
336
DOI 10.1007/s12182-013-0282-5

Deng Shaogui1, 2 , Wang Yang2, 3, Hu Yunyun2, Ge Xinmin2 and He Xuquan4

1 School of Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China
2 School of Geosciences, China University of Petroleum, Shandong 266580, China 
3 China Petroleum Great Wall Drilling Geological Research Institute, Liaoning 124000, China
4

© China University of Petroleum (Beijing) and Springer-Verlag Berlin Heidelberg 2013

Abstract:

properties of matrix pores and the characteristics of fracture development to establish a method for the 

tight reservoirs. By combining the fracture development similarity of the same type of reservoirs and 

According to the actual production data, based on the effectiveness analysis of the matrix pores and fast 

evaluation of tight reservoirs.

Key words: Matrix porosity, fracture porosity, reservoir effectiveness, reservoir classification, 

Integrated petrophysical log characterization for 
tight carbonate reservoir effectiveness: A case study 
from the Longgang area, Sichuan Basin, China

Received November 16, 2012

analysis, optical microscopy, image analysis, scanning 
electron microscopy, and mercury injection capillary 
pressure, and NMR T2

2012; Mohammadlou et al, 2012; Schoenfelder et al, 2008; 

Fracture evaluation is one of the core tasks in tight 
carbonate reservoir evaluation (Lamarche et al, 2012). 

of fracture development and occurrence, but also accurately 

and thus limited quantity restricts its large-scale application 

Pet.Sci.(2013)10:336-346

1 Introduction

the storage space type of carbonate reservoirs. Generally 
the matrix pore development characteristics and the type 
of pore structure determine the reservoir storage capacity, 

reservoir productivity behavior (Guerriero et al, 2012; Guo 
et al, 2012; Li et al, 2012; Wang et al, 2011; Xu et al, 2013). 
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in regional logging evaluation. Dual laterolog data is often 
used to determine the fracture porosity because of its good 

fractures. Li et al (1996) proposed a group of formulas for 

fracture occurrences by dual laterolog resistivity. Deng et 
al (2006) identified the characteristics of dual laterolog 
responses to fractures in fractured tight carbonate reservoirs 
and established the interpretation methods.

Due to the poor understanding on the fluid storage and 

clear ideas of the contribution of different reservoir space to 
the productivity in tight carbonate reservoirs. Some indicated 

important contributions to the reserves and the long-term 

identification and evaluation of reservoir effectiveness are 
very important (Bust et al, 2011; Yang et al, 2011; Asgari 

2) the development degree and effectiveness of fractures, 

reservoir to obtain high production. In this study, on the basis 

capacity. Using dual laterolog data, the fracture parameters 

in terms of the matrix pores and the fractures and, combined 

explored.

2 General characteristics of the tight 
reservoirs of the Da’anzhai Formation 

Basin deposited in a moderate-deep lake environment mainly 
consists of interbedded grey shelly limestone and black 

limestone, mainly composed of micrite shelly limestone 
and shaly shelly limestone, is mainly calcite in mineral 

generally above 60%. Shaly shelly limestone has a higher 

Fig. 1
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shale content than micrite shelly limestone. Petrological 

shelly limestone reservoir is generally less than 3%, mainly 

resistivity values. In the fractured interval, dual laterolog data 

background.

assemblage, is the main oil and gas producer in the Longgang 

that the reservoir rock developed many structural fractures 

on the properties of matrix pores and fractures and their 
combination relationship is the key to evaluating reservoir 
effectiveness.

3 Experimental analysis of reservoir matrix 
pore structure characteristics
3.1 Experimental methods and conditions
1) Nuclear magnetic resonance (NMR) experiment

T2 spectrum and the 

2) Mercury injection porosimetry

IV 9505 automatic high pressure mercury porosimeter from 

of the contact oxidation of the mercury and samples on the 
experimental results, the high pressure mercury injection 

pressure Pc, displacement pressure Pd, average pore throat 

3.2 Matrix pore structure analysis

spatial distribution of pores and throats and their connection 
relationship in the matrix. It is an important indicator to 

distribution characteristics, reflecting the fluid seepage 
T2 spectrum of NMR mainly 

reflects pore distribution and the movable fluid in pores. 
Based on the NMR and capillary pressure experiments, 
the rock matrix pore structure is divided into three types 
according to the analysis of curve shape and experimental 

Table 1 Characteristic parameters of three types of pore structure

Displacement pressure,
 MPa

Median pressure,
 MPa

Maximum mercury
 saturation, %

Pore throat radius, T2 NMR spectrum

2.25-4.08 18.2-38.4 74.7-84.4 0.063-0.16 Double peaks and obvious signal of big pores

4.41-7.12 29.8-63.4 58.6-80.8 0.01-0.063 Double peaks and signals of small pores predominate

13.02-20.37 130.6-171.4 51.2-56.4 0.004-0.01 Single peak and mainly small pores

2(a). With an average displacement pressure of 3.15 MPa, 
an average median pressure of 25.7 MPa, and relatively high 
maximum mercury saturation of 80%, this type of matrix 

large, indicating that the distribution of matrix pore throats 

the NMR T2 spectrums of the saturated and centrifuged rock 
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pores, and concentrated pore radius, this type of reservoir has 
good seepage behavior.

section of the mercury injection curve becomes short and 

pressure of 5.65 MPa, an average median pressure of 48.1 
MPa, and the maximum mercury saturation of about 74.3%, 

indicating that the pore throats are small and the quality of the 
pore structure is average. Most of the T2 NMR spectrum has 

this type of reservoir is poorer in seepage performance than 
type I reservoirs.

section of the mercury injection curve is hardly observed 

16.4 MPa, the average median pressure is 153 MPa, and the 
maximum mercury saturation is only about 56%, indicating 

T2 

very poor matrix pore seepage capacity.

develop, making the occurrence of fluid in the pores very 
complex. For type I pore structure, the maximum mercury 

fluid signals of centrifuged samples decrease significantly. 
For type II pore structure, the maximum mercury saturation 

capacity is poor. For type III pore structure, the maximum 

different from the saturated ones.

determine the seepage capacity of matrix pores. From type III 
to I, the storage capacity of matrix pores increases. Although 
under normal conditions the measured matrix porosity and 

seepage capacity of the matrix pores.) under reservoir 

4 Effectiveness analysis of matrix pores 
Sm

of the accumulated amplitude of T2

T2

m is the product of the percentage of mobile 

throat radii of this reservoir are small overall but the pore 
throat radii of type I matrix pore structure range mainly above 
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T2

pore structure is good (such as type I), the matrix pores can 
become effective storage space for oil and gas, and play an 

5 Evaluation of fracture effectiveness 

5.1 Calculation of fracture parameters 

fracture occurrences, the fractures are divided into three 

Fig. 3 Matrix pore structure of type II
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equation (Li et al, 1996)

(1)LLD LLS LLD LLS( ) /Y R R R R
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RLLD and RLLS

laterolog resistivity, Y is the fracture state parameter. If the 
value of Y
If the value of Y

Y greater than 0.1 indicates a 
high angle.
2) Calculation model of fracture porosity 

Using the flat panel fracture model (Deng et al, 2006), 
under particular borehole conditions, according to the matrix 
rock resistivity distribution, a fast calculation model for the 

least square principle.
Rb

Dual laterolog apparent resistivity can be approximately 
expressed as

(2),1 ,3
LLD ,0 f f b ,2 f f( ) ( )i iD D

i iR D R D

,1 ,3
LLS ,0 f f b ,2 f f( ) ( )i iS S

i iR S R S (3)

,i jD , ,i jS (i

intermediate angle and high angle.
Rb

(4)2
LLD 2 b 1 b 0log = log + log +   R D R D R D

(5)2
LLS 2 b 1 b 0log = log + log +  R S R S R S

Di, Si (i
respectively

(6)3 2
,3 f f ,2 f f ,1 f f ,0= log )+ log )+ log )+  i i i i iD A A A A

(7)3 2
,3 f f ,2 f f ,1 f f ,0= log )+ log )+ log )+  i i i i iS B B B B

Ai, j, Bi, j 
are three different values according to the three 

occurrence states of fractures.

porosity 

comparing the fracture porosity (POR2-DLL), calculated 
from dual laterolog data and formation microimaging (FMI) 

Fig. 6
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resistivity. CNL is the compensated neutron log. AC is the 

CAL is the diameter of borehole and GR is natural gamma 

the trends of fracture porosity from FMI, but the actual values 
are 10 times apart, caused by different logging mechanisms. 
FMI logging provides the information of fracture porosity of 

range (Deng et al, 2006).

5.2 Division of fracture pore development level 
Because of tectonic stress, fractures usually develop 

Under similar geological background conditions, fractures 
have similar type or occurrence characteristics, and fracture 
porosity basically presents a normal distribution. Accordingly 
the cumulative trend of fracture porosity exhibits a linear 

the multiple normal distributions and peak combinations in 

conditions, the development of fracture porosity may have 

of the actual logs, the normal distributions could become 
nonstandard and the peaks are not obvious.

Fig. 8 presents the frequency statistics of fracture porosity 

evident nonstandard normal distributions, suggesting that the 

considered as a combination of multiple linear distributions. 
It indicates the obvious differences of fracture development 
under different conditions. According to the fracture porosity 

that the same fracture development level has the same trend 

line is used to classify the development degree of fractures. 

than 0.22%, a three-class method is adopted as f>0.085%, 
0.035%< f<0.085% and f<0.035%.

Fig. 8 Fracture porosity distribution histogram
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6 Comprehensive evaluation of reservoir 
effectiveness

determine the tight reservoir storage and seepage capacity, 

oil source, tight reservoirs can be of commercial value (Li et 

fracture-cavity carbonate reservoirs (Yang et al, 2010) and 

Class-A: Intermediate-high production reservoirs—for a 

than 5 tons or daily gas production is greater than 30,000 
cubic meters.

and 30,000 cubic meters.

daily gas production is less than 3,000 cubic meters.

Pet.Sci.(2013)10:336-346
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space type, the mercury injection experiment, the NMR 
experiment and the actual production test, the tight carbonate 

developed, and the storage space is fractured-porosity type. 

uniformly distributed pore throat radii, and good sorting, 

T2

and the signal of big pores is obvious, indicating that the 

Second class reservoirs (II): matrix pores and fractures are 

high displacement pressure and median pressure, medium 
pore throat radius, average sorting, suggesting that the matrix 

T2 spectrum mostly 

predominant, indicating that the reservoir mainly contains 

pores and fractures, this type of reservoir is hardly effective. 

pore throat radii, suggesting very poor connectivity of matrix 
T2 spectrum presents an obvious unimodal 

of reservoir, very poor in seepage ability, corresponds to the 
Class-C productivity.

Based on the classification principle of productivity 
level of carbonate reservoirs, deep lateral resistivity (RLLD), 
fracture porosity ( f) and matrix porosity ( b) are selected as 

C and the matrix porosity, the fracture porosity and the deep 

the value ranges of matrix porosity, fracture porosity and deep 
lateral logging for the three-class productivity reservoirs, as 

from neutron-density measurements.

 Table 2

Reservoir 
level

Matrix porosity,
b

Fracture porosity,
 f

Deep lateral resistivity, 
RLLD

I class 1.3%- 0.085%-

II class 0.8%-1.7% >0.0035%

III class <0.8% <0.035%

7 Case study
Fig. 12 is the comprehensive interpretation results of 

fracture porosity of about 0.023%, and an average matrix 
porosity of 0.38%. Layer No.2 (3,178.6-3,190.1 m) has a 

and an average matrix porosity of 0.5%, and an average deep 

3,197.4 m) has a fracture porosity of 0.021%, and an average 
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developed fractures and matrix pores, are interpreted as Class 
III according to the reservoir comprehensive classification 
standard. According to the productivity level standard, they 

oil production test yielded 0.1 t oil a day, and a trace of gas.

b

and 3.1%. So it is hard to classify the reservoir according to 
matrix porosity alone, RLLD and fracture porosity should be 
considered to make a comprehensive evaluation. 

RLLD f, 

b f and high RLLD, 
are determined as class III reservoirs. Formation testing of 

RLLD f of 0.07% 

RLLD, f 
and b. 

the interpretation of Layer No.3 and No.5, after deducting 
some high resistivity interbeds, the rest Layers No.3-1, 3-2, 
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8 Conclusions

matrix porosity and matrix permeability, the matrix pores 

fluid in the matrix pores makes an important contribution 

effective reservoirs. 
2) Fractures, serving as both essential storage space and 

seepage channels for fluid, are an important index of the 
reservoir productivity. It is effective to calculate fracture 
parameters of tight reservoirs by fast inversion of dual 
laterolog data. Based on the distribution of regional fracture 
porosity, the cumulative curve and the heterogeneity of 

are important factors affecting the reservoir effectiveness and 

intersection analysis of the matrix porosity, fracture porosity 

4) In the evaluation of the effectiveness of tight carbonate 

integrated evaluation of matrix pore effectiveness and fracture 
pore effectiveness can improve prediction accuracy.

Pet.Sci.(2013)10:336-346
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