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Abstract: This is the second paper of a series where we introduce a control volume based finite element
method (CVFEM) to simulate multiphase flow in porous media. This is a fully conservative method
able to deal with unstructured grids which can be used for representing any complexity of reservoir
geometry and its geological objects in an accurate and efficient manner. In order to deal with the inherent
heterogeneity of the reservoirs, all operations related to discretization are performed at the element
level in a manner similar to classical finite element method (FEM). Moreover, the proposed method can
effectively reduce the so-called grid orientation effects. In the first paper of this series, we presented this
method and its application for incompressible and immiscible two-phase flow simulation in homogeneous
and heterogeneous porous media. In this paper, we evaluate the capability of the method in the solution
of highly nonlinear and coupled partial differential equations by simulating hydrocarbon reservoirs using
the black-oil model. Furthermore, the effect of grid orientation is investigated by simulating a benchmark
waterflooding problem. The numerical results show that the formulation presented here is efficient and

accurate for solving the bubble point and three-phase coning problems.
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1 Introduction

Prediction of performance for primary and secondary
oil recovery processes has been one of the main concerns
of reservoir engineers through the history of the petroleum
industry. With the advent of high speed computing, reservoir
simulators have proven to be invaluable tools to this end.
In this respect, various flow models are employed by the
reservoir simulators. These models range from simple
single-phase flow models (Aronofsky and Jenkins, 1954) to
sophisticated multiphase, multicomponent compositional
flow models (Chen et al, 2006). Among these, the black-oil
model is a standard three-phase flow model which is most
often used by petroleum reservoir simulators. This is mainly
because the black-oil model not only provides a reasonably
general representation of the multicomponent, multiphase
flow, but also avoids the necessity of using complicated phase
equilibrium models.

The black-oil models consist of a set of partial differential
equations describing the conservation of mass for the
water, oil and gas components that generally coexist in a
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hydrocarbon reservoir, Darcy’s law and equations of state.
Since the equations are strongly nonlinear and coupled, their
numerical solution is still a challenging task for reservoir
engineers (Bergamaschi et al, 1998; Li et al, 2003; 2005;
Naderan et al, 2007; Lee et al, 2008) even with the continual
progress made in both computational algorithms and
computer hardware.

A reliable numerical solution should be able to take into
account the complexity of a real reservoir. The irregular
geological and geometrical morphology of hydrocarbon
reservoirs affect the computational domain. The reservoir
permeability and porosity fields may experience very large
local variation up to 8 or 10 orders of magnitude (Durlofsky
et al, 1992) which results in highly discontinuous terms in the
discretized form of the equations. This may lead the model
to solve the equations inaccurately if the solution method
is not appropriate. Moreover, the strongly nonlinear nature
of the equations can produce highly diffusive non-physical
oscillations at saturation fronts. The key solution for these
issues is to develop a conservative numerical scheme which
able to employ unstructured grids for spatial discretization.

Various numerical methods have been developed to model
multiphase fluid flow through homogenous and heterogeneous
porous media. The finite difference method (FDM) is the
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traditional framework for numerical simulation of multiphase
flow in commercial simulators (Ewing, 1983; Coats et al,
1998; Cancelliere and Verga, 2012). The conventional FDM
is influenced by the mesh quality and orientation which
make it unattractive for unstructured gridding (Brand et
al, 1991). Recently, multipoint approximation techniques
have been developed to improve the accuracy of FDM on
unstructured grids (Aavatsmark, 2002). However, application
of these techniques for heterogeneous porous media is not
demonstrated carefully.

Unstructured grids present an important step in reservoir
simulation since there is no line or surface restriction in
discretization of the physical domain. Unstructured meshes
based on the finite volume method (FVM) (Edwards, 2002;
Carvalho et al, 2007) or Galerkin-type FEM (e.g. Young,
1978) have been widely used in hydrocarbon reservoir
simulations. The FVM is particularly attractive as it can
conserve mass globally and locally. However, this method
commonly requires additional treatments to model the flow
in control volumes containing different permeable media
(Monteagudo and Firoozabadi, 2007). On the other hand,
treatment of the FEM in heterogeneous media is acceptable,
but it does not conserve mass locally. Apart from the
traditional FD, FV and FE methods, various combinations of
these methods have been developed for reservoir simulation.
Several multiphase flow and transport codes were developed
based on the above mentioned numerical methods. Some of

these codes and their specifications are summarized in Table 1.

Mass conservative schemes, such as the mixed finite
element method (MFEM), CVFEM, control volume
function approximation method (CVFAM), combination
of finite element and finite volume method (FEFVM) and
flux continuous finite volume method (FCFVM) have been
extensively studied (Hoteit and Firoozabadi, 2008; Forsyth,
1990; Fung et al, 1992; Gottardi and Dall Olio, 1992; Verma,
1996; Li et al, 2004; Geiger et al, 2004; Edwards and Rogers,
1998).

In the MFEM, pressures and velocities are approximated
simultaneously with the same order of accuracy, while the
saturation equation is generally solved using some shock
capturing schemes. It is worth noting, application of this
method for heterogeneous porous medium requires some
additional treatments (Hoteit and Firoozabadi, 2008).

In the CVFAM, pressures and velocities are approximated
independently with different interpolating functions and the
saturation equation is solved using an upwind-type method.
A higher order interpolating function is recommended to be
applied in this method (Li et al, 2004) which results in an
increase in computational cost.

In the FEFVM, the pressure and velocity problem is
solved using MFEM or Galerkin FEM with some velocity
recovery schemes, while the saturation equation is solved by
a conservative FV scheme. In fact, a mesh system for FEM
is constructed and a dual sub-grid system is then defined for

Table 1 Specifications of some frequently used multiphase flow and transport codes

Spatial numerical

Temporal numerical

Simulator Developed in (Inst./ Comp.) solution method scheme Type of gridding Ref.
L Structured/ Pruess et al
TOUGH2 Berkeley Lab Software Center Integrated FDM Fully implicit unstructured 2012)
x A L Flemisch et al
DuMu University of Stuttgart CVFEM Fully implicit Unstructured 2011
UFZ/ BGR Hannover/ GFZ/ PSI/ Dresden
OpenGeoSys  University of Technology/ University of .. Wang et al
FEM Implicit Unstructured
(OGS)  Tiibingen/ Christian-Albrechts-University of mpiet nstructure (2011)
Kiel/ University of Edinburgh/ KIGAM/ USGS
o Imperial College/ Heriot-Watt University/ Hybrid FEM . Matthai et al
MP IMPE t
s Montan University/ ETH Zurich and FVM S Unstructured (2007)
Reservoir Simulation Industrial Affiliate Program T Structured/ Durlofsky and
GPRS CVFEM Adapt licit
at Stanford University aptive imphct unstructured Aziz (2004)
Texas Institute for Computational and Applied ..
IPARS Mathematics, The University of Texas at Austin Tmplicit Structured Lu etal (2001)
STOMP Pacific Northwest National Laborat Integrated FDM Fully implicit Structured White and
cific Northwes ol oratory egrate ully implic ructure Oostrom (2000)
- .. - Simbnek et al
SWMS-3D U.S. Salinity Laboratory FEM Implicit explicit Unstructured 1m( ln 969 5? a
Virginia Polytechnic Institut d Stat .. Katyal et al
MOFAT tremmia Folytee n.lc .ns ttute an ate FEM Implicit explicit Unstructured alya’ &' a
University (1991)
BOAST Keplinger and Assocmtc‘es, Inc./ The BDM IMPES Structured Fanchi et al
Corporation (1982)

Notes: “IMPES: Implicit in pressure explicit in saturation
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the FVM to take the advantage of the fact that fluid velocities
which are discontinuous between two elements of the mesh,
are continuous through the control volume faces of the FV
grid (Durlofsky, 1993).

The numerical method used by Forsyth (1990), Fung et al
(1992), Gottardi and Dall’Olio (1992) and Verma (1996) in
petroleum reservoir simulation literature is called CVFEM. In
most CVFEM employed in the field of reservoir simulation,
the discrete equations of the multiphase flow system are
obtained by integrating the equations of single-phase flow
models, and then extending them by introducing the mobility
terms. By considering this strategy, the method encounters
some grid orientation problems which restricts the mesh
angles to be equal or less than a right angle (Cordazzo et al,
2004a; 2004b). This restriction on mesh generation of the
physical domain can be difficult to follow for most of the
reservoirs due to their complex geometries. In addition, in
common control volume finite element approaches the porous
medium properties such as the absolute permeability and the
porosity are stored in the center of the control volumes (Verma,
1996). If this strategy is considered for heterogeneous porous
media, inter-nodal permeability evaluation will be required
since the integration point lies on the interface of different
materials. The problems related to the inter-nodal permeability
evaluation are investigated by Romeu and Noetinger (1995)
and Cordazzo et al (2003). Efficient treatment of a numerical
scheme when it faces with discontinues material properties is
a very important issue in modeling heterogeneous reservoirs
such as fractured formations (e.g. Nick and Matthii, 2011;
Eikemo et al, 2009; Reichenberger et al, 2006).

The formulation presented here is derived directly from
the multiphase flow equations in order to reduce the so-called
grid orientation effects. Unlike the usual formulation on
triangular and tetrahedral elements, any attempt of adapting
the discretized equations to the conventional forms of FVM
is discarded. Consequently, the concept of transmissibility is
completely abandoned in the formulation.

In the first paper of this series (Sadrnejad et al, 2012), we
developed a control volume based finite element method to
solve the governing equations of incompressible two-phase
fluid flow in heterogeneous porous media. The capability of
the method to handle discontinuous material properties and
its efficiency for capturing saturation fronts with minimum
numerical dispersion and diffusion errors are evaluated by
several numerical examples. In this paper, the proposed
method is adopted for numerical solution of the black-oil fluid
equations. This model is able to consider the compressibility
and the mass transfer effects between the phases. The
numerical results for the benchmark problems of the first
and second SPE comparative solution projects (Odeh, 1981;
Weinstein et al, 1986) are presented and compared with the
reported solutions to evaluate the stability and convergence of
the formulation. Moreover, the effects of grids orientation are
investigated by a benchmark waterflooding problem.

2 Governing equations

In this section, the basic equations describing the black-
oil model for reservoir simulation are derived based on

the classical continuum theory of mixtures (Goodman and
Gowin, 1972). The reservoir fluid is considered as a mixture
of water, oil and gas phases. It is assumed that the only mass
exchange occurs between oil and gas phases, and no mass
transfer occurs between water and the other two phases.
Furthermore, two distinct zones are considered in the porous
medium, which are a dominant water-oil zone and a dominant
oil-gas zone. The system in the water-oil zone is considered
to be water-wet, while in the oil-gas zone is oil-wet.
The mass conservation equations are presented as

%W.(nwpwww):zww (1)

for the water phase,

P .
%+V.(nopown) = ring, + M, )

for the oil phase, and

a(ngpg)
ot

for the gas phase, where n,, p,, w,, and M(1 represent the
volume fraction, the mass density, the relative velocity and
the source/sink terms of phase o [a: water (w) and oil (o)
and gas (g)], respectively; and 77, stands for the exchange
of mass between the oil and gas phases. It is worth noting
the source/sink terms (M, ) are calculated based on the well
model presented by Wan (2002).
The water phase density is determined by

+V.(n,p,w,) =i, + M, 3)

pWS
Pyw _B_wi(l+cw (p —p)) 4)
where P, is the density of water at standard conditions; p,,
is the water phase pressure; B, is the water formation volume
factor at the initial formation pressure of p;; and C,, represents
the water compressibility factor. The gas phase density is
calculated by

Pes

Pe =0 > Bg
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where p,, is the density of gas at standard conditions with
pressure p, and temperature 7; B, is the gas formation volume
factor; Z is the deviation factor; T is the reservoir temperature;
and p, is the gas phase pressure. The oil phase density should
be determined with respect to the fact that it consists of oil
and gas components

Rsopgs + pos

po=E ©)

o

where p  represents the density of the oil phase at the standard
conditions; R, is the gas solubility in the oil phase; and B, is
the oil formation volume factor.

The mass exchange term (71, ) in the mass balance
equations, could be calculated as

— a1250 n — aRSO nO ap()

m,, = .
® o op,  © B, ot @

o

gSB

0

The relative velocity of each phase (regarding the solid
phase) could be calculated by Darcy’s law
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K
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where K is the absolute permeability tensor; k,, and 4, are
the relative permeability and the dynamic viscosity of phase a,
respectively.

In addition, there is a constraint for the fluid volume
fractions

n,+n,+n,=n )

where n represents the rock porosity, and it is assumed to
have the following form for the slightly compressible systems

n=n(l+Cy(p-p)) (10)
where n; state the porosity at the reference pressure (p;); Cy
represents the rock compressibility; and p is the volume
averaged pore pressure which has been defined by Pao et al
(2001)

P=8,p, +5,p,+5,P, (11)
where S, represents the saturation of phase a. Replacing the

phase saturations by the phase volume fractions, Eq. (11) can
be written as

1
p =;(nwpw +n,p, +n,p,) (12)
In order to specify the interacting motion of each phase
on the other phases, constitutive equations are required which
can link the fluid phase pressures to their volume fractions.
According to Hassanizadeh and Gray (1993), the most
practical method for considering this interacting motion is
to use empirical correlations relating the capillary pressure
(p.) to the phase volume fractions. The capillary pressure is
defined as the pressure difference of two immiscible fluids
across their interface. For the water-oil zone, capillary
pressure is indicated by P, (=P, — P, ), and for the oil-
gas zone, capillary pressure is indicated by P, (=P, = P,).
Following this, we can write
Ny = F(Pegy) (13)

n = F(cho) (14)
where n, represents the total liquid phase (water and oil)

volume fraction:

n=n, +n

(15)

Partially differentiating Eqgs. (10), (13) and (14), one
obtains

dnzﬂ(nwdpW +n,dp, +
n—nCy (16)
ngdpg +p,dn, +p, dn, +pgdng)
on
dnw Z—W(dpo—dpw) (17)

cow

dnm = on (dp,—dp,) (18)
cgo
and from Egs. (15) and (9) we have
dn,=dn —dn, (19)
dn, =dn—-dn, (20)
substituting Eq. (16) into Eq. (19), one obtains
an, =@, ~dp) - dp,—dp) QD)
cgo cow

for the evolution of oil volume fraction. Substituting Egs. (17)
and (21) into Eq. (16), and then substituting the result into
Eq. (20), one obtains the following relation for the evolution
of gas volume fraction
_ nCy %

n—nCy(1+p,)

, , n—n,C
K”o NPy T (TR - Po)jdl’o
i~ R

, , n—nC
+(nw+nwpcuw)dpw+[ng+nl(po_ R)jdpg}
nCy

i

dn

g

(22)

The final form of the flow equations can be simply

developed by substituting Egs. (4)-(8), (17), (21) and (22)
into Egs. (1)-(3) as below

0 0
Bl p, | Dt (np, )2
B ot ot (23)
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for the water phase, in which
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similarly, for the oil phase
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n = 27
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and finally, for the gas phase
nC, , 19
pgl—R(nw +nwpcow) Dy +
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Egs. (23), (26) and (31) represent a system of highly
nonlinear and coupled equations describing the black-
oil flow in a hydrocarbon reservoir. The major sources of
nonlinearities in these equations, i.e. the phase volume
fraction (7,), and relative permeability (k, ) are strongly
dependent on the primary unknown variables and therefore
should be continuously updated during the solution procedure.
However, effects of the weak nonlinearities, i.e. the formation
volume factor (B, ), viscosity (4, ), gas solubility (R,), and
porosity (n) could not be neglected. Treatment of these two
types of nonlinearities is carefully described by Settari and
Aziz (1975). In order to complete the description of the
governing equations, it is necessary to define appropriate
initial and boundary conditions. The initial conditions specify
the full field of phase pressures at time =0

inQandonT (34)

P.=0p.
where Q is the domain of interest and [ is its boundary. The
boundary condition can be of two types or a combination
of these: the Dirichlet boundary condition, in which the
phase pressures on the boundaries (Fp) are known, and the
Neumann boundary condition, in which the values of phase

fluxes at the boundaries (Fq) are imposed (where I' =T") ur )

p,=p, onl, (35)

T
[p.K.(p.g-Vp)] n=17q, onT, (36)
where n denotes the outward unit normal vector on the

boundary and ¢ is the imposed mass flux which is normal to
the boundary.

3 Numerical solution

Discretization of the governing equations can be now
expressed by the use of the CVFEM developed by Sadrnejad
et al (2012) in terms of the nodal phase pressures (i.e. p,)
which are selected as the primary variables. In this method,
the physical domain is discretized using hexahedral elements
(Fig. 1(a)), and further subdivision of the elements into
control volumes is performed in the transformed space (Fig.
1(b)). Furthermore, in order to represent the discretized
equations at the element level (instead of the control volume
level), the control volumes are also divided into sub-control
volumes. Each of these sub-control volumes belongs to a
specific element which is in association with the given control
volume (Fig. 1(c)).

(a)

Control volume

(b)

.~n-1--. i
AmsE=d=a)
g p——

Sub-control volume

(c)

Fig. 1 (a) System of finite element mesh in the physical space; (b)
representation of control volume around a node in the transformed space;
(c) illustrating a sub-control volume belongs to the eliminated element (after
Sadrnejad et al, 2012)

The values of phase pressures (P« ) at any point within an
element are approximated by the following expression

p.(&,1.)=N(& 1, )P, (37)
where N(&,n,¢) is the vector of standard finite element
shape functions.

CVFE discretization procedure, as presented by Sadrnejad

et al (2012), when applied to Egs. (23), (26) and (31) along
with the boundary condition (36), they yield
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where the coefficients are described as
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(39)

(40)

(41)

(42)

(43)

(44)

(45)

(46)

(47

(4%)

(49)

(50)

C}))

(52)

where Qgcy. and [scy. denote the domain of a sub-control volume and its faces, respectively; and W is the vector of the
weighting functions. The weighting functions are chosen such that the ith weighting function of an element takes a constant

value of unity over the sub-control volume belonging to node i, and zero elsewhere in the element, i.e.

P =

1 in the sub-control volume belongs to node i
0 otherwise

(53)

The temporal discretization of Eq. (38) is performed by the fully implicit first order accurate finite difference scheme
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(54

where At is the time step length and Ap,.,=D,.—D,.

Eq. (54) represents a very large system of coupled and
highly nonlinear equations on (Ap,),., which should be
solved by an appropriate iterative method. In the present
work, the global inexact affine invariant Newton technique
(GIANT) developed by Nowak and Weimann (1990) is
employed to solve the system of Eq. (54). In this method,
the global inexact Newton technique (Deuflhard, 1990) is
combined with the fast secant method (Deuflhard et al, 1990),
as an iterative linear solver, to obtain an efficient and robust
numerical solution of a very large scale highly nonlinear
system of equations. An algorithmic overview of the various
parts of the calculations is given as a pseudo code in Table 2.

Table 2 Algorithmic outline of the various parts of calculations
in the present model

Pre-processing and initializing
DO FOR EACH time step
UPDATE variables and parameters
DO FOR EACH Newton iteration
DO FOR EACH element
UPDATE the Jacobian matrix of Eq. (54)
ASSEMBLE to the global Jacobian matrix
END DO
DOFOR EACH element
UPDATE the residual of Eq. (54)
ASSEMBLE of the global residual vector
END DO
DO
Linear solver with fast secant method
IF (Linear solver Conv. TRUE.) EXIT
END DO
IF (Newton Conv. TRUE.) THEN
EXIT
ELSE
UPDATE variables
END IF
END DO
Post-processing
END DO
END

4 Numerical experiments

The benchmark problems of the first and second
comparative solution projects (CSP) of the SPE are used

to evaluate the validity of the presented formulation and
stability and convergence of the method to deal with a
bubble-point and a three-phase coning problem. Furthermore,
grid orientation effects on the results obtained by the model
are investigated by a benchmark waterflooding example.

4.1 Gas displacement

This simulation problem is adopted from the first case
of the benchmark problem of the first CSP (Odeh, 1981).
This benchmark problem is a challenging case, and it was
designed to evaluate the stability of black-oil reservoir
simulators to deal with strong nonlinearity of the governing
equations and transition of the reservoir condition from an
undersaturated to a saturated state. The state of a reservoir
is called undersaturated when it initially exists at a pressure
higher than its bubble-point pressure. At the undersaturated
condition, oil and water are the only fluid phases present in
the reservoir. Whereas, at the saturated state of the reservoir,
the free gas exists and its relatively high compressibility
produces a strong source of nonlinearity in the governing
equations. It is worth noting that the state of a location in a
reservoir can change from saturated to undersaturated state,
or vice versa, during the solution. The complete details of the
problem can be found in Odeh (1981).

The results obtained by 7 organizations which participated
in the solution project have been reported by Odeh (1981). A
full description of the simulators used by these participants
can be found in the reference. Generally, all the models were
developed based on the traditional finite difference or finite
volume methods. In this paper, the results obtained by the
present model are compared with those obtained from two
companies, namely, Shell Development Co. and Intercomp
Resource Development and Engineering Inc..

Figs. 2 and 3 show the oil production rate and the gas-
oil ratio obtained by the present model and those reported
by Odeh (1981). As seen in the figure, the models show
similar trends in the results, however a slight discrepancy is
observed during 2.5 to 6.0 years. The maximum ratio of these
differences is about 10% which is observed in the calculated
oil production rates at 2.95 years.

The averaged pressure values in the blocks containing
production and injection wells are compared with the results
obtained by Shell Development Co. and Intercomp Resource

— Present model
---Shell (Odeh, 1981)
--- Intercomp (Odeh, 1981)

Oil production rate, 1000 MSTB/D
5

1 2 3 4 5 6 7 8 9 10
Time, Year

Fig. 2 Oil production rate versus time
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] — Present model
Y —-— Shell (Odeh, 1981)
j - - Intercomp (Odeh, 1981)
0
1 2 3 4 5 6 7 8 9 10
Time, Year

Fig. 3 Variation of the gas-oil ratio versus time

Development and Engineering Inc. in Figs. 4 and 5. Similar
to Figs. 2 and 3 some slight discrepancies are also observed
in these results. The maximum ratio of pressure discrepancy
is about 8% which is occurred in the injection well block at
2 years. Fig. 6 shows the variation of gas saturation in the
production block obtained by the present model and those
reported by Odeh (1981).

A close study of our results reveals that the time of the
increase of the GOR in Fig. 3 coincides with the time of
the peak of reservoir pressure in the production block (Fig.
4), whereas the results obtained by the above mentioned
companies show a small lag between these times. It is well
known that the increase of GOR shows an increase in gas
saturation in the production block and due to the lower
viscosity of gas in compared with oil, the reservoir pressure
at the production block will decrease. The coincidence of
these two phenomena shows the superiority of our results in
compared with the others.

6000~
A
5500 A
" — Present model
- - - Shell (Odeh, 1981)

g - - Intercomp (Odeh, 1981)
o
o 45001
=
[}
172}
[0)
et
o

35004

2500

Time, Year

Fig. 4 Variation of pressure at the production well block versus time

4.2 Three-phase coning

The coning problem is the result of large gradient of
a phase potential in the axis direction of a producing well
(Fanchi, 2001). In the initial stage of the reservoir, the
gradient of potential surface is zero everywhere. After a
producer is perforated, the potential gradient would be created
which tend to lower the gas-oil contact and elevate the water-
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oil contact around the production well. This potential gradient
tends to deform the shape of the gas-oil and water-oil contacts
into a cone. The top of the water cone and end of the gas cone
gradually move toward the perforated zone of the producer.
Therefore, the phase saturation and pressure will change very
rapidly during the formation of the water and gas coning.
This may cause instability in the numerical solution of the
reServoir.

The second SPE CSP (Weinstein et al, 1986) is selected
to evaluate the stability of the present numerical solution to
deal with a coning problem. The required basic data of the
problem are completely presented in Weinstein et al (1986).

Fig. 7 shows the plot of initial phase saturation versus
depth. The gas saturation is equal to zero, below the depth
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of 9,035ft, and the water saturation is equal to 1 below the
depth of 9,029 ft. These results are consistent with the given
positions of the gas-oil contact and the oil-water contact. Also
the initial saturations satisfy the constraint (15).

Figs. 8-10 present the plots of the oil production rate,
water cut, and gas-oil ratio, respectively. These results
are also compared with those obtained by two companies,
namely, Shell Development Co. and Intercomp Resource
Development and Engineering Inc. reported by Weinstein et
al (1986). There are small differences (about 9%) between the
results of the present model and those reported by Weinstein
et al (1986).
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4.3 Radial displacement

The problem analyzed in this section was proposed by
Bajor and Cormack (1989) to evaluate the grid orientation
effects. The geometry of this example, mesh generation of the
domain and locations of the production and injection wells
are illustrated in Fig. 11. The domain is initially saturated
with 28% water and 72% oil. Initial zero pressure is assumed
inside the domain. Water is injected to the domain with the
rate of 0.8 m*/day and the simulation is terminated after 2
PV (pore volume) of injection. The porosity and absolute
permeability of the domain are considered 20.8% and
1500 mD, respectively. The viscosity of oil and water are
considered 130 and 0.97 cP. The well radius and bottom-hole
pressure for the production wells are considered to be 7.5 cm
and zero, respectively. The capillary pressure and relative
permeability functions are defined as below

n, —0.045)""

—4.0x| e T2 55
Pe ( 0.1619 j 53)
. _(nw—0.045 e

~ L 01619

(56)

2 2.429
b o[1_ 004V (n, —0.045
0.1619 0.1619

It is worth noting that the oil and water, in this example,
are considered as two immiscible and incompressible fluids.

Regarding the geometry of the domain, water production
should be identical at all of the producers. Therefore, diversity
of water cut curves for different producers can reflect the
effect of grid orientation. Fig. 12 depicts the maximum
difference of the water cut curves among the producers. The
maximum value of discrepancy between the producers is
about 2.5 percent.

To check the effect of grid distribution on the results of the
model, the number of grids is increased from 192 elements to
307 elements. Figs. 13 and 14 compare the water saturation
contours and variation of pressure at the injection block,
respectively. As seen in the figures, the solution with 307

I : Injection well

@ : Production well

Fig. 11 Geometric configuration of example 3
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elements is in good agreement with the former. Regarding
to these results, one could conclude that sensitivity of the
method to the grid orientation is very low. These figures also
demonstrate the convergence of numerical solution scheme.
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Fig. 13 Water saturation contour after 2 PV of water injection
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Fig. 14 Variation of pressure at the injection block

Fig. 15 shows the distribution of local mass balance error
for the present test case. As it is seen in the figure, for the
injection rate of 0.8 m’/day, the local mass balance error is
in the range of 10”7 m’/day. Fig. 16 describes the cumulative
global mass balance error over injection time. Dividing the
error by the total flow rate of 0.8 m’/day, we get less than
10™% errors. These figures show that the present model is a
fully conservative scheme.
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5 Conclusions

In this paper, a fully coupled control volume finite
element model is developed to simulate the black-oil flow
in hydrocarbon reservoirs. The method is fully conservative
and able to deal with unstructured grid systems. It combines
the mesh flexibility of FEM with the local conservative
characteristic of FDM and consequently overcomes the
deficiencies of FDM in dealing with geometrically complex
reservoirs, or inability of FEM to conserve mass locally.
Local and global conservative characteristic of the method
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is evaluated with a representative example. The numerical
experiments show that the method is accurate, stable and
convergent even in dealing with bubble-point and coning
problems which are the well-known difficult and unstable
problems in the field of reservoir simulation. Furthermore,
effects of mesh orientation on the results obtained by the
present formulation are investigated. Based on the numerical
results, grid sensitivity of the formulation is very low and
could be neglected. Currently, we are investigating the
possible extension of this methodology to deal with the
solution of the coupled geomechanic and multiphase flow
equations.
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