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Abstract: A coupling model is proposed in this paper by using the Green Function and Newman’s 
product principle, and the solution method is provided here as well. This model can be used to describe 
the reservoir inflow and wellbore flow for fishbone wells in an unsteady flow or pseudo-steady flow 
state. A case study indicates that the bottom hole pressure declines quickly in the unsteady flow period 
which is very short. The pressure drop per unit time remains unchanged under the pseudo-steady flow 
conditions. The distribution of flow rate along the main wellbore shows a wave shape under the unsteady 
flow condition, and the flow rate distribution in each branch is similar. The flow rate distribution along the 
main wellbore is irregular “U” shaped under the pseudo-steady flow condition, and the space-symmetrical 
branches have the same flow distribution pattern. In the initial production period, the flow rate increases 
significantly as the length of branches and the angle between branches and the main wellbore increase. As 
the production continues, the length and angle of branches have only a slight effect on the flow in fishbone 
wells.
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Taking six herringbone wells in one oil field in Bohai as 
samples, Jiang et al (2011) and Ye et al (2010) constructed 
a back-propagation (BP) neural network model to predict 
the herringbone well productivity which is affected by 
multifactorial and nonlinear conditions. Huang et al (2010) 
on the basis of the 3-D spatial description of the fishbone well 
trajectory, built a new percolation model around the fishbone 
well production section, which is limited by closed upper and 
lower boundaries. Yu et al (2009) investigated the possibility 
of using fishbone wells to maximize the net-present value 
(NPV) during the field development, and concluded that the 
use of fishbone wells with increased number of rib holes 
would be more beneficial than multi-fractured wells when 
developing tight gas reservoirs.

Nowadays, the research on fishbone wells with steady-
state flow is well developed. However, most of these theories 
cannot be used to describe the pressure and flow distribution 
during the transient flow period. Based on above research, 
this paper superimposes the pressure in space and time to 
establish a fishbone well transient flow model, which can be 
applied in both unsteady and pseudo-steady flow conditions.

2 Model development

2.1 Assumptions
1) The reservoir is heterogeneous, with six external 

closed boundaries. The reservoir permeability in the x, y and 
z directions are kx, ky, and kz. The porosity is ϕ, and the initial 

1 Introduction
The use of multilateral horizontal wells can greatly 

increase the reservoir drainage volume and effectively control 
water/gas coning, and hence enhance the recovery of low-
permeability reservoirs. As a result, this technique has become 
a popular research topic in recent years (Jasti et al, 1997; Lian 
et al, 2011; Salas et al, 1996; Wang et al, 2006; 2010; Zhang 
et al, 2011). Fishbone wells, as one of the typical multilateral 
horizontal well types, can effectively improve the single well 
controlled reserves and reduce the number of development 
wells as well as the development cost. Much research has been 
done on fishbone well productivity and pressure distribution. 
Li and Zhang (2010) obtained the productivity equation of 
fishbone wells by the equivalent flow resistance method, 
and calculated the productivity of horizontal wells. Liu et 
al (2000) proposed a model to describe the 3-dimensional 
pressure distribution during the production of fishbone wells 
on the basis of the 3-dimensional steady flow in the reservoir 
and the characteristics of fluid flow in multilateral horizontal 
wells. He et al (2004) and Fan et al (2006) used the node 
method to calculate the steady-state productivity of fishbone 
wells after dividing the wellbore into flow segments. Yi et al 

(2008) applied the technique of fishbone wells in heavy oil 
reservoirs, and eventually achieved an enhanced oil recovery. 
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pressure is pini.
2) As is shown in Fig. 1, a fishbone well, which has n 

branches, is placed in this reservoir with random length, angle 
and location. 

3) The single-phase fluid in this reservoir is slightly 
compressible.

4) The fluid flows isothermally within the whole reservoir.
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Fig. 1 Schematic diagram of a fishbone well

(a) 3-D dimension  (b) Plan view

2.2 Nodal flow model
The governing equation for the slightly compressible fluid 

flow in elastic porous media can be expressed as:

 (1)
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It is assumed that a point-sink is located at the coordinates (xi, yi, zi) and produces at a unit rate. At time t, the 
pressure drop at (xi, yi, zi) is denoted by Fi, j (t), and it can be expressed as (Ouyang and Aziz, 1998): 

It is assumed that a point-sink is located at the coordinates 
(xi, yi, zi) and produces at a unit rate. At time t, the pressure 
drop at (xi, yi, zi) is denoted by Fi, j (t), and it can be expressed 
as (Ouyang and Aziz, 1998):
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where (( , , ); ( , , ); )i i i j j jp x y z x y z t  is the pressure at time t, at position (xi, yi, zi). 

By applying the superposition principle in space, one can obtain the pressure drop at (xi, yi, zi) when several 
nodes at (xi, yi, zi) yield simultaneously: 
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where qj is the time-independent flow rate of the j-th node。 
For the case of the variable mass flow at each node, the pressure drop at random position (xi, yi, zi) can be 

obtained by using the Duhamel theorem: 
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   By considering the horizontal well as a line sink and integrating Eq. (4), one can obtain the pressure drop when 
several wells produce at the same time. 
 
2.3 A model to couple wellbore flow and reservoir inflow for fishbone wells 
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length L is equal to    2 2
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where θ is the angle between the branch and the y axis; R is the distance between one point on the well and the point 

(x1, y1, z0). 

Therefore, by using Newman’s product principle, the pressure drop caused by the production of the branch at 

random location (x, y, z) and random time (t > 0) is given as (Babu and Odeh, 1988; Penmatcha and Aziz, 1998): 
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where qj is the time-independent flow rate of the j-th node。 
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is the pressure at time t, at 
position (xi, yi, zi).

By applying the superposition principle in space, one can 
obtain the pressure drop at (xi, yi, zi) when several nodes at (xi, 
yi, zi) yield simultaneously:

(3)
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where qj is the time-independent flow rate of the j-th node。 
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where qj is the time-independent flow rate of the j-th node.
For the case of the variable mass flow at each node, the 

pressure drop at random position (xi, yi, zi) can be obtained by 
using the Duhamel theorem:
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By considering the horizontal well as a line sink and 
integrating Eq. (4), one can obtain the pressure drop when 
several wells produce at the same time.

2.3 A model to couple wellbore flow and reservoir 
inflow for fishbone wells

At time t = 0+, one well branch produces at a rate of q. 

The well extends from (x1, y1, z0) to (x2, y2, z0). Thus, the 
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where qj is the time-independent flow rate of the j-th node。 
For the case of the variable mass flow at each node, the pressure drop at random position (xi, yi, zi) can be 

obtained by using the Duhamel theorem: 

,

0
1

d ( )
( ) d 1, 2, ,

d

nt i j
i j

j

F
p q t i n


 



 
     

 
                        (4) 

   By considering the horizontal well as a line sink and integrating Eq. (4), one can obtain the pressure drop when 
several wells produce at the same time. 
 
2.3 A model to couple wellbore flow and reservoir inflow for fishbone wells 

At time t = 0+, one well branch produces at a rate of q. The well extends from (x1, y1, z0) to (x2, y2, z0). Thus, the 

length L is equal to    2 2
2 1 2 1x x y y   . Each point on the branch can be given as: 

1

1

0

sin
cos

x x R
y y R
z z




 
  
 

                                       (5) 
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where qj is the time-independent flow rate of the j-th node。 
For the case of the variable mass flow at each node, the pressure drop at random position (xi, yi, zi) can be 
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where θ is the angle between the branch and the y axis; R is the distance between one point on the well and the point 

(x1, y1, z0). 
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where tC  , and S1, S2, and S3 are Green's functions located at ( 1 1 0sin , cos ,x R y R z   ). 

It is assumed that the fishbone well has n branches. The main wellbore is divided into s0 segments, and the i-th 

segment is divided into si smaller segments. Then, there are totally 0 1 2 ns s s s     small segments, which can 

be considered as small horizontal wells. The pressure equation shown as Eq. (6) can be applied to each small 

horizontal segment. When superposing the pressure in different space, we should consider the interference between 

each segment. As Fig. 2 shows, the node of each horizontal segment locates in the center of each segment and is on 

the axis of wellbore. The reservoir node is on the wellbore, and the distance between this node and the wellbore 

node is rw. We can write: 
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where L is the length of small horizontal segments, and S is the skin factor of the horizontal segment. 

Flow equation: The flow equation is obtained by superimposing all segments in space and time. At the m-th 

time step, the i-th segment of the main wellbore is written as: 
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where ,i sF represents the effect of the s-th segment of the main wellbore on its i-th segment, and 
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where Fi,s represents the effect of the s-th segment of the main wellbore on its i-th segment, and Fi, (u,v) represents the effect of 
the v-th segment of the u-th branch on the i-th segment. There are totally s0 equations of such kind.

At the m-th time step, the flux equation of the j-th segment of the i-th branch is as follows:

shown as Eq. (6) can be applied to each small horizontal 
segment. When superposing the pressure in different space, 
we should consider the interference between each segment. 
As Fig. 2 shows, the node of each horizontal segment locates 
in the center of each segment and is on the axis of wellbore. 
The reservoir node is on the wellbore, and the distance 
between this node and the wellbore node is rw. We can write:
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each segment. As Fig. 2 shows, the node of each horizontal segment locates in the center of each segment and is on 

the axis of wellbore. The reservoir node is on the wellbore, and the distance between this node and the wellbore 

node is rw. We can write: 
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Fig. 2 Segments division (taking the main wellbore as an example) 

There are totally 3ns unknown variables:  
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Continuity equation of pressure: At the m-th time step, to maintain the pressure continuity between the 

reservoir and the wellbore, the relationship between the reservoir pressure and the wellbore node pressure is as 
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where L is the length of small horizontal segments, and S is the skin factor of the horizontal segment. 

Flow equation: The flow equation is obtained by superimposing all segments in space and time. At the m-th 

time step, the i-th segment of the main wellbore is written as: 
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where ,i sF represents the effect of the s-th segment of the main wellbore on its i-th segment, and 

,( , )i u vF represents the effect of the v-th segment of the u-th branch on the i-th segment. There are totally s0 
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equations of such kind. 

At the m-th time step, the flux equation of the j-th segment of the i-th branch is as follows: 
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where ( , ),i j sF shows the effect of the s-th segment of the main wellbore on the j-th segment of the i-th branch, and 

( , ), ( , )i j u vF shows the effect of the v-th segment of the u-th branch on the j-th segment of the i-th branch. There are 

totally 0sn s equations of such kind. 

Wellbore model: Generally, the pressure drop in the wellbore is small. Therefore, if the pressure drop, 

compared with the producing pressure drop, is small enough to be ignored, the wellbore can be assumed as an 

infinite-conductive one, and the following equations can be obtained:
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Constraint equation: The model can be constrained by flux or bottom hole pressure to build equations as 

follows:
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Bottom hole pressure constraint: w,1 wf 0p p                          (14) 

where QT represents the expected maximum flux; and pwf represents the known bottom hole pressure, MPa. 

 

3 Solving method 
In the developed model, there are totally 3ns unknowns and 3ns equations (Eqs. (8), (9), (10), (11), (12), (13) or 
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variables of reservoir and well segment node pressure. And then, there are only 1sn  unknowns to solve, including 

the wellbore pressure p and the node flow rate from reservoir node to segment node 

(
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11,1 1,2 1,, ,..., sq q q ;···, ,1 ,2 ,, ,...,
nn n n sq q q ), which can be solved by a set of 1sn  equations (Eqs. (10), 

(11), (13) or (14)).  
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Similarly, Eq. (11) can be transformed into the following expression: 
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(12)

Constraint equation: The model can be constrained by flux or bottom hole pressure to build equations as follows:
Flux constraint: 

where F(i,j), s shows the effect of the s-th segment of the main wellbore on the j-th segment of the i-th branch, and F(i,j),(u,v) shows 
the effect of the v-th segment of the u-th branch on the j-th segment of the i-th branch. There are totally 

 

equations of such kind. 

At the m-th time step, the flux equation of the j-th segment of the i-th branch is as follows: 
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where ( , ),i j sF shows the effect of the s-th segment of the main wellbore on the j-th segment of the i-th branch, and 

( , ), ( , )i j u vF shows the effect of the v-th segment of the u-th branch on the j-th segment of the i-th branch. There are 

totally 0sn s equations of such kind. 

Wellbore model: Generally, the pressure drop in the wellbore is small. Therefore, if the pressure drop, 

compared with the producing pressure drop, is small enough to be ignored, the wellbore can be assumed as an 

infinite-conductive one, and the following equations can be obtained:
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Bottom hole pressure constraint: w,1 wf 0p p                          (14) 

where QT represents the expected maximum flux; and pwf represents the known bottom hole pressure, MPa. 

 

3 Solving method 
In the developed model, there are totally 3ns unknowns and 3ns equations (Eqs. (8), (9), (10), (11), (12), (13) or 

(14)). In the solution process, the continuity equation of pressure and wellbore model can be used to eliminate the 

variables of reservoir and well segment node pressure. And then, there are only 1sn  unknowns to solve, including 

the wellbore pressure p and the node flow rate from reservoir node to segment node 

(
01 2, ,..., sq q q ;
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nn n n sq q q ), which can be solved by a set of 1sn  equations (Eqs. (10), 
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Eq. (10) can be transformed into the following expression: 
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Similarly, Eq. (11) can be transformed into the following expression: 

equations of 
such kind.

Wellbore model: Generally, the pressure drop in the wellbore is small. Therefore, if the pressure drop, compared with the 
producing pressure drop, is small enough to be ignored, the wellbore can be assumed as an infinite-conductive one, and the 
following equations can be obtained:
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where ( , ),i j sF shows the effect of the s-th segment of the main wellbore on the j-th segment of the i-th branch, and 

( , ), ( , )i j u vF shows the effect of the v-th segment of the u-th branch on the j-th segment of the i-th branch. There are 
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If we use the flux constraint equation, the solving equation can be written as a matrix expression: 
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where ini ( )mp p p m t    , ( )m

i iq q m t , , , ( )m
i j i jq q m t , 1m

ir
  is the term on the right-hand side of Eq. (15), 

1
,
m

i jr   is the term on the right-hand side of Eq. (16), and the unknown variable are mp ,
01 2, , ,m m m

sq q q ,

11,1 1,2 1,, , ,m m m
sq q q ,  , ,1 ,2 ,, , ,

n

m m m
n n n sq q q .

If we use the bottom hole pressure constraint equation, the mp will be known, and the solving equation can be 

written as an matrix expression: 

(16)

(17)
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Equation system of (17) and (18) are linear and 
nonsingular. In order to improve the solving speed and 
enhance the calculating accuracy, the Newton iteration 
method is used to solve this set of equations.

4 Model testing
Based on the model built in Section 2, fishbone and 

reservoir coupling software is compiled here. Then, the model 
is verified by inputting the data in Table 1. The horizontal 
well is located in the center of the reservoir and is parallel 
to the direction along which the reservoir extends. The main 
wellbore length of this well is 1,000 m. There is an equal 
distance between each branch. The length of each branch is 
300 m. The angle between the branch and the main wellbore 
is 90°. Branch 1 and 3 are located on one side of the main 
wellbore, and branch 2 is located on the other side.

Table 1 Parameters of reservoir and horizontal well

Parameter Value
Reservoir width, m 1000
Reservoir length, m 2000

Reservoir thickness, m 20.0
kx, μm2 1.0
ky, μm2 1.0
kz, μm2 1.0

Porosity, % 20
Initial reservoir pressure, MPa 22.0

Viscosity of oil, mPa·s 1.0
Compressibility, MPa-1 4.0×10-3

Maximum oil production, m3/d 500
Minimum bottom hole pressure, MPa 10.0

Wellbore diameter, m 0.1
Skin factor 0

Fig. 3 Change of producing pressure drop 
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4.1 The change of the bottom hole pressure and the 
flux distribution

The bottom hole pressure drop is calculated with the 
developed model when the well produces at a constant 
flow rate of 500 m3/d, as is shown in Fig. 3. In the initial 
production stage, the pressure wave hasn’t approached to the 
reservoir boundaries, and the flow in the reservoir is unsteady. 
After about half a day, the flow in the reservoir becomes 
pseudo-steady. As time goes by, the pressure gradient remains 
almost the same.
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where 1 1m m m
i ir p r    , 1 1

, ,
m m m

i j i jr p r    , and the unknown variable are m
TQ ,

01 2, , ,m m m
sq q q , 

11,1 1,2 1,, , ,m m m
sq q q , , ,1 ,2 ,, , ,

n

m m m
n n n sq q q . 

Equation system of (17) and (18) are linear and nonsingular. In order to improve the solving speed and enhance 
the calculating accuracy, the Newton iteration method is used to solve this set of equations. 

 
4 Model testing 

Based on the model built in Section 2, fishbone and reservoir coupling software is compiled here. Then, the 

model is verified by inputting the data in Table 1. The horizontal well is located in the center of the reservoir and is 

parallel to the direction along which the reservoir extends. The main wellbore length of this well is 1,000 m. There 

is an equal distance between each branch. The length of each branch is 300 m. The angle between the branch and the 

main wellbore is 90°. Branch 1 and 3 are located on one side of the main wellbore, and branch 2 is located on the 

other side. 

Table 1 Parameters of reservoir and horizontal well 

Parameters Values 
Reservoir width, m 1000 
Reservoir length, m 2000 

Reservoir thickness, m 20.0 
Kx, μm2 1.0 
Ky, μm2 1.0 
Kz, μm2 1.0 

Porosity, % 20 
Initial reservoir pressure, MPa 22.0 

Viscosity of oil, mPa·s 1.0 
Compressibility, MPa-1 4.0×10-3 

Maximum oil production, m3/d 500 
Minimum bottom hole pressure, MPa 10.0 

, 
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where 1 1m m m
i ir p r    , 1 1

, ,
m m m

i j i jr p r    , and the unknown variable are m
TQ ,

01 2, , ,m m m
sq q q , 

11,1 1,2 1,, , ,m m m
sq q q , , ,1 ,2 ,, , ,

n

m m m
n n n sq q q . 

Equation system of (17) and (18) are linear and nonsingular. In order to improve the solving speed and enhance 
the calculating accuracy, the Newton iteration method is used to solve this set of equations. 

 
4 Model testing 

Based on the model built in Section 2, fishbone and reservoir coupling software is compiled here. Then, the 

model is verified by inputting the data in Table 1. The horizontal well is located in the center of the reservoir and is 

parallel to the direction along which the reservoir extends. The main wellbore length of this well is 1,000 m. There 

is an equal distance between each branch. The length of each branch is 300 m. The angle between the branch and the 

main wellbore is 90°. Branch 1 and 3 are located on one side of the main wellbore, and branch 2 is located on the 

other side. 

Table 1 Parameters of reservoir and horizontal well 

Parameters Values 
Reservoir width, m 1000 
Reservoir length, m 2000 

Reservoir thickness, m 20.0 
Kx, μm2 1.0 
Ky, μm2 1.0 
Kz, μm2 1.0 

Porosity, % 20 
Initial reservoir pressure, MPa 22.0 

Viscosity of oil, mPa·s 1.0 
Compressibility, MPa-1 4.0×10-3 

Maximum oil production, m3/d 500 
Minimum bottom hole pressure, MPa 10.0 
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where 1 1m m m
i ir p r    , 1 1

, ,
m m m

i j i jr p r    , and the unknown variable are m
TQ ,

01 2, , ,m m m
sq q q , 

11,1 1,2 1,, , ,m m m
sq q q , , ,1 ,2 ,, , ,

n

m m m
n n n sq q q . 

Equation system of (17) and (18) are linear and nonsingular. In order to improve the solving speed and enhance 
the calculating accuracy, the Newton iteration method is used to solve this set of equations. 

 
4 Model testing 

Based on the model built in Section 2, fishbone and reservoir coupling software is compiled here. Then, the 

model is verified by inputting the data in Table 1. The horizontal well is located in the center of the reservoir and is 

parallel to the direction along which the reservoir extends. The main wellbore length of this well is 1,000 m. There 

is an equal distance between each branch. The length of each branch is 300 m. The angle between the branch and the 

main wellbore is 90°. Branch 1 and 3 are located on one side of the main wellbore, and branch 2 is located on the 

other side. 

Table 1 Parameters of reservoir and horizontal well 

Parameters Values 
Reservoir width, m 1000 
Reservoir length, m 2000 

Reservoir thickness, m 20.0 
Kx, μm2 1.0 
Ky, μm2 1.0 
Kz, μm2 1.0 

Porosity, % 20 
Initial reservoir pressure, MPa 22.0 

Viscosity of oil, mPa·s 1.0 
Compressibility, MPa-1 4.0×10-3 

Maximum oil production, m3/d 500 
Minimum bottom hole pressure, MPa 10.0 

, 
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where 1 1m m m
i ir p r    , 1 1

, ,
m m m

i j i jr p r    , and the unknown variable are m
TQ ,

01 2, , ,m m m
sq q q , 

11,1 1,2 1,, , ,m m m
sq q q , , ,1 ,2 ,, , ,

n

m m m
n n n sq q q . 

Equation system of (17) and (18) are linear and nonsingular. In order to improve the solving speed and enhance 
the calculating accuracy, the Newton iteration method is used to solve this set of equations. 

 
4 Model testing 

Based on the model built in Section 2, fishbone and reservoir coupling software is compiled here. Then, the 

model is verified by inputting the data in Table 1. The horizontal well is located in the center of the reservoir and is 

parallel to the direction along which the reservoir extends. The main wellbore length of this well is 1,000 m. There 

is an equal distance between each branch. The length of each branch is 300 m. The angle between the branch and the 

main wellbore is 90°. Branch 1 and 3 are located on one side of the main wellbore, and branch 2 is located on the 

other side. 

Table 1 Parameters of reservoir and horizontal well 

Parameters Values 
Reservoir width, m 1000 
Reservoir length, m 2000 

Reservoir thickness, m 20.0 
Kx, μm2 1.0 
Ky, μm2 1.0 
Kz, μm2 1.0 

Porosity, % 20 
Initial reservoir pressure, MPa 22.0 

Viscosity of oil, mPa·s 1.0 
Compressibility, MPa-1 4.0×10-3 

Maximum oil production, m3/d 500 
Minimum bottom hole pressure, MPa 10.0 
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(18) 

where 1 1m m m
i ir p r    , 1 1

, ,
m m m

i j i jr p r    , and the unknown variable are m
TQ ,

01 2, , ,m m m
sq q q , 

11,1 1,2 1,, , ,m m m
sq q q , , ,1 ,2 ,, , ,

n

m m m
n n n sq q q . 

Equation system of (17) and (18) are linear and nonsingular. In order to improve the solving speed and enhance 
the calculating accuracy, the Newton iteration method is used to solve this set of equations. 

 
4 Model testing 

Based on the model built in Section 2, fishbone and reservoir coupling software is compiled here. Then, the 

model is verified by inputting the data in Table 1. The horizontal well is located in the center of the reservoir and is 

parallel to the direction along which the reservoir extends. The main wellbore length of this well is 1,000 m. There 

is an equal distance between each branch. The length of each branch is 300 m. The angle between the branch and the 

main wellbore is 90°. Branch 1 and 3 are located on one side of the main wellbore, and branch 2 is located on the 

other side. 

Table 1 Parameters of reservoir and horizontal well 

Parameters Values 
Reservoir width, m 1000 
Reservoir length, m 2000 

Reservoir thickness, m 20.0 
Kx, μm2 1.0 
Ky, μm2 1.0 
Kz, μm2 1.0 

Porosity, % 20 
Initial reservoir pressure, MPa 22.0 

Viscosity of oil, mPa·s 1.0 
Compressibility, MPa-1 4.0×10-3 

Maximum oil production, m3/d 500 
Minimum bottom hole pressure, MPa 10.0 
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Fig. 4 shows the flux distribution in the wellbore after 
0.01 day of production, the abscissa in the figure denotes 
dimensionless length x/L and ordinate in the figure denotes 
dimensionless inflow qsL/Q, where x represents the distance 
from the point to the heel of the wellbore, L is the well 
length, qs represents the inflow per unit length at a given 
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location, and Q represents the total well production. When the 
inflow along the well is uniform, the dimensionless flow rate 
equals one. It can be seen in Fig. 4 that the flow distribution 
in the three branches is completely the same. The toes of 
branches are closed to the main wellbore, which results in an 
interference between branches. The flow in the main wellbore 
is distributed as a “wave-shaped” form, and the location 
where the branch connects to the main wellbore shows as a 
wave trough. The flow rate at the toe is obviously smaller 
than that at the heel due to the interference between the toes 
of branches and the main wellbore. At this time, the pressure 
wave just propagates to the upper and lower boundaries. 
Therefore, the flow in each branch is only affected by the 
upper and lower boundaries.

flux declines. Because the influencing area of the fishbone 
well expands as the branches become longer, more fluid flows 
into the wellbore. When the fluid near the wellbore depletes, 
the fluid far away from the wellbore flows into the wellbore. 
The resistance to the fluid flow into the wellbore is similar 
to that into the branches, therefore, the branch length plays a 
weaker role on the change of the flow rate.
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Fig. 4 Flow distribution in the wellbore in unsteady flow state at 0.01th day

Fig. 5 shows the flow distribution in the wellbore at 5th 
day. At this moment, the reservoir is in pseudo-steady state 
flow, with the pressure wave propagating to the external 
boundary. Since the fluid mainly comes from the x and y 
directions, the effect of boundary z decreases. Because of 
a larger contact area of the ends of the main wellbore and 
the branches in the reservoir, and the corresponding higher 
pressure support, there is a higher flow rate at these end 
points. The flow distribution of the main wellbore shows 
an irregular U-shaped curve because of the existence of the 
branches. The flow distribution of branch 1 almost coincides 
with that of branch 3 due to their space symmetrical position. 
Branch 2 is located at the middle of the main wellbore, the 
flow at the branch heel is markedly interfered, but at the 
branch toe the flow is weakly interfered. Therefore, the flow 
rate of branch 2 at the branch heel is lower than that of the 
branch 1, but at the branch toe, it is by contrast higher.

4.2 The effect of branch wells
Fig. 6 shows the relationship between the branch length 

and the flow rate of the fishbone well. A horizontal well can 
be considered as a fishbone well with no branch. The model is 
constrained by a constant bottom hole pressure of 21.0 MPa. 
With an increase in the branch well size, the well flow rate 
increases significantly at the initial production stage. After 
producing for a period, the impact of the branch length on the 

Fig. 5 Flow distribution in the wellbore in pseudo-steady flow state at 5th day
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Fig. 6 The effect of the branch length on flux

Fig. 7 shows the effect of the angle between branches and 
the main wellbore on the flow rate when the branch length is 
a constant. A horizontal well can be considered that the angle 
between branch and the main wellbore is 0°. With an increase 
in the angle, the flow rate at the initial production stage 
increases gradually. However, at the later stage of production, 
the flux is only slightly influenced by the angle between the 
branches and the main wellbore. The reason for this is similar 
to that for the increased branch length. If the angle is larger 
than 60°, the increment of flow rate decreases.

Fig. 8 shows the effect of the branch number on the 
flow rate. At the beginning, the flow rate increases quickly 
as the branch number increases, but after a period, the flow 
rate changes little with an increase in the branch number. 
Therefore, the branch number mainly affects the flow rate of 
a fishbone well at the initial stage.
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5 Conclusions
1) A transient flow model for fishbone wells, which 

couples reservoir inflow and wellbore flow in unsteady and 
pseudo-steady flow state, is built. This model is constrained 
by flow rate or bottom hole pressure.

2) The bottom hole pressure declines quickly at the short 
unsteady flow stage, but the pressure drop per unit time 
remains the same when a steady state or a pseudo-steady state 
is reached in the reservoir and the wellbore. 

3) During the unsteady flow (or in the unsteady flow 
regime), the flow curve of the main wellbore shows a 
“wave” shape, while the branches all present the same flow 
distribution pattern. Moreover, during the pseudo-steady flow, 
the main wellbore flow distribution seems as an irregular “U” 
shape, and the space-symmetric branches have the same flow 
distribution pattern.

4) During the initial production period, the flow rate 
increases significantly as the angle between the branches 
and the main wellbore and the length of branches increase. 
However, as production goes on, the length of branches and 
the angle between branches and the main wellbore have a 
gradually reduced impact on the flow rate of  fishbone wells. 
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