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Abstract:
subject in recent years. Using typical rift basins such as the Nanpu Sag as an example, combined with the 
analysis of the tectonics-palaeogeomorphology of basins, we undertook a detailed study of the differences 
of the third-order sequences in different basins, the combination of depositional systems within the 
sequence framework and the distribution of depocenters and subsidence centers. Our results revealed a 

of sedimentary sequences. The basin structure plays a primary role in controlling the development of the 
third-order sequences and the boundary of these sequences is easily formed in basins with gentle slopes, 
shallow water and a small area. The characteristics of the tectonics-palaeogeomorphology of rift basins 
are dominated by half-grabens of extensional faults, which affect the temporal and spatial combination 
of sedimentary systems within the sequences as well as the distribution of depocenters and subsidence 
centers. Based on the development rules of the faults dominating the half-grabens of extensional faults, 
rift basins are classified into two types: the single fault segmented-linkage type and the multi-fault 
combination type. The main controlling factors of the temporal and spatial combination of sedimentary 
systems and the distribution of depocenters and subsidence centers in different basins are different. The 
characteristics of early segmentation and later linkage of the faults play a critical role in controlling the 
sedimentary system combination within the sequence framework and the temporal and spatial differences 
of depocenters and subsidence centers of the single fault segmented-linkage rift basins, while the 
differences in fault activities are the dominating factors of the multi-fault combination rift basins.

Key words: Tectonics-palaeogeomorphology, sequence architecture, extensional half-graben, Nanpu 
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setting of China results in numerous rift basins and widely 

Yu et al, 2007), which is advantageous to some extent for 
the study of the tectonics and sedimentary sequence of rift 
basins. Consequently, comparing the differences of the basin 
characteristics and sequence filling structure, and building 
tectonics and sequence development sedimentary models of 
different basins to effectively enhance the prediction ability 
is of great significance to the development of theoretical 
sedimentology as well as petroleum exploration.

A series of basins with different tectonic characteristics 
and evolution is distributed in East China, whose development 

differences (Wang et al, 2010). Using basins such as the 
Nanpu Sag of the Bohai Bay Basin and the Dongying Sag as 
examples, we studied in detail the development characteristics 
of faults and half-grabens, third-order sequences, the temporal 

1 Introduction
Research into the relationship between tectonics and 

sedimentation in basins is a new direction in sedimentology, 
which is attracting increasing attention from geologists 

basins by analyzing the characteristics of sedimentation and 
exploring the relationship between sedimentary sequence and 
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and spatial combination of depositional systems and the 
changes of depocenters and subsidence centers. Our results 

role in controlling the sequence architecture in rift basins.

2 Temporal and spatial differences of 
sequence architecture in rift basins
2.1 Development characteristics of third-order 
sequence

The Shahejie Formation (Es) and Dongying Formation 
(Ed) developed from bottom to top of the Paleogene in the 
Nanpu Sag, within which twelve third-order sequences 
existed including four in the third member of Es (Es3), one 
in Es2, three in Es1, and four in Ed. While eight third-order 
sequences existed in the Paleogene in the Dongying Sag and 
numerous basins of the Bohai Sea, including three in Es3, one 
in Es2, one in Es1 and three in Ed (Fig. 1). 

2.2 Temporal and spatial distribution of sequences
As regards the depositional sequence of rift basins, the 

planar distribution is of temporal and spatial imbalance, 
which can be evidenced by, for one thing, the existence of 
numerous depocenters and subsidence centers of different 
degrees, while for another thing, different temporal and spatial 
distributions and evolution of depocenters and subsidence 
centers in different basins. For the Dongying Sag and Nanpu 
Sag, the temporal and spatial distributions of depocenters 

differences. The depocenters and subsidence centers of 
the two basins both show obvious migration. However, in 
terms of the continuity, the Dongying Sag is better than the 
Nanpu Sag. Moreover, the distribution orientation of the long 
axis of the depocenters and subsidence centers of different 
degrees in the Dongying Sag is consistently parallel to the 
main boundary fracture strike (Fig. 2(a), Fig. 2(b)). The 
situation for the Nanpu Sag is more complicated. During 
the sedimentation of Es, the depocenters and subsidence 
centers were distributed in the northern basin particularly 
the downthrown block of the Xinanzhuang and Bogezhuang 

of parallel with the main boundary fracture strike. While 
during the sedimentary period of the Dongying Formation, 
the depocenters and subsidence centers whose long axes are 
perpendicular to the strike of the Bogezhuang Fault migrated 
southwards with better continuity (Fig. 2(c), Fig. 2(d)).

2.3 Depositional system combination within the 
sequence framework

Based on the analysis of volcanic activity, regional stress 
field and subsidence history, the Paleogene of the Nanpu 
Sag is divided into four rifting episodes (Wang et al, 2010). 
Different rifting episodes correspond to different evolutionary 
stages of the basin, which caused different characteristics of 

The Nanpu Sag experienced four evolutionary stages: 
(1) Es3  sedimentary period (rifting episode I), (2) Es3

3-Es2 
sedimentary period (rifting episode II), (3) Es1 sedimentary 

Fig. 1 Sequence stratigraphic framework of the Paleogene in the Nanpu Sag, Dongying Sag and Bohai Sea (Zhu et al, 2009)
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Fig. 2 Distribution of the remnant thickness of different sequences in the Dongying Sag and the Nanpu Sag
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period (rifting episode III) and (4) Ed sedimentary period 
(rifting episode IV). These correspond with the filling 
sequences of (1) alluvial fan – fan delta – lake – braided delta 

fan delta and nearshore subaqueous fan – lake – braided delta 
system. Thus in the Nanpu Sag, the Es3 sedimentary period is 
mainly of arid type sequences in the initial rifting stage. Then 
deep-water sequences mainly developed in the deep-faulted 
period till the Ed sedimentary period.

In the Es3 sedimentary period, sedimentary assemblages 
of deep lake mudstone and oil shale, near-shore subaqueous 
fans and river deltas as well as sublacustrine fans mainly 
developed in the Dongying Sag and Chezhen Sag, which 
represented deep-water deposits in the strongly deep-
faulted period. Fan delta, river delta and shallow lake facies 
dominated in the Ed sedimentary period which belonged to 
shallow water deposits of the shrinkage stage of the basins.

3 Controlling factors of development 
differences of sequence architecture
3.1 Controlling effect of basin structure on the third-
order sequence

A sequence boundary is a response to a decline of base-
level. For rift basins, tectonics, sediment supply, climate and 
lake-level changes are the main controlling factors of the 
sedimentary base-level and of these tectonics and climate are 

Vwater S× hwater (1)

Vwater is the volume variation of 
 S is the area of lake-level (dominated by the area of 

hwater is the altitude variation of lake-level.
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In Fig. 3, A, B and C separately represent three basins of 
different structures. Different basin areas and slopes lead to 

hwater) 
l) resulting from 

tectonics and changes of climate. The lacustrine basin A has 
a large area and steep slope while the lacustrine basin B is 
small and gentle. With the same volume variation of water 

Vwater), the altitude variation of lake-level of lacustrine basin 
hB lB) are 

much more than those of lacustrine basin A. Compared with 
lacustrine basin C, which has a small area and gentle slope, 
lacustrine basin A is larger and steeper. With the same altitude 

hwater), the recession distance of lake-
lc) is larger.

In one place with the same climate, the effects of the 
climate changes on lake-level are dominated by the basin 
structure. Then there are two extreme situations. One is that 
for a small shallow-water basin with only a small volume of 
water, the changes of climate can lead to a large recession 
distance of shoreline towards the basin, which results in 
significant changes of the area of lake-level and a large 
erosional zone, being easier to form high-frequency sequence 
boundaries. The other is that for a large deep-water basin with 
huge volume of water, the recession distance of shoreline 
resulting from the same changes of climate is limited, 
which results in few changes of the area of lake-level and 
little erosional zone, consequently forming low-frequency 
sequence boundaries only.

During the Es3 sedimentary period in the Nanpu Sag, 
the basin was a small shallow-water lacustrine basin with 

volume. The margins of the basin were gentle slopes. High-
frequency changes of climate led to changes of lake-level, 
which consequently made large recession distance, so that the 
erosional zone was large enough to be formed with numerous 
sequence boundaries (Fig. 3). During the Es3 sedimentary 
period the lake-level experienced four declines, and sequences 
were all third-order sequences which can be evidenced by the 
fact that each time span, accordingly with those changes, was 
about 3 Ma. 

During the Es3 sedimentary period, the Dongying Sag and 
Chezhen Sag were in the period with large scale subsidence 

al, 2007). The boundary faults experienced strong activity 
and large throws. Basins were mostly deep-water basins with 
large areas and huge water volumes. Consequently, the effects 
of the changes of lake-level on the shoreline resulting from 
the same climate condition were small. Only a short migration 
distance of shoreline towards the basin was formed with a 
small erosional zone, so the third-order sequence boundaries 
failed to form and a small amount of sequences developed. 

Similarly, during the Es1 and Ed sedimentary periods, 
both area and depth of the Nanpu Sag were smaller than those 
of the Dongying Sag with relatively gentle slopes and small 
throw of boundary faults. Consequently a large amount of 
third-order sequences developed (Table 1, Table 2).

Fig. 3 Relationship of basin structure and the changes of lake-level
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3.2 Controlling effects of half-grabens of extensional 
faults on the combination of depositional systems 
and sequence distribution

which is active in the central position while inactive at the 

1

1
23

2

3

Fig. 4 Evolution model of the segmented-linkage and half-graben 
of extensional faults 

Table 1 Areas and depths of lacustrine basins

Sag Area, km2 Average maximum
 depth, m

Average minimum 
depth, m

Dongying Sag 6000 200 100

Nanpu Sag 1900 10

Table 2 Average activity velocities of main faults in different basins

Dongying Sag Nanpu Sag

Geologic time West section 
of the Chennan Fault, m/Ma

East section 
of the Chennan Fault, m/Ma

Binnan Fault
 m/Ma Geologic time Xinanzhuang Fault

 m/Ma
Bogezhuang Fault

m/Ma
Es3 130 110 Es3 94 121.1

Sha 1 Member
 Es1

46 Es1

Ed 20 17 18 Ed 268 198.36

two ends (Schlische, 1991). The differences of characteristics 
of geometry and kinematics of the boundary fault dominate 
the temporal and spatial evolution of the half-graben 
topography and then affect the type and distribution of the 
depositional systems in basins. Moreover, the development 
and distribution of half-grabens also affect the distribution 
of sequence stratigraphy, thus controlling the sequence 
architecture of rift basins. 

For the rift basins controlled by extensional faults, 
the controlling effects of fault activity on half-grabens 
are mainly of two types. The first type is single fault 
segmented linkage rift basins such as the Nanpu Sag and 
Dongpu Sag (Sun et al, 2003). The boundary faults of such 
basins commonly have large extensional distances, and 
the evolution process is characterized by segmentation-
linkage. In the early development stage of faults, along the 
strike, the fault commonly consisted of several relatively 
independent segmentations with different activities and 
controlling different half-grabens. Accommodation structures 
developed among segmentations. Activity differences among 
the segmentations led to different structure characteristics 
of half-grabens. The fault throws were commonly large in 
the half-grabens where there was a sudden change of terrain 
while the terrain changed gradually in the accommodation 
structure. In the late period, the faults gradually connected to 

consistent, the structural differences among half-grabens also 
decreased. The initial small scale half-grabens connected to 
a unified large scale half-graben (Fig. 4). The other type is 
a multi-fault combination rift basin such as the Dongying 
Sag and Zhanhua Sag with several boundary faults of small 
scale and a short extensional distance with different temporal 
and spatial evolution characteristics. These faults are always 
segmented. Each fault controls a half-graben whose structural 
characteristics change with the changes of fault activities. 
Various accommodation belts are the boundaries of the faults. 
The differences of half-graben structures are determined 
by the controlling faults, which also affect the topographic 
characteristics of accommodation belts among faults with 
a positive correlation. Such changes of differences during 
geological history also lead to topographic changes of the 

accommodation belts. 
3.2.1 Effects on the temporal and spatial combination of 
depositional systems 

 Based on the detailed interpretation of different seismic 
lines perpendicular to the Xinanzhuang and Bogezhuang 
Faults in the northern Nanpu Sag, combined with fault 
throw data, our results reveal that the two faults were both 
characterized by initial-segmentation and late-linkage 
which play a role in controlling the temporal and spatial 
combination of the depositional systems. Taking the 
Xinanzhuang Fault for an example, in the sedimentary period 
of Es, the differences of fault throw resulted in obvious multi-
branch faults along the strike. The branch faults had similar 
dip and slightly different strike with ends superimposed 

slopes. The fault throw of branch faults was characterized 
by decreasing from the center to the ends, which formed and 
controlled half-grabens with different structures. Therefore 

along the strike of the Xinanzhuang Fault, which dominated 
the type and distribution of sedimentary systems. In the 
half-grabens controlled by branch faults with large fault 
throws, steep slopes and deep water, deep-water mudstones 
commonly developed. With certain source conditions, near-
shore subaqueous fans of near-source rapid accumulation 
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also developed, which were mainly of vertical stack as well 
as limit extension of horizontal distribution. While in the 
superposition of branch faults with small fault throw, gentle 
slopes and shallow water, mainly fan deltas developed, which 
extended to a large scale horizontally but had relatively small 

the rift reactivation episode of the Nanpu Sag. With strong 
activity of the faults, the differences of fault throw along 
strike decreased. While the branch faults began to connect 
and the Xinanzhuang Fault gradually showed characteristics 
of one fault system. The initial small scale half-grabens 
connected to a uniform large scale half-graben. During this 
period, near-shore subaqueous fans and large scale deep-
water deposits developed due to the large fault throw, steep 
slopes and deep water. Fan deltas developed in other regions 
where the fault throw was small and the water was shallow.

Depression is mainly controlled by the Chennan Fault and 

is dominated by the temporal and spatial differences of 
the boundary fault activities, which affected the temporal 

and spatial distribution of the depositional systems of the 
Dongying Sag (Ye et al, 2006). The Es3 sedimentary period 
was the peak rifting period of the Dongying Sag (Ma et al, 
2000), during which the active velocity of the Es3 sedimentary 
period of the Chennan Fault reached 130 m/Ma and the active 

faults were of large throw, steep sections (Kong, 2000) and 

grabens with mainly near-shore subaqueous fans developing. 
While in the superposition regions of the Chennan Fault and 
Binnan Fault which were at the ends of extensional faults, the 
fault throw was small with gentle sections and slopes (Sun 
and Ren, 2004). Consequently mainly progressive fan deltas 

period, the Dongying Sag tended to shrink with the boundary 
fault activity being significantly weakened. The active 
velocity of the Chennan Fault was about 20 m/Ma while 
that of the Binnan Fault was about 17 m/Ma. The basin was 
mainly of shallow shore and half-deep lacustrine environment 
with faults of small throw, gentle slopes, and fan deltas and 
deltas developed.
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Fig. 5 The development characteristics of fault throw and half-grabens and the combination of depositional systems in different periods of the Nanpu Sag
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3.2.2 Temporal and spatial distribution of the half-grabens 
of extensional faults and depocenters and subsidence 
centers

On the basis of the analysis of the distribution of 
sequences in the Nanpu Sag and Dongying Sag, combined 
with the study of the fault throw, we concluded that the 
temporal and spatial distribution of depocenters and 
subsidence centers in each period was dominated by the 
temporal and spatial differences of the boundary fault 
activities as well as the development characteristics of the 
controlled half-grabens.

The segmentation-linkage of boundary faults and the 
development of the NE second-grade faults are the main 
controlling factors on the distribution of depocenters 
and subsidence centers in the Nanpu Sag. In the Es3  
sedimentary period, the Xinanzhuang Fault with the 
segmental property of the strike dominated the half-grabens 
with different structures. The fault throw there was large 
and decreased to the ends (Fig. 2(c)-2(d)). While among the 

half-grabens, the fault throw was small and the geography 
was high. According to the contour of residual formations in 
Es3 , the depocenters and subsidence centers were mainly 
distributed on the downthrow side of the Xinanzhuang Fault, 
and were mostly distributed in extensional half-grabens with 
large fault throw and thin strata among them (Fig. 2(c)-2(d)). 
During the Ed1 sedimentary period, the fault throw differences 
along the strike of the Xinanzhuang Fault gradually decreased 
and it started to act as a complete fault system. The whole 
sag became a uniform large scale half-graben. Moreover, 
the extensional half-graben controlled by the NE-trending 
secondary faults appeared with the strike perpendicular to the 

of Ed1 (Fig. 6). The sequence distribution area significantly 
extended and the thickness centers were continuous as well as 

with the north boundary faults, and in the sub-half-grabens 
the Nanpu 1# tectonic zone and Nanpu 4# tectonic zone were 
thickness centers.
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Fig. 6 The development characteristics of fault throw and half-grabens and the distribution of depocenters and subsidence centers of Ed1 in the Nanpu Sag

For the Dongying Sag, the activity differences of 
boundary faults play a significant role in controlling 
the different temporal and spatial developments of the 
depocenters and subsidence centers in the basin. During the 
sedimentary period of Es3–Es2 , the faults with large throws 
included the Chennan, Binnan and Gaoqing-Pingnan Faults, 
forming a nearly NE trending arc fracture zone that controlled 
the large half-grabens of the NW fault and the SE overlap. 
Meanwhile the thickness of sequences was also controlled by 
the half-graben structure. The thickness center was located 
near the downthrow side of the fault with large scale and good 
continuity. During Es2

U–Ed sedimentary period, the main 
active faults were still the Chennan, Binnan and Gaoqing-
Pingnan Faults. As the fault throw of the Chennan Fault and 
Gaoqing-Pingnan Fault was relatively small, the Binnan half-
graben was the largest. Therefore, the thickness center of 
Es2

U–Ed was divided into three sections among which the 
thickest one was located in the Binnan half-graben (Fig. 2(a)-
2(b)).

4 Conclusions
1) Sequence architectures vary in different basins. 

Tectonic-palaeogeomorphological characteristics play a 
significant role in controlling the third-order sequence 
development characteristics. The temporal and spatial 
combination of sedimentary systems within the sequence 
framework and the distribution of depocenters and subsidence 
centers of rift basins show different sequence architectures. 

2) The development of the third-order sequences is 
dominated by the differences of the basin structures. The 
temporal and spatial combination of sedimentary systems 
within the sedimentary sequences and the migration of 
depocenters and subsidence centers are dominated by 
the fault-controlling extensional half-grabens and their 
combination characteristics.
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