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Abstract: The finite volume method has been successfully applied in several engineering fields and has 
shown outstanding performance in fluid dynamics simulation. In this paper, the general framework for the 
simulation of near-wellbore systems using the finite volume method is described. The mathematical model 
and the numerical model developed by the authors are presented and discussed. A radial geometry in the 
vertical plane was implemented so as to thoroughly describe near-wellbore phenomena. The model was 
then used to simulate injection tests in an oil reservoir through a horizontal well and proved very powerful 
to correctly reproduce the transient pressure behavior. The reason for this is the robustness of the method, 
which is independent of the gridding options because the discretization is performed in the physical space. 
The model is able to describe the phenomena taking place in the reservoir even in complex situations, 
i.e. in the presence of heterogeneities and permeability barriers, demonstrating the flexibility of the finite 
volume method when simulating non-conventional tests. The results are presented in comparison with 
those obtained with the finite difference numerical approach and with analytical methods, if possible. 
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1 Introduction
Nowadays, the use of computers and numerical models 

is a standard in almost all sectors of the oil industry. It would 
have been impossible to develop the technologies currently 
used to exploit hydrocarbon reservoirs without computers 
and, as a consequence, to reach today’s production and 
recovery levels. Even if numerical models and computational 
techniques are not exclusive to the oil industry, a symbiotic 
relation has been established between them to such a point 
that several breakthrough technologies in computational 
science have come from the oil industry. At the same time, 
the oil industry has benefited from the developments in the 
computational field achieved in other industrial sectors.

In this context, reservoir simulation has been one of 
the technologies that has improved the most. By the mid-
1950s, reservoir simulators subtly started to be part of 
reservoir studies (Mattax and Dalton, 1990). In the following 
decades, they gained popularity in the industry and currently 
represent an essential tool that no petroleum engineer can do 
without. At present, simulators are quite different from their 
predecessors of the past century: in 2011 a single desktop 
computer can perform orders of magnitude more operations 
per second than one of the large mainframe computers 

available in 1955. Furthermore, the decrease in cost of 
computational power and recent developments in parallel 
architectures have brought reservoir modeling to new levels.

Because of the improvements in the technologies for 
formation characterization, well drilling and reservoir 
monitoring, the trend in static and dynamic simulation 
continuously needs more accurate modeling with higher 
levels of detail. These technological improvements provide 
the possibility to capture all the reservoir geological and 
geomechanical features and the ability to quickly and 
accurately describe complex interactions among rocks, 
produced/injected and resident fluids, and wells. However, 
a balance between accuracy and speed of computation is 
necessary for detailed models. This is even more so in the 
case of the application of meta-heuristics approaches for 
history matching and forecasting, where the large number 
of simulations required can lead to a very time consuming 
process that, in the case of very large reservoir models, may 
even not be feasible.

Traditionally, numerical models based on the finite 
differences method (FDM) were developed for the 
discretization of the partial differential equations (PDEs) 
governing multi-phase flow in porous media; finite element 
methods are generally not well suited to describe the fluid 
flow because they might not guarantee the conservation of 
mass (Faust and Mercer, 1976; Wan et al, 2003). In recent 
years, new methods have been tested in order to obtain 
better accuracy by using more complex grids that adapt to 
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the flow patterns as determined by the reservoir geological 
features and by the well’s architecture and pattern. Among 
these methods, the finite volume method (FVM) appears 
to be extremely promising. Even though it has not yet been 
extensively adopted in reservoir simulators, the finite volume 
method has proven to work well in complex geometries and 
is already used in commercial fluid-dynamic simulators. In 
this paper, the FVM is documented and successfully applied 
to the simulation of near-wellbore two-phase flow occurring 
in unconventional well testing.

2 The finite volume method
The FVM is a discretization technique which is well 

suited for numerical simulations of various types (i.e., elliptic, 
parabolic or hyperbolic) of conservation laws. It has been 
used in several engineering fields, such as fluid mechanics, 
heat and mass transfer as well as petroleum engineering 
(Eymard et al, 1997). In the context of hydrocarbon reservoir 
simulation, the finite volume method was applied for the first 
time by Lemonnier (1979).

The FVM, similar to other methods such as the FDM and 
the finite element method, provides the representation and 
evaluation of PDEs when expressed in the form of algebraic 
equations. The variables or parameter values are calculated 
in small volumes surrounding each cell node. These small 
volumes are known as the "finite volume". The surface 
integrals are approximated by the sum of the fluxes through 
each of the sides of the control volume. To fully appreciate 
the advantages of the FVM, it is important to recall that 
spatial discretization is carried out directly in the physical 
space. As a consequence, there is no need for shifting 
between coordinate systems as in the finite difference method 
(Blazek 2001). Thus, FVM is a very flexible method that can 
be easily applied to structured and unstructured grids. For 
this reason, the finite volume method is commonly used in 
problems involving flows in complex geometries. The finite 
difference methods are locally conservative, but they are 
not robust enough to deal with complex domain geometries. 
On the other hand, since the FVM is based on the direct 
discretization of the conservation laws, the mass is conserved 
by the numerical scheme. This condition makes the FVM 
very attractive relative to the other methods (Blazek, 2001). 
It is also important to point out that in some cases the FVM 
can be equivalent to the FDM or to a low-order finite element 
method; under these circumstances, the two methods can be 
validated against each other.

The FVM is not a new idea and it has already been 
applied in reservoir simulation. In fact, the finite volume 
method was initially applied by Rozonin (1989) for the 
simulation of single-phase flow in order to overcome 
the problem of mass conservation related to the classical 
Galerkin or variational finite element methods. Later, Santos 
et al (1992) efficiently simulated miscible displacement in 
two-dimensional reservoirs using a finite-volume approach 
that included a nine-point discretization scheme based on 
the flux interpolation technique. The authors highlighted the 
effectiveness of the FVM in reducing numerical dispersion 

and grid orientation effects for adverse mobility ratios. In 
1994, Amado and Pedrosa (1994) applied the finite volume 
method to describe a 2D complex reservoir geometry with 
arbitrary irregular boundaries by using a triangular mesh. 
The results showed that the finite volume approach led 
to an accurate representation of the flow in the reservoir. 
Dickstein et al (1997) presented a finite volume model for 
the simulation of single-phase flow of a slightly compressible 
fluid in a reservoir drained by a horizontal well. The grid 
was locally refined around the well to efficiently handle 
different time scales in a robust way. Recently, the multi-scale 
finite volume method was used by Hajibeygi et al (2011) to 
effectively deal with complex faulted reservoirs; following 
the approach suggested by the authors, accurate quantities 
at the coarse scale can be calculated by using basis and 
correction functions computed in the extended local domain 
near the fault region. Mishev and Jiang (2011) successfully 
applied a mixed multi-scale FVM approach to solve reservoir 
simulation problems with strong local heterogeneities. The 
method offers the flexibility to use the multi-scale space 
for the calculation of the pressure and/or velocity fields, yet 
global information can be incorporated if necessary.

In this paper, an original contribution for the application 
of the FVM is provided. A new application, which is 
particularly useful in the field of unconventional well testing, 
is presented and discussed. The method is particularly suited 
for the simulation of multi-phase near-wellbore fluid flow.

3 Unconventional well testing
Well testing, which consists in producing hydrocarbon to 

the surface while measuring the pressure variations induced 
in the reservoir, has been used for decades for reservoir 
appraisal. However, due to more stringent environmental 
regulations and a general need for reduced operating expenses, 
alternative test procedures are often adopted, especially 
in exploration wells, in place of the typical production/
build-up sequence. This is particularly true in deep-water 
and arctic environments where conventional tests can be 
prohibitively expensive or logistically unfeasible (Soliman 
et al, 2004; 2005) as well as in several protected areas of the 
world where no emissions are allowed to be released into the 
environment. One of the most interesting new unconventional 
well testing methodologies is injection testing. Injection tests 
eliminate emissions during reservoir appraisal and, except 
for fluid sampling, can provide all the information needed to 
estimate the well productivity at a reasonably low cost with 
a good degree of reliability (Levitan, 2002; Beretta et al, 
2007). Injectivity tests have been performed for a long time. 
However, they are not the same as injection tests. Injectivity 
tests have the target of measuring the amount of water that 
can either be injected into an oil reservoir for water flooding 
purposes or be disposed into an underground layer. For this 
reason they did not involve any sort of pressure transient 
interpretation. An injection test consists of injecting a fluid, 
typically brine, diesel or nitrogen, in a potential pay zone 
(Verga and Rocca, 2010). During the injection period and the 
subsequent fall-off period, in which the well is shut-in and the 
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pressure declines to the initial equilibrium value, the reservoir 
pressure response is monitored (Fig. 1).

This methodology increases the difficulties in well test 
interpretation because of the presence of two mobile phases in 
the reservoir: the fluid originally in place (hydrocarbon) and 
the injected fluid (Gunawan et al, 2002; Verga et al, 2008).
The fluid saturations and the permeability of the reservoir 
rock to each fluid change dynamically during injection both 
in space and time. Only very favorable mobility ratios induce 
displacement that can be described by a piston-like model 
(mobility is the ratio between effective permeability and fluid 
viscosity; the ratio between the mobility of the displacing 
fluid and that of the displaced fluid is the mobility ratio). 

Moreover, gravitational and thermal gradients, heterogeneity 
and anisotropy might strongly affect the fluid distribution, 
resulting in an inadequacy of analytical models to reproduce 
the pressure transient behavior. On the other hand, the use 
of a numerical model associated to an adequate gridding 
offers the capacity to account for all the relevant physical 
phenomena taking place in the porous media. This even holds 
true for very complex well and reservoir geometries, and thus 
the evolution of the saturation and pressure fields during a 
test can be reliably described. The pressure response provided 
by numerical simulations and the pressure derivative are then 
compared to the real pressure and pressure derivative trends 
as they evolve during injection and subsequent fall-off.
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Fig. 1 Example of the draw-down/build-up sequence (a) and of the injection/fall-off sequence (b) in well testing
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In the well test interpretation process, the analysis of the 
pressure derivative is very powerful in identifying the main 
features of a system because the slope of the identified linear 
trends or specific features such as a valley can be associated 
to different flow geometries (radial, linear, etc.) and thus 
to specific reservoir conceptual models (homogeneous or 
heterogeneous formation, presence of fractures or faults, 
etc.). Typically, analytical models are applied, each model 
being governed by parameters that are calibrated during 
the pressure and pressure derivative matching process. The 
parameter calibration process consists of a manual trial and 
error approach in which the reservoir engineer, based on 
experience and good judgment, changes the key parameters 
of the selected model until a satisfactory match is found. 
Alternatively, an automatic or semi-automatic numerical 
optimization process can be used to accelerate the matching 
process. The objective function can be described as the sum 
of the squares of the difference between real and simulated 
data (Welty and Miller 1979). For example, Abbaszadeh and 
Kamal (1988) used the least square regression algorithm to 
accurately match three different build-up and fall-off flow 
periods. In numerical well testing, a simplified reservoir 
model is generated and the test match is obtained by manually 
changing the uncertain input parameters just like in the 
calibration process of a conventional reservoir study. Because 
the information available on the reservoir is generally limited 
at the appraisal stage of a field when wells are typically 
tested, the use of optimization algorithms, e.g. evolutionary 

algorithms, would be unsuitable.
Provided that the selected analytical or numerical model 

is consistent with the reservoir under investigation, the 
knowledge of the model parameters provide an estimate of the 
well productivity and description of the formation within the 
test drainage area. Injection testing relies on the same pressure 
transient analysis as conventional tests for assessing the well 
productivity; therefore, it is essential that a representative 
reservoir model can be generated to reproduce the pressure 
response obtained from the real system and to subsequently 
calculate the pressure derivative needed for diagnostic 
purposes. This aspect must be kept in due consideration when 
setting up a model for well testing rather than for reservoir 
simulation. Furthermore, the analysis of the well test pressure 
data can often result in a non-unique solution (Kelly 1996), i.e. 
different models and/or sets of parameters can generate very 
similar pressure response. Accordingly, the uncertainty of the 
calibrated parameters strongly depends on the selected model 
and on the simplifying assumptions associated to it.

4 Mathematical model
In  the  fol lowing the  s tandard t rea tment  of  the 

mathematical model is recalled (Aziz and Settari, 2002; 
Chen et al, 2006) so as to provide a basis for the subsequent 
development of the numerical model.

As previously discussed, brine, diesel or nitrogen can be 
pumped into oil reservoirs during injection testing (Tripaldi et 
al, 2009). Oil is immiscible with water but is considered to be 
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miscible with diesel; however, field experience indicates that, 
generally, miscibility conditions do not develop within the 
test time (hours). This could probably be due to the limited 
mixing between the two fluids.

If immiscible flow conditions apply, there is no mass 
transfer between the injected and the reservoir fluids. 
Therefore, each phase needs to verify the mass conservation 
equation
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In order to express Eq. (3) at stock tank conditions (p = 1 
bar and T = 15.5 °C), Eq. (3) is divided by ρα, ST
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(4)

where Bα is the formation volume factor, defined by the 
following equation
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Finally, making Eq. (4) explicit for both phases and introducing Eqs. (8) and (7) intoEq. (4), it is possible to 
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Finally, making Eq. (4) explicit for both phases and 
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5 Numerical model
A mathematical model describing two-phase flow in 

a porous medium is introduced in the previous section. In 
this section a discretization of the model using the FVM is 
proposed by the authors following the method suggested by 
Leveque (2002) for the hyperbolic equations. The developed 
numerical model provides a solution of the PDE’s and also 
applies to very complex geometries.

Let Vi be a control volume. Integrating Eq. (1) over Vi 
yields
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where ∂Vi is the frontier or interface of the control volume.
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This set of equations is developed for each phase and 
for each single cell in the model. This leads to a set of non-
linear algebraic equations, which are usually solved using 
a Newton-like method, in which the stencil of the Jacobian 
matrix depends on the grid.

6 Case studies
Four synthetic cases are presented and discussed to prove 

the effectiveness and flexibility of the FVM to simulate 
conventional tests as well as injection tests. In the first case, a 
conventional production-build up test in a horizontal well was 
simulated using an analytical model, the FDM in a structured 
Cartesian grid and the FVM in a radial grid. In the second 
case, an injection test in a horizontal well was simulated using 
the FDM and the FVM; analytical models could not be used 
because, as already discussed, they are not able to properly 
describe injection tests, especially in the case of complex 
geometries. In the third case study, an injection test in the 
presence of permeability barriers was simulated; finally, in 
the last case an injection test in a heterogeneous formation 
was simulated. The last two case studies were simulated only 
using the FVM.

Commercial software (Eclipse, Schlumberger) was used 
to carry out the simulations with the FDM; the software used 
to perform the simulations with the FVM was developed 
in-house. The analytical pressure transient response was 
generated with a commercial tool for well testing (Saphir, 
Kappa).

A number of simplifying hypotheses had to be adopted 
in order to achieve a meaningful comparison among the 
different models. For this reason, capillary pressures and 
thermal effects were neglected.

The simulation results were compared so as to highlight 
the significant differences among the model responses.

6.1 Synthetic reservoir model
In the first model, a homogeneous and isotropic oil-

bearing formation was tested through a horizontal well. The 
physical domain consisted in a rectangular reservoir with a 
length of 2,000 m, a width of 1,000 m and a thickness of 40 m. 
The porosity was assumed equal to 0.2, the irreducible water 
saturation equal to 0.2 and the absolute permeability equal to 
100 mD. The maximum relative permeability to oil was 0.8 
while the maximum relative permeability to water was 0.4. 
The well was placed in the middle of the pay thickness and 
in the center of the physical domain. The perforated interval 
of the well was set equal to 200 m. The initial pressure of 
the reservoir at the datum depth of 3,000 m was assumed 
to be 300 bar. The wellbore radius was 0.1 m and the rock 
compressibility was set equal to 4.5×10-5 bar-1.

For the sake of simplicity, zero mechanical skin was 
imposed. No-flow boundaries were assumed at the limits of 
the physical domain. Oil and water were modeled as slightly 
compressible fluids. The adopted compressibilities were 
4.7×10-4 bar-1 and 4.0×10-5 bar-1 for oil and water, respectively. 
The formation volume factor at the initial pressure was 
assumed equal to 1.3 m3/m3 and to 1.0 m3/m3 for oil and water 
(at standard temperature), respectively. Fluid viscosities were 
assumed to be constant and equal to 0.2 cP and 0.4 cP for oil 
and water, respectively.

6.2 Finite difference discretization
The numerical grid consisted in a 3D Cartesian mesh with 

hexahedral cells, whose faces are parallel to the Cartesian 
axis. The number of cells was 50 in the x direction, 100 in the 
y direction and 50 in the z direction. The horizontal well was 
positioned along the y direction.

In order to assess the impact of the volume discretization 
in the FDM, two different grids were generated: the first one 
was obtained imposing a regular discretization of the reservoir 
volume (Fig. 2(a)) with 20m×20m cells in the horizontal 
plane. In the second grid, a refinement in the near wellbore 
zone was applied (Fig. 2(b)). A geometric progression of the 
cell dimensions was used from the well cells in the x and z 
directions: the cell dimensions varied from 3 cm to 150 m. 
In the y direction, a uniform discretization was applied along 
the well, but a geometric progression of the cell dimensions 
was adopted starting from the heel and toe of the well. This 
kind of grid allows achievement of a more accurate response 
with higher resolution at the beginning of the test, when the 
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pressure disturbance has propagated for a limited distance 
from the well in the reservoir. 

In the FDM, the well is a source/sink term in the 
continuity equation. Therefore, the well response is simulated 
through a well model; the most popular well model is the 
Peaceman equation (Peaceman, 1978).

The time domain was also discretized using a geometric 
progression: an initial timestep of 1 second was set in order 
to guarantee the convergence of the non-linear solver based 
on the smallest cell volume; then, a progression ratio was 
adopted. 

The selected discretization was restarted at the beginning 
of each flow period. This timestep progression ensured a good 
compromise between resolution and computational time; 
while at the same time, it facilitated the convergence of the 
numerical system, especially at early time of each flow period 
when changes in pressure and saturation are substantial. 
It also avoided numerical oscillations of the pressure 
derivatives, thus, simulation results could be examined 
according to the classical well test interpretation approach. 

6.3 Finite volume discretization
The reservoir was also modeled using a near-wellbore, 

numerical simulator, developed by the authors, based on the 
FVM. The numerical grid consisted of a cylindrical 3D mesh, 
where the cell dimensions increased geometrically in the 
radial direction (Fig. 2(c)). In the direction of the well axis, 
the reservoir volume was divided in a similar way to the finite 
difference model.

The well pressure was approximated with the pressure of 
the first cell in the radial direction. This assumption is valid 
whenever the first cell is very small because the pressure 
drop between the center of the cell and the sand-face can be 
neglected.

The flexibility of the FVM allows simulation of the 
well, both with small cells corresponding to the real well 
dimensions or with the aid of a well model in place of an 
inner boundary condition. However, the well model is not 
needed because it does not provide an appreciable accuracy 
improvement, thus, the computational complexity can be 
reduced.

Since no well model was used, the rates were imposed 
as fluxes at the internal faces of the innermost cells. This is 
equivalent to having a source term in the cells that are open to 
flow, i.e. through the perforated interval.

The same time discretization was adopted as in the FDM. 
An initial timestep of 1 second was set in order to guarantee 
the convergence of the non-linear solver; then, the same 
progression ratio as in the spatial domain was used. In order 
to solve the system of non-linear algebraic equations arising 
from the FVM discretization, an inexact Newton method was 
used (Klie et al, 1996; Nash and Sofer, 1996). The Newton 
method requires solving a linear system of algebraic equations 
at each iteration. Based on the grid, the stencil of the Jacobian 
matrix in the case of two-phase flow, i.e. injection test, is a 
block heptadiagonal non-symmetric matrix. The matrix is 
very large, sparse and ill conditioned.

In the case of single phase flow, the conditioning of the 

(a) (b) (c)

Fig. 2 Coarse finite difference grid (a), refined finite difference grid (b) and finite volume grid (c)
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matrix is substantially lower. The matrix stencil is a simple 
heptadiagonal matrix and the number of unknowns is reduced 
by a half because the saturations do not need to be calculated. 

When the number of cells is large, direct methods, i.e. the 
Gauss method, cannot be applied and iterative methods are 
used. A very efficient iterative solver based on Krylov-spaces 
known as GMRES was adopted in the model discussed in this 
paper. Further information about GMRES can be found in the 
work developed by Saad and his coworker (Saad and Schultz, 
1986; Saad, 1993) and Van der Vorst and Vuik (1994).

In the model, the preconditioner used for the GMRES 
was different for the production and the injection test, 
respectively. A classical preconditioner based on the 

incomplete lower-upper factorization (ILU) (Behie, 1985; 
Xing and Ma, 1996) was used to simulate the production test, 
whereas the preconditioner was changed according to three 
phenomenologically different periods occurring during an 
injection test (Fig. 3).

During the early injection phase, where substantial 
changes in pressure and saturation occur, the two-stage 
preconditioner proposed by Klie et al (1996) was applied. At 
late time, where the saturation front is still moving but the 
pressure changes are moderate, it is sufficient to use a simple 
ILU preconditioner. In the fall-off period, where the water 
front is almost stationary, again it is possible to efficiently 
precondition the Jacobian matrix with an ILU preconditioner.
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Fig. 3 Identification of the three phenomenologically different periods during an injection test

6.4 Analytical model
In the case of horizontal wells, the pressure variation in 

the time following the start of production, propagates radially 
in the vertical plane orthogonal to the well trajectory. The 
behavior of the well can be compared to that of a vertical 
well producing from a reservoir with a thickness equal to 
the length of the horizontal segment open to flow. Therefore, 
the pressure derivative exhibits a horizontal stabilization, 
which is a function of the formation vertical and horizontal 
permeability and of the fluid viscosity. Once the pressure 
disturbance has reached the upper and lower boundaries of the 
level, a linear flow –perpendicular to the well axis– develops 

along the producing layer provided that the horizontal segment 
of the well is greater than the thickness of the producing 
layer. If the duration of the test is long enough, it is eventually 
possible to recognize a second radial flow, called pseudo-
radial, which develops in the horizontal plane (Bourdet, 2002). 
The stabilization of the pressure derivative depends on the 
formation horizontal permeability and on the fluid viscosity. 
In an ideal situation, in which all the flow geometries that 
can establish during the test are recognizable, the trend of the 
pressure derivative on the diagnostic plot would be described 
by a first horizontal stabilization, then by a line with a ½ slope, 
and finally by a second horizontal stabilization (Fig. 4).

Fig. 4 Pressure change and derivative for a horizontal well in an ideal case
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The duration of each flow geometry depends on the length 
of the horizontal well with respect to the thickness of the 
producing layer, on the position of the well in the layer and on 
the petrophysical characteristics of the reservoir. Furthermore, 
it should be pointed out that the well response can be different 
from the expected trend. This is because the flow geometry 
may not last long enough to be clearly detectable or it can 
be partially masked by wellbore storage effects, by the flow 
effects at the ends of the well, and by the heterogeneity of the 
reservoir (Joshi, 1991; Kuchuk, 1995).

The analytical model used for comparison is the uniform 
flux horizontal well model. The literature is very rich with 
discussion on the preferred approach to simulate a finite 
horizontal well (Babu and Odeh, 1989; 1992; Peaceman, 
1990; Brigham, 1990; Suprunowicz and Butler, 1992). It 
is generally agreed that the constant pressure condition 
is more close to the physical reality, but the uniform flux 
boundary has the advantage that it can be easily incorporated 
into software for fluid flow simulation (Zhan, 1999). In the 
uniform flux model, the inflow of fluids from the reservoir 
into the well is assumed to be uniform over the length of the 
well, so the pressure varies along the same well length (Ozkan 
and Raghavan, 1989; 1991; Joshi, 1991).

With Lw being the length of the well open to production, 
the interpretation of a conventional production test in a 
horizontal well yields:

kz vertical permeability, based on the first horizontal 
stabilization of the pressure derivative (radial flow in the 
vertical plane) yielding .

kxy horizontal permeability, based on the second horizontal 
stabilization of the pressure derivative (pseudo-radial flow in 
the horizontal plane) yielding kxyh, where h is the reservoir net 
pay.

St total skin, which is a combination of the well skin STV 
and an additional geometrical skin Sc (Bourdet, 2002):

(24)

The well skin is due to permeability damage (Sw) referred 
to the producing well length, minus a correction to account 
for anisotropy:

              
(25)

The negative geometrical skin Sc accounts for partial 
penetration of the well in the producing formation and is 
given by (Kuchuk et al, 1991; Bourdet, 2002):
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where rw is the well radius. 

Given that isotropic conditions were assumed in the simulated reservoir and that the horizontal well had no 

stand-off (the well is centered in the reservoir pay), the well skin reduces to Sw and the geometrical skin can be 
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Therefore, the “true” mechanical skin of the well can be calculated from the total skin obtained from the test 

interpretation. 

 

6.5 Case 1 - Production test with single phase flow 

In order to test the performance of the FDM and of the FVM previously introduced, a classical production test 

where single phase flow occurs was simulated. The test consisted of two flow periods: a rate of 1,000 m3/day of 

oil was initially produced for 24 hours; then the well was shut-in for 24 hours. The pressure response at the well 

was simulated assuming that the gauge was positioned at the depth of the horizontal drain of the well.

The reservoir pressure response during the test is shown in Fig. 5 for the analytical model, FDM (coarse and 

fine grids) and FVM. The pressure change and derivative on the log-log diagnostic plot for the build-up period 

show the typical trend for a horizontal well (Fig. 6).In terms of pressure derivative, the FVM correlates very well 

to the analytical model, whereas the FDM with the fine grid, although showing a good match, appears to be less 

accurate than the FVM, particularly during the first timesteps. In the case of the FDM with the coarse grid, the 

first horizontal stabilization of the pressure derivative, indicating radial flow in the vertical plane, cannot be 

identified. The anomalous pressure derivative trend is due to the lack of resolution of the model grid. Results also 

show that the cylindrical grid used for the FVM better reproduces the radial flow governing the early production 

phase because at least two block faces are orthogonal to the main flow direction and; therefore, it was also 

confirmed that the use of a well model could be avoided. 
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6.5 Case 1─Production test with single phase flow
In order to test the performance of the FDM and of the 

FVM previously introduced, a classical production test where 
single phase flow occurs was simulated. The test consisted of 
two flow periods: a rate of 1,000 m3/day of oil was initially 
produced for 24 hours; then the well was shut-in for 24 hours. 
The pressure response at the well was simulated assuming 
that the gauge was positioned at the depth of the horizontal 
drain of the well.

The reservoir pressure response during the test is shown in 
Fig. 5 for the analytical model, FDM (coarse and fine grids) 
and FVM. The pressure change and derivative on the log-log 
diagnostic plot for the build-up period show the typical trend 
for a horizontal well (Fig. 6). In terms of pressure derivative, 
the FVM correlates very well to the analytical model, 
whereas the FDM with the fine grid, although showing a good 
match, appears to be less accurate than the FVM, particularly 
during the first timesteps. In the case of the FDM with the 
coarse grid, the first horizontal stabilization of the pressure 
derivative, indicating radial flow in the vertical plane, cannot 
be identified. The anomalous pressure derivative trend is due 
to the lack of resolution of the model grid. Results also show 
that the cylindrical grid used for the FVM better reproduces 
the radial flow governing the early production phase because 
at least two block faces are orthogonal to the main flow 
direction and; therefore, it was also confirmed that the use of 
a well model could be avoided.
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Fig. 5 Case 1−Comparison of the pressure history simulated with different 
models during the production test
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6.6 Case 2−Injection test
The second test consisted of an unconventional well test in 

which 1,000 m3/day of water were injected into the reservoir 
for 24 hours. The well was then shut-in for a 24-hours fall-
off period. The injected water was assumed to have the same 
properties as the reservoir water. The pressure response at the 
well was simulated assuming that the gauge was positioned at 
the depth of the horizontal drain of the well. 

Since no analytical model is able to describe the physical 
phenomena occurring in the reservoir during injection, only 
the numerical models could be used to simulate the test. 
However, thermal gradients induced by injection of cold 
water in the reservoir were neglected because the commonly 
used reservoir simulators assume the system to be isothermal 
and do not provide the thermal option. Furthermore, inclusion 
of thermal effects would not have been relevant to the 
authors, whose interests are focused on demonstrating the 
appropriateness of the FVM to describe two-phase flow in the 
case of a horizontal well. 

As it can be observed from the comparison of the pressure 
history obtained with the different models (Fig. 7), the 
FDM with the fine grid and the FVM provide a very similar 
response. On the other hand, the FDM with the coarse grid 
completely fails to reproduce the actual behavior of the 
physical system and in particular, the pressure rises during 
the injection phase. The main reason for this difference is 
that the well model implemented in the typical reservoir 
simulator is unable to handle the phenomena occurring in 
the near wellbore zone. When using the fine grid FDM, the 
lack of accuracy evident for the coarse grid FDM is not 
present because the fine grid around the well allows proper 
description of the two-phase flow, given the adopted time 
discretization. Additionally, the difference between the well 
cell pressure and the bottom hole pressure is proportional to 
the dimension of the grid cell where the well is located. The 
FVM does not require the use of a well model because all 
the physical phenomena are simulated numerically and an 
accurate pressure response can be obtained. The comparison 
of the pressure derivative for the FVM and fine grid FDM 
during the fall-off period is shown in Fig. 8.

The derivative of the pressure response simulated with the 
FVM clearly shows a first horizontal stabilization, which is 
only approximately reproduced by the fine grid FDM, during 
the early time of the fall-off period (Fig. 8). This stabilization 
corresponds to radial flow in the vertical plane (see also Fig. 
9) and is characterized by the mobility of the injected fluid 
(water), which has displaced the hydrocarbon originally in 
place in the near wellbore zone. Then a transition occurs 
and a second horizontal stabilization can be observed, which 
once again corresponds to radial flow; however, this time it 
is characterized by the mobility of the mobile reservoir fluid 
(oil). Afterwards, linear flow develops in the reservoir, as very 
well captured by the FVM (see also Fig. 10), and the slope of 
the pressure derivative approaches ½. Finally, pseudo-radial 
flow in the horizontal plane develops (see also Fig. 11). It 
should also be noted that the all boundaries of the reservoir 
are detected within the test time. This was not the case when 
the well was produced, although the test time was the same. 
The different time at which the boundaries are “seen” on the 
pressure derivative plot depends on the different properties of 
the system (namely, fluid viscosity and total compressibility) 
in the case of the production test (where the only fluid was 
oil) and in the case of the injection test (when water has 
flooded a portion of the reservoir). This is no surprise because 
the effect of fluid viscosity and total system compressibility 
on the time needed to detect possible reservoir boundaries is 
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Fig. 8 Case 2−Pressure change and derivative simulated 
with different models during the fall-off period

Fig. 6 Case 1−Pressure change and derivative simulated with different 
models during the build-up period

Fig. 7 Case 2−Comparison of the pressure history during the injection test

308

307

306

305

304

303

302

301

300

299
0 5 10 15 20 25 30 35 40 45 50

Time, h

P
re

ss
ur

e,
 b

ar

FDM (coarse)
FDM (fine)
FVM

10-2

P
re

ss
ur

e 
ch

an
ge

 a
nd

 
pr

es
su

re
 d

er
iv

at
iv

e,
 b

ar

Time, h

FVM
Analytical
FDM (fine)
FDM (coarse)

10-3 10-2 10-1 100 101 102

10-1

100

101



326

well known from the well testing theory (Bourdet, 2002).
The possibility to correctly identify the first horizontal 

stabilization is essential to evaluate the mechanical skin, 
which affects the well productivity. In fact, the skin associated 
to the second stabilization, which is much larger that the 
mechanical skin, also comprises a component which is due 
to the presence of two mobile fluids in the reservoir (water 
and oil) and which is bound to disappear when the well is 
produced. The skin effect is also quite evident by comparing 
the pressure change and derivative in Figs. 6 and 8.

The pressure derivative simulated with the coarse grid 
FDM is acceptable at middle and late time only, because the 
trend at early time cannot reproduce the saturation changes 
in the reservoir as a consequence of injection. Therefore, 
it would be impossible to determine the skin induced by 
permeability damage and thus the well productivity.

6.7 Case 3−Injection test with permeability barriers
In this model, permeability barriers, i.e. two leaky faults, 

were placed in the physical domain. The transmissibility 
across the faults was 10 mD. The first fault was positioned 

parallel to the injection well at a distance of 170 m and 
the second orthogonal to the well at a distance of 400 m. 
The other model characteristics and the rock and fluid 
properties were the same as in case 2, taken as a reference. 
A representation of the physical model is shown in Fig. 12. 
Again, a rate of 1,000 m3/day of water was initially injected 
into the reservoir for 24 hours. The well was then shut-in for 
a 24-hours fall-off period.

The pressure field at the end of the injection period, clearly 
showing how the pressure front has reached the permeability 
barriers altering the pseudo-radial flow, is shown in Fig. 13. 
As expected, the pressure derivative of the fall-off period is 
affected by the presence of transmissibility reductions close 
to the well (Fig. 14), as it is evident by comparison with the 
system response obtained in the absence of any barrier (case 
2).

 

Fig. 9 Case 2−Radial flow in the vertical plane at the early time

Fig. 10 Case 2−Linear flow at the middle time

Fig. 11 Case 2−Pseudo-radial flow on the horizontal plane

 

Fig. 12 Case 3−Horizontal well in a faulted formation

Fig. 13 Case 3−Pressure field at the end of the injection period
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6.8 Case 4−Injection test with heterogeneous 
permeability field

In the last case considered, the oil reservoir was comprised 
of three different permeability regions, ranging from 50 to 
150 mD. The permeability field is shown in Fig. 15. All the 
other model properties were the same as in reference case 2. 
Also, the same rate history was adopted.

The pressure change and derivative curves corresponding 
to the fall-off period are plotted in Fig. 16. Because the 
permeability variations are limited, the different flow regimes, 
namely radial flow in the water flooded zone, linear flow and, 
finally, pseudo-radial flow in the undisturbed oil zone can be 
recognized, and the horizontal stabilizations are only slightly 
different from those of the reference case (case 2). However, 
not all the reservoir boundaries can be detected during the test 
time due to the presence of the low permeability region.

7 Conclusions
In this paper, a general framework for the simulation 

of complex fluid flow phenomena in porous media was 
presented. The study was triggered by the need for a 
numerical model with the ability to correctly simulate 
injection tests in hydrocarbon reservoirs. Well testing is 
an essential and irreplaceable methodology for dynamic 
reservoir characterization and the evaluation of the potential 
productivity of oil and gas wells. Injection testing is one of 
the emerging unconventional methodologies, and is very 
attractive because it does not require surface production and 
flaring; but it poses new challenges to the ability of correctly 
simulating the evolution of the saturation and pressure fields 
in time in the presence of gravitational and thermal effects.

A finite volume model (FVM) with a radial gridding in the 
vertical plane was developed for describing the near-wellbore 
two-phase fluid flow in oil reservoirs as a result of injecting 
water or diesel (which also behaves as an immiscible 
fluid under the test conditions). The developed model was 
initially applied to simulate the pressure response during a 
conventional well test of a horizontal well draining an oil 
reservoir. In this simple case, the oil is produced and only 
mono-phase flow occurs in the reservoir. The results obtained 
with the FVM were compared with those provided by the 
uniform flux horizontal well analytical model, taken as a 
reference. In this way, the FVM’s ability to correctly describe 
the physical phenomena occurring in the reservoir and to 
provide an accurate well pressure response was proved. The 
same test was also simulated with the aid of a finite difference 
reservoir simulator, using both a relatively coarse grid and a 
fine grid. Subsequently, the more complex case of injection 
tests were studied. Water injection in the oil reservoir through 
the same horizontal well was simulated with the FVM and 
with the finite difference model. Analytical models could not 
be applied as they neglect gravitational forces, thermal effects 
and capillary pressures, which can strongly affect the pressure 
response from the reservoir.

As expected, the finite difference model did not lead to 
representative results when a regular, relatively coarse grid 
(having 20m×20m cells in the horizontal plane) was used. 
A reliable response could only be obtained when using 
optimized local grid refinements and optimal time stepping. 
It might be claimed that the accuracy of the finite difference 
solution might have been further improved by using advanced 
gridding options, such as adaptive or hybrid grids which 
would conform to the geometry of the well around the well. 
However, the tuning procedures are difficult to accomplish. 
They would require specialized expertise to make the right 
grid adjustments, additional numerical work and, mostly, 
prior knowledge of the expected outcome. On the other hand, 
the FVM is much more robust because it is independent of 
the gridding options because the discretization is performed 
in the physical space.

The FVM was able to accurately reproduce the pressure 
behavior even in complex situations, i.e. in the presence 
of heterogeneities and permeability barriers, proving the 
flexibility of the method when simulating non-conventional 
tests. Unlike analytical models, providing solutions only Fig. 16 Case 4−Pressure change and derivative simulated with 

the FVM during the fall-off period

Fig. 15 Case 4−Horizontal well in a heterogeneous formation

k=50 mD

k=100 mD

k=150 mD

Fig. 14 Case 3−Pressure change and derivative simulated 
with the FVM during the fall-off period
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for a relatively restricted set of simplified cases if compared 
to the possibilities offered by directional drilling and 
unconventional well tests, the FVM can simultaneously 
manage different types of complexities, i.e. heterogeneous 
formations, fractures, irregular boundaries, etc. Obviously, 
some previous knowledge of the reservoir is needed to set up 
a reliable reservoir model; however, if this is not available, 
the test interpretation is not feasible or misleading regardless 
of the approach that is used.

The results of the simulated well tests demonstrate the 
suitability and effectiveness of the FVM to describe the fluid 
flow even in complex scenarios; the potential of injection 
tests to identify reservoir boundaries will be the object of a 
future publication.

Finally, further work will include the use of the 
developed model for data assimilation so as to attempt the 
characterization of the reservoir heterogeneity (including 
faults) based on well test results. However, one of the 
limitations that cannot be overcome is that the information is 
not oriented, i.e. it is impossible to define in which direction 
a permeability variation or a flow barrier has been detected 
by the pressure disturbance. Another interesting development 
of the model would be inclusion of thermal effects so as to 
assess the impact of the temperature of the injected fluid 
(typically colder than the reservoir) on the pressure response. 
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