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Abstract: 

able to deal with unstructured grids which can be used for representing any complexity of reservoir 

heterogeneity of the reservoirs, all operations related to discretization are performed at the element 

and heterogeneous porous media. In this paper, we evaluate the capability of the method in the solution 
of highly nonlinear and coupled partial differential equations by simulating hydrocarbon reservoirs using 
the black-oil model. Furthermore, the effect of grid orientation is investigated by simulating a benchmark 

accurate for solving the bubble point and three-phase coning problems.
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Since the equations are strongly nonlinear and coupled, their 
numerical solution is still a challenging task for reservoir 
engineers (Bergamaschi et al, 1998; Li et al, 2003; 2005; 
Naderan et al, 2007; Lee et al, 2008) even with the continual 
progress made in both computational algorithms and 
computer hardware.

A reliable numerical solution should be able to take into 
account the complexity of a real reservoir. The irregular 
geological and geometrical morphology of hydrocarbon 
reservoirs affect the computational domain. The reservoir 
permeability and porosity fields may experience very large 
local variation up to 8 or 10 orders of magnitude (Durlofsky 
et al, 1992) which results in highly discontinuous terms in the 
discretized form of the equations. This may lead the model 
to solve the equations inaccurately if the solution method 

of the equations can produce highly diffusive non-physical 
oscillations at saturation fronts. The key solution for these 
issues is to develop a conservative numerical scheme which 
able to employ unstructured grids for spatial discretization.

Various numerical methods have been developed to model 

1 Introduction
Prediction of performance for primary and secondary 

oil recovery processes has been one of the main concerns 
of reservoir engineers through the history of the petroleum 
industry. With the advent of high speed computing, reservoir 
simulators have proven to be invaluable tools to this end. 
In this respect, various flow models are employed by the 
reservoir simulators. These models range from simple 

sophisticated multiphase, multicomponent compositional 

model is a standard three-phase flow model which is most 
often used by petroleum reservoir simulators. This is mainly 
because the black-oil model not only provides a reasonably 
general representation of the multicomponent, multiphase 

equilibrium models.
The black-oil models consist of a set of partial differential 

equations describing the conservation of mass for the 
water, oil and gas components that generally coexist in a 
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traditional framework for numerical simulation of multiphase 
flow in commercial simulators (Ewing, 1983; Coats et al, 

is influenced by the mesh quality and orientation which 
make it unattractive for unstructured gridding (Brand et 
al, 1991). Recently, multipoint approximation techniques 

unstructured grids (Aavatsmark, 2002). However, application 
of these techniques for heterogeneous porous media is not 
demonstrated carefully.

Unstructured grids present an important step in reservoir 
simulation since there is no line or surface restriction in 
discretization of the physical domain. Unstructured meshes 

1978) have been widely used in hydrocarbon reservoir 

conserve mass globally and locally. However, this method 
commonly requires additional treatments to model the flow 
in control volumes containing different permeable media 

but it does not conserve mass locally. Apart from the 
traditional FD, FV and FE methods, various combinations of 
these methods have been developed for reservoir simulation. 

based on the above mentioned numerical methods. Some of 

extensively studied (Hoteit and Firoozabadi, 2008; Forsyth, 

1998).

simultaneously with the same order of accuracy, while the 
saturation equation is generally solved using some shock 
capturing schemes. It is worth noting, application of this 
method for heterogeneous porous medium requires some 
additional treatments (Hoteit and Firoozabadi, 2008).

independently with different interpolating functions and the 
saturation equation is solved using an upwind-type method. 
A higher order interpolating function is recommended to be 

increase in computational cost.

recovery schemes, while the saturation equation is solved by 

Table 1 

Simulator Spatial numerical
 solution method

Temporal numerical
 scheme Type of gridding Ref.

Berkeley Lab Software Center Fully implicit  unstructured
Pruess et al

 (2012)

x University of Stuttgart Fully implicit Unstructured Flemisch et al
 (2011)

Implicit Unstructured Wang et al
 (2011)

++ * Unstructured  (2007)

GPRS at Stanford University Adaptive implicit  unstructured
Durlofsky and

IPARS Texas Institute for Computational and Applied FD Implicit Structured Lu et al (2001)

Fully implicit Structured White and

U.S. Salinity Laboratory Implicit explicit Unstructured Simbnek et al
 (1995)

Virginia  Polytechnic Inst i tute  and State 
University Implicit explicit Unstructured Katyal et al

 (1991)

Corporation FD Structured Fanchi et al
 (1982)

* 
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which are discontinuous between two elements of the mesh, 
are continuous through the control volume faces of the FV 
grid (Durlofsky, 1993).

The numerical method used by Forsyth (1990), Fung et al 

the discrete equations of the multiphase flow system are 
obtained by integrating the equations of single-phase flow 
models, and then extending them by introducing the mobility 
terms. By considering this strategy, the method encounters 
some grid orientation problems which restricts the mesh 
angles to be equal or less than a right angle (Cordazzo et al, 

physical domain can be difficult to follow for most of the 
reservoirs due to their complex geometries. In addition, in 

medium properties such as the absolute permeability and the 
porosity are stored in the center of the control volumes (Verma, 
1996). If this strategy is considered for heterogeneous porous 
media, inter-nodal permeability evaluation will be required 
since the integration point lies on the interface of different 
materials. The problems related to the inter-nodal permeability 
evaluation are investigated by Romeu and Noetinger (1995) 

scheme when it faces with discontinues material properties is 
a very important issue in modeling heterogeneous reservoirs 

Eikemo et al, 2009; Reichenberger et al, 2006).
The formulation presented here is derived directly from 

grid orientation effects. Unlike the usual formulation on 
triangular and tetrahedral elements, any attempt of adapting 

is discarded. Consequently, the concept of transmissibility is 
completely abandoned in the formulation.

developed a control volume based finite element method to 
solve the governing equations of incompressible two-phase 

the method to handle discontinuous material properties and 
its efficiency for capturing saturation fronts with minimum 
numerical dispersion and diffusion errors are evaluated by 
several numerical examples. In this paper, the proposed 

equations. This model is able to consider the compressibility 
and the mass transfer effects between the phases. The 
numerical results for the benchmark problems of the first 

Weinstein et al, 1986) are presented and compared with the 
reported solutions to evaluate the stability and convergence of 

2 Governing equations

In this section, the basic equations describing the black-
oil model for reservoir simulation are derived based on 

the classical continuum theory of mixtures (Goodman and 

of water, oil and gas phases. It is assumed that the only mass 
exchange occurs between oil and gas phases, and no mass 
transfer occurs between water and the other two phases. 
Furthermore, two distinct zones are considered in the porous 
medium, which are a dominant water-oil zone and a dominant 
oil-gas zone. The system in the water-oil zone is considered 
to be water-wet, while in the oil-gas zone is oil-wet.

The mass conservation equations are presented as

 
 (1)

for the water phase,

(2)

for the oil phase, and

(3)

for the gas phase, where n , p , w , and  represent the 
volume fraction, the mass density, the relative velocity and 

and gas (g)], respectively; and  stands for the exchange 
of mass between the oil and gas phases. It is worth noting 

) are calculated based on the well 
model presented by Wan (2002).

The water phase density is determined by

where  is the density of water at standard conditions; pw 
is the water phase pressure; Bwi is the water formation volume 
factor at the initial formation pressure of pi; and Cw represents 
the water compressibility factor. The gas phase density is 
calculated by

(5)

where gs is the density of gas at standard conditions with 
pressure ps and temperature Ts; Bs is the gas formation volume 
factor; Z is the deviation factor; T is the reservoir temperature; 
and pg is the gas phase pressure. The oil phase density should 
be determined with respect to the fact that it consists of oil 
and gas components

 (6)

where os represents the density of the oil phase at the standard 
conditions; Rso is the gas solubility in the oil phase; and Bo is 
the oil formation volume factor.

The mass exchange term ( ) in the mass balance 
equations, could be calculated as

(7)

The relative velocity of each phase (regarding the solid 
phase) could be calculated by Darcy’s law



(8)

where K is the absolute permeability tensor; k  and  are 

respectively.
In addition, there is a constraint for the fluid volume 

fractions

(9)

where n represents the rock porosity, and it is assumed to 
have the following form for the slightly compressible systems

(10)

where ni state the porosity at the reference pressure (pi); CR 
represents the rock compressibility; and p is the volume 

(2001)

(11)

where 
phase saturations by the phase volume fractions, Eq. (11) can 
be written as

(12)

In order to specify the interacting motion of each phase 
on the other phases, constitutive equations are required which 

According to Hassanizadeh and Gray (1993), the most 
practical method for considering this interacting motion is 
to use empirical correlations relating the capillary pressure 
(pc) to the phase volume fractions. The capillary pressure is 
defined as the pressure difference of two immiscible fluids 
across their interface. For the water-oil zone, capillary 
pressure is indicated by , and for the oil-
gas zone, capillary pressure is indicated by . 
Following this, we can write

(13)

where nl represents the total liquid phase (water and oil) 

(15)

obtains

(16)

(17)

(18)

and from Eqs. (15) and (9) we have

(19)

(20)

substituting Eq. (16) into Eq. (19), one obtains

(21)

for the evolution of oil volume fraction. Substituting Eqs. (17) 
and (21) into Eq. (16), and then substituting the result into 
Eq. (20), one obtains the following relation for the evolution 
of gas volume fraction

(22)
The final form of the flow equations can be simply 

into Eqs. (1)-(3) as below

(23)

for the water phase, in which

(25)

similarly, for the oil phase

(26)

in which

(27)



365

(28)

(29)

(30)

(31)

in which

(32)

(33)

Eqs. (23), (26) and (31) represent a system of highly 
nonlinear and coupled equations describing the black-
oil flow in a hydrocarbon reservoir. The major sources of 
nonlinearities in these equations, i.e. the phase volume 
fraction ( ), and relative permeability ( ) are strongly 
dependent on the primary unknown variables and therefore 
should be continuously updated during the solution procedure. 
However, effects of the weak nonlinearities, i.e. the formation 
volume factor ( ), viscosity ( ), gas solubility (Rso), and 
porosity (n) could not be neglected. Treatment of these two 
types of nonlinearities is carefully described by Settari and 
Aziz (1975). In order to complete the description of the 
governing equations, it is necessary to define appropriate 
initial and boundary conditions. The initial conditions specify 

t=0

0     in  and on p p  

 is its boundary. The 
boundary condition can be of two types or a combination 

phase pressures on the boundaries ( ) are known, and the 
Neumann boundary condition, in which the values of phase 

) are imposed (where )

(35)

(36)

where n denotes the outward unit normal vector on the 
boundary and 
the boundary.

3 Numerical solution
Discretization of the governing equations can be now 

et al (2012) in terms of the nodal phase pressures (i.e. ) 
which are selected as the primary variables. In this method, 
the physical domain is discretized using hexahedral elements 
(Fig. 1(a)), and further subdivision of the elements into 
control volumes is performed in the transformed space (Fig. 
1(b)). Furthermore, in order to represent the discretized 
equations at the element level (instead of the control volume 
level), the control volumes are also divided into sub-control 
volumes. Each of these sub-control volumes belongs to a 

volume (Fig. 1(c)).

(b)
Control volume

Sub-control volume

(a)

(c)

Fig. 1 (a) System of finite element mesh in the physical space; (b) 
representation of control volume around a node in the transformed space; 
(c) illustrating a sub-control volume belongs to the eliminated element (after 
Sadrnejad et al, 2012)

The values of phase pressures ( ) at any point within an 
element are approximated by the following expression

(37)

where  is the vector of standard finite element 
shape functions.

CVFE discretization procedure, as presented by Sadrnejad 
et al (2012), when applied to Eqs. (23), (26) and (31) along 
with the boundary condition (36), they yield
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where  and  denote the domain of a sub-control volume and its faces, respectively; and W is the vector of the 
weighting functions. The weighting functions are chosen such that the ith weighting function of an element takes a constant 
value of unity over the sub-control volume belonging to node i, and zero elsewhere in the element, i.e.

(53)
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Table 2 Algorithmic outline of the various parts of calculations 
in the present model

Pre-processing and initializing
DO FOR EACH time step
                UPDATE variables and parameters
                DO FOR EACH Newton iteration
                                 DO FOR EACH element
                                                  UPDATE
                                                   ASSEMBLE to the global Jacobian matrix
                                 END DO
                                 DOFOR EACH element
                                                   UPDATE
                                                   ASSEMBLE of the global residual vector
                                 END DO
                                 DO
                                                   Linear solver with fast secant method
                                                   IF (Linear solver Conv. TRUE.) EXIT
                                 END DO
                                 IF (Newton Conv. TRUE.) THEN 
                                      EXIT
                                 ELSE
                                      UPDATE variables
                                 END IF
                        END DO
                        Post-processing
END DO
END
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where  is the time step length and .

highly nonlinear equations on  which should be 
solved by an appropriate iterative method. In the present 
work, the global inexact affine invariant Newton technique 
(GIANT) developed by Nowak and Weimann (1990) is 

the global inexact Newton technique (Deuflhard, 1990) is 

numerical solution of a very large scale highly nonlinear 
system of equations. An algorithmic overview of the various 
parts of the calculations is given as a pseudo code in Table 2.

to evaluate the validity of the presented formulation and 
stability and convergence of the method to deal with a 
bubble-point and a three-phase coning problem. Furthermore, 
grid orientation effects on the results obtained by the model 

4.1 Gas displacement

This simulation problem is adopted from the first case 

This benchmark problem is a challenging case, and it was 
designed to evaluate the stability of black-oil reservoir 
simulators to deal with strong nonlinearity of the governing 
equations and transition of the reservoir condition from an 
undersaturated to a saturated state. The state of a reservoir 
is called undersaturated when it initially exists at a pressure 
higher than its bubble-point pressure. At the undersaturated 

the reservoir. Whereas, at the saturated state of the reservoir, 
the free gas exists and its relatively high compressibility 
produces a strong source of nonlinearity in the governing 
equations. It is worth noting that the state of a location in a 
reservoir can change from saturated to undersaturated state, 
or vice versa, during the solution. The complete details of the 

The results obtained by 7 organizations which participated 

full description of the simulators used by these participants 
can be found in the reference. Generally, all the models were 

volume methods. In this paper, the results obtained by the 
present model are compared with those obtained from two 
companies, namely, Shell Development Co. and Intercomp 
Resource Development and Engineering Inc..

Figs. 2 and 3 show the oil production rate and the gas-
oil ratio obtained by the present model and those reported 

similar trends in the results, however a slight discrepancy is 
observed during 2.5 to 6.0 years. The maximum ratio of these 

oil production rates at 2.95 years.
The averaged pressure values in the blocks containing 

production and injection wells are compared with the results 
obtained by Shell Development Co. and Intercomp Resource 

4 Numerical experiments
The benchmark problems of the first and second 

comparative solution projects (CSP) of the SPE are used 
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to Figs. 2 and 3 some slight discrepancies are also observed 
in these results. The maximum ratio of pressure discrepancy 

2 years. Fig. 6 shows the variation of gas saturation in the 
production block obtained by the present model and those 

A close study of our results reveals that the time of the 

the peak of reservoir pressure in the production block (Fig. 

companies show a small lag between these times. It is well 

saturation in the production block and due to the lower 
viscosity of gas in compared with oil, the reservoir pressure 
at the production block will decrease. The coincidence of 
these two phenomena shows the superiority of our results in 
compared with the others.

Fig. 5 Variation of pressure at the injection well block versus time

4000

4500

5000

5500

6000

6500

7000

7500

0 1 2 3 4 5 6 7 8 9 10

P
re

ss
ur

e,
 p

si
a

Time, Year

Present model
Shell (Odeh, 1981)
Intercomp (Odeh, 1981)

Fig. 6 Gas saturation at the production well block
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Fig. 7 Initial saturation distribution 
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oil contact around the production well. This potential gradient 
tends to deform the shape of the gas-oil and water-oil contacts 
into a cone. The top of the water cone and end of the gas cone 
gradually move toward the perforated zone of the producer. 
Therefore, the phase saturation and pressure will change very 
rapidly during the formation of the water and gas coning. 
This may cause instability in the numerical solution of the 
reservoir.

The second SPE CSP (Weinstein et al, 1986) is selected 
to evaluate the stability of the present numerical solution to 
deal with a coning problem. The required basic data of the 
problem are completely presented in Weinstein et al (1986).

Fig. 7 shows the plot of initial phase saturation versus 
depth. The gas saturation is equal to zero, below the depth 
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Fig. 4 Variation of pressure at the production well block versus time

Fig. 3 Variation of the gas-oil ratio versus time
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4.2 Three-phase coning
The coning problem is the result of large gradient of 

a phase potential in the axis direction of a producing well 
(Fanchi, 2001). In the initial stage of the reservoir, the 
gradient of potential surface is zero everywhere. After a 
producer is perforated, the potential gradient would be created 
which tend to lower the gas-oil contact and elevate the water-
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Fig. 9 Variation of water cut versus time

Fig. 10 Variation of gas-oil ratio versus time
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:  Injection well
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R = 100 m

1m 

4.3 Radial displacement
The problem analyzed in this section was proposed by 

Bajor and Cormack (1989) to evaluate the grid orientation 
effects. The geometry of this example, mesh generation of the 
domain and locations of the production and injection wells 
are illustrated in Fig. 11. The domain is initially saturated 

inside the domain. Water is injected to the domain with the 
rate of 0.8 m3

PV (pore volume) of injection. The porosity and absolute 

1500 mD, respectively. The viscosity of oil and water are 
considered 130 and 0.97 cP. The well radius and bottom-hole 
pressure for the production wells are considered to be 7.5 cm 
and zero, respectively. The capillary pressure and relative 

(55)

(56)

It is worth noting that the oil and water, in this example, 

Regarding the geometry of the domain, water production 
should be identical at all of the producers. Therefore, diversity 
of water cut curves for different producers can reflect the 
effect of grid orientation. Fig. 12 depicts the maximum 
difference of the water cut curves among the producers. The 
maximum value of discrepancy between the producers is 
about 2.5 percent.

To check the effect of grid distribution on the results of the 
model, the number of grids is increased from 192 elements to 

contours and variation of pressure at the injection block, 
respectively. As seen in the figures, the solution with 307 

of 9,035ft, and the water saturation is equal to 1 below the 
depth of 9,029 ft. These results are consistent with the given 
positions of the gas-oil contact and the oil-water contact. Also 
the initial saturations satisfy the constraint (15).

Figs. 8-10 present the plots of the oil production rate, 
water cut, and gas-oil ratio, respectively. These results 
are also compared with those obtained by two companies, 
namely, Shell Development Co. and Intercomp Resource 
Development and Engineering Inc. reported by Weinstein et 

results of the present model and those reported by Weinstein 
et al (1986).
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Fig. 15 Distribution of local mass balance error
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Fig. 16 Cumulative global mass balance error over injection time
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Fig. 14 Variation of pressure at the injection block
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elements is in good agreement with the former. Regarding 
to these results, one could conclude that sensitivity of the 

demonstrate the convergence of numerical solution scheme.

Fig. 12
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Fig. 13 Water saturation contour after 2 PV of water injection

Fig. 15 shows the distribution of local mass balance error 
for the present test case. As it is seen in the figure, for the 
injection rate of 0.8 m3

in the range of 10-7 m3

global mass balance error over injection time. Dividing the 
error by the total flow rate of 0.8 m3

10
fully conservative scheme.

5 Conclusions
In this paper, a fully coupled control volume finite 

element model is developed to simulate the black-oil flow 
in hydrocarbon reservoirs. The method is fully conservative 
and able to deal with unstructured grid systems. It combines 

Local and global conservative characteristic of the method 
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is evaluated with a representative example. The numerical 
experiments show that the method is accurate, stable and 
convergent even in dealing with bubble-point and coning 
problems which are the well-known difficult and unstable 
problems in the field of reservoir simulation. Furthermore, 
effects of mesh orientation on the results obtained by the 
present formulation are investigated. Based on the numerical 
results, grid sensitivity of the formulation is very low and 
could be neglected. Currently, we are investigating the 
possible extension of this methodology to deal with the 
solution of the coupled geomechanic and multiphase flow 
equations.
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