 

most of the actual seismic wavelets are mixed-phase, and matching pursuit needs to scan the whole time 

and frequency domains of the signal, so the atom dictionary must be over-complete in order to 

decompose and reconstruct the signal best. Therefore, we should add some new dictionaries which are 

mixed-phase to match the time and frequency characteristics of seismic signals better. 

2 Matching pursuit 
The principle of matching pursuit is to decompose any signal into a linear expansion of waveforms 

that belong to a redundant dictionary of functions. These waveforms can match the signal structure best. 

The signal is decomposed into waveforms selected from a time-frequency atom dictionary, which is 

obtained by extension, translation, and modulation of a signal window function. By adding the Wigner 

distribution to the selected atom dictionary, we can obtain a time-frequency energy distribution. Because 

there are no interference terms in the distribution, we can obtain a clear picture in the time-frequency 

plane.  

The 2 ( )L R  is the Hilbert space of complex valued function. The time-frequency atom dictionary is 

built by extending, translating, and modulating the signal window function such as 2( ) ( )g t L R . We 

suppose ( )g t  is real, continuously differentiable and 2
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The function of mixed-phase seismic wavelet (MSW) (Gao 

and Yang, 2007) can change the phase and amplitude of the 
wavelet through regulating the four parameters so as to match 
the seismic signal. Most of the deconvolution processing 
is based on the seismic wavelet being time-invariant and 
its phase being zero. Actually the seismic wavelet is time-
variant, and most are mixed phase wavelets. So, using MSW 
to build a mixed phase time-frequency dictionary is very 
important for practical applications. The wavelet function is 
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density of f  in time-frequency plane ( , )t  , and there are no crossing terms. The time-frequency 

energy distribution ( , )Ef t   is a sum of single ( )g t  energy distribution (Mallat, 1993).  

3 Multi-wavelet time-frequency dictionary construction 
Though matching pursuit has high resolution of time and frequency, it also has different time and 

frequency characteristics in the processing of different signals. So the decomposition results will be more 

accurate when we select the dictionary which best matches the signal. Based on the Gabor dictionary, we 

select several wavelet functions to expand the dictionary. These wavelet functions are selected according 

to the characteristics of seismic signal, so they have the same time and frequency characteristics as the 

seismic signal, and then the new dictionary can match the seismic signal better. We can use the Wigner 

Ville distribution function of the wavelet to build a multi-wavelet time-frequency dictionary. It can 

further improve the time-frequency resolution of the signal, and the decomposed atoms can maximally 

retain the original time-frequency characteristics.  
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The function of mixed-phase seismic wavelet (MSW) (Gao and Yang, 2007) can change the phase 

and amplitude of the wavelet through regulating the four parameters so as to match the seismic signal. 

Most of the deconvolution processing is based on the seismic wavelet being time-invariant and its 

phase being zero. Actually the seismic wavelet is time-variant, and most are mixed phase wavelets. So, 

using MSW to build a mixed phase time-frequency dictionary is very important for practical 

applications. The wavelet function is 
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In these equations, t is time of the atom, and   is 
frequency of the atom. We take the MSW dictionary as 
an example, and decompose the signal which is generated 
by convoluting the mixed phase wavelet and reflection 
coefficient using the Gabor, Morlet and Ricker wavelet 
dictionaries and MSW dictionary respectively. Fig. 1(a) is 
the signal, (b), (c), (d) and (e) are time-frequency spectrums 
which are the decomposition results of the signal using the 
Gabor, Morlet and Ricker wavelet dictionaries, and MSW 
dictionary respectively.

Because the signal has the same time-frequency 
characteristics as the MSW dictionary, so the best 
decomposition result should be achieved using the MSW 
dictionary in theory. Comparing (b), (c), (d) and (e), we can 
see that all of them can accurately reflect the time locations 
of signal components. (e) has the most concentrated time-
frequency energy and the highest time resolution. The second 
is (d), and its energy distribution is poorer than (e) from 500 
ms to 600 ms. (b) and (c) have poorer time-frequency energy 
distribution and lower time resolution than (d) and (e). After 
analysis, we conclude that in decomposition of the signal (a) 
we should select the MSW dictionary for the best result.
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Fig. 2 (a) The original signal which is generated by mixed phase wavelet (S/N ratio is 2), (b) comparison of 
the original signal without noise (red) and reconstructed signal using the MSW dictionary (blue)
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Fig. 2 is the processing result of a simulated signal 
using this method. (a) is the simulated signal which is 
generated by mixed phase wavelet and its S/N value is 
two. We use the MSW dictionary to decompose this noisy 
signal and choose first ten atoms which have stronger 
energy to reconstruct the signal. (b) is the comparison of 
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Fig. 1 Comparison of time-frequency spectrums using different dictionaries. (a) synthetic seismic signal using mixed phase wavelet, 
(b) decomposition result using Gabor wavelet dictionary, (c) decomposition result using Morlet wavelet dictionary, (d) decomposition 
result using Ricker wavelet dictionary, (e) decomposition result using MSW dictionary 

the reconstructed signal (blue) and original signal without 
noise (red). Their cross-correlation value is 0.86, and the 
average residual of every point is 1.8×10-5. That is to say, 
the reconstructed signal through decomposition by the 
MSW dictionary can effectively reflect the original signal 
without noise.
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4 Applications
In order to verify the applicability of this method in 

analysis of seismic wave attenuation, we built a seismic 
record model which is generated by the mixed phase wavelet 
(Fig. 3). 

There is a sand formation in this model, whose thickness 
is 10 m, and velocity is 3200 m/s. The quality factor of the 
traces from 11 to 25 which indicate the gas-containing sand 
body varies from 30 to 5 evenly. From trace 25 to trace 40, 

the quality factor increases to 30 evenly. Both ends are the 
tight sandstone, and the quality factor is 150. The upper and 
lower formations are mudstone, the velocity is 2400 m/s, 
and the quality factor is 150. We add 25% Gaussian random 
noise in the model (the noise frequency band is 0-120 Hz). 
The reflection layer F is equivalent to the reflection near 
the bottom of the sand, and there are 50 seismic traces. No 
denoising method is used in calculating the seismic attributes 
of the model.

Fig. 3 Synthetic seismic record with a sand formation about 10 m thick
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Fig. 4(a), (b), and (c) are time-frequency energy profiles 
obtained from matching pursuit decomposition using the 
Morlet wavelet, Ricker wavelet, and MSW dictionaries of the 
signal in Fig. 3 respectively. From Fig. 4(a) and (b), we can 
see that the overall signal energy changes irregularly because 
the time-frequency dictionary does not match the wavelet 
of the seismic data, and the influence of noise is significant. 
The time resolution is low, and the sand layer in Figs. 4(a) 
and (b) is thicker than that in the true model. It is difficult 
to recognize the actual information of the sand layer. From 
Fig. 4(c), we can see that the top and bottom interfaces of 
the sand layer are clear, and the signal energy decays near 
the reflection layer F, which indicates gas-containing. Using 
the matching pursuit method, we can obtain a high time-
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Fig. 4 (a) Matching pursuit time-frequency energy profile using the Morlet 
wavelet dictionary, (b) matching pursuit time-frequency energy profile using 
the Ricker wavelet dictionary, (c) matching pursuit time-frequency energy 
profile using the MSW dictionary

0 5 10 15 20 25 30 35 40 45
0

10
0

20
0

30
0

40
0

50
0

(a)

Ti
m

e,
 m

s

0
0.

2
0.

4
0.

6
0.

8
1

0 5 10 15 20 25 30 35 40 45

CMP

0 5 10 15 20 25 30 35 40 45

CMP

0
0.

2
0.

4
0.

6
0.

8
1

0
0.

2
0.

4
0.

6
0.

8
1

(b)
CMP

(c)

0
10

0
20

0
30

0
40

0
50

0
Ti

m
e,

 m
s

0
10

0
20

0
30

0
40

0
50

0
Ti

m
e,

 m
s

Pet.Sci.(2012)9:310-316



314

frequency resolution, and the sand layer in Fig. 4(c) reflects 
its actual position in the model. For this example, it is feasible 
to identify a 10 m-thick layer using the wavelet whose 
frequency is 30 Hz.

Fig. 5 is comparison of the change rate of matching 
pursuit time-frequency energy at the reflection layer F using 
MSW dictionary, Ricker wavelet dictionary, and Morlet 
wavelet dictionary respectively. The change rate is the ratio 
of time-frequency energy of every trace to that of tight 
sandstone. The blue one represents the energy change rate 
using MSW dictionary, the green one represents the energy 
change rate using Ricker wavelet dictionary, and the red 
one represents the energy change rate using Morlet wavelet 
dictionary. Near the bottom of the gas-containing sand, the 
energy change using MSW dictionary is more significant than 
that using other dictionaries. Therefore, when the sand layer is 
10 m thick, with 25% noise in the records, the time-frequency 
energy of matching pursuit using MSW dictionary which 
matches the characteristics of the signal is the most sensitive 
to the quality factor. In other words, when the formation 
thickness is 10 m, noise will not affect the time-frequency 

Fig. 5 Comparison of change rate of matching pursuit time-frequency 
energy at the reflection layer F using the MSW dictionary, Richer wavelet 

dictionary, and Morlet wavelet dictionary, respectively
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Fig. 6 (a) Geological cross-section of physical model, (b) No.1 sand body shape

0 1000m 2000m 3000m 4000m 5000m
-5000m

-5390

-5500

-5625
-5680

-6025

-5000m

-5590

-5685

-5785

-5947

-6020

-6320

-6400

(b)

5000:1
Ratio of velocity: 2:1

3400m/s
Thickness of basal conglomerate 25m

4146m/s

25m
K

4485m/s 8m 4197m/s J2x-5 oil reservoir Thickness of coalbed 6m

1800m/s

4454m/s
4454m/s 14m

J1s21 sand group
4045m/s Reservoir area

Reservoir area
Dry sand area3917m/s

4496m/s
Reservoir area

Dry sand area

Reservoir area

Dry sand area J1s22 sand group
Velocity of dry sand 4200m/s
4571m/s

4475m/s

4475m/s

2500m/s

J1b1 top of coalbed

(a)

Line of dry sand

Line of thin coalbed

J1s22 J1s21

Top line
Bottom line

J1s22
dry sand body 1

Dry sand 2

No.1 sand body

J2x-5



315

energy using appropriate matching pursuit dictionary. The 
reason is that when calculating the time-frequency energy, 
the dictionary can best match the signal, and the noise is 
not calculated in the reconstruction. We can say this method 
improves the S/N ratio.

Fig. 6(a) is the geological cross-section of a physical 
model, (b) is the shape of No.1 sand body, which is in the 
middle of J1s22 sand body group. Fig. 7 is the migration profile 
of the physical model. Fig. 8(a) is the single frequency slice 
of No.1 sand body (22 Hz). The red area is in the middle, 
which means the area is thick, and when the frequency is 
22 Hz the tuning energy is a maximum. (b) is the single 
frequency slice of No.1 sand body (30 Hz). In this figure 
the red area is small, which means the middle of the layer is 

thin. In this area, when frequency is 22 Hz, the thickness of 
the sand layer can be recognized. (c) is the single frequency 
slice of No.1 sand body (50 Hz), where the red area looks 
like a circle. There is a gap in the southwest, which means the 
layer is thick in the middle and thin in the surroundings, and 
the shape of the sand body is approximately oval. (d) is the 
peak amplitude of No.1 sand body. The boundary of the red 
area can reflect the shape of No.1 sand body. From the single 
frequency slices with different frequency, we can estimate 
the thickness, location and shape of the sand, and especially 
identify the thin layer. However, a higher frequency does not 
produce a clearer geological body distribution, so we should 
select an appropriate frequency to analyze the geological 
body.
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Fig. 8 (a) Single frequency layer slice of No.1 sand body (22 Hz), (b) single frequency layer slice of No.1 sand body (30 Hz), 
(c) single frequency layer slice of No.1 sand body (50 Hz), (d) peak amplitude of No.1 sand body 
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5 Conclusions
Theoretical analysis and model test results indicated 

that when the time-frequency dictionary which matched the 
seismic data was used to decompose the signal, we could 
obtain good decomposition and reconstruction results. We 
assumed that the time-frequency dictionary matched the 
wavelet of seismic data, so for the MSW dictionary, the 
wavelet of seismic data should be mixed phase. If the wavelet 
of seismic data is not mixed phase, we should choose other 
dictionaries, such as zero phase Ricker wavelet dictionary and 
minimum phase wavelet dictionary. Therefore, we first need 
know the wavelet type of the seismic data, then select the 
appropriate time-frequency dictionary for matching pursuit 
to achieve optimal decomposition and reconstruction results. 
The more the time frequency characteristics of the dictionary 
matches the signal, the better the effect of decomposition and 
reconstruction. With the advantage of high time-frequency 
resolution of matching pursuit, the method can be used in 
seismic denoising, S/N ratio improving, and oil and gas 
prediction. The use of matching pursuit in quantitative 
analysis of the thickness of thin layers is a further research 
direction. 
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