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Abstract Most current lattice Boltzmann (LBM) models

suffer from the deficiency that their parameters have to be

obtained by fitting experimental results. In this paper, we

propose a new method that integrates the molecular dy-

namics (MD) simulation and LBM to avoid such defect.

The basic idea is to first construct a molecular model based

on the actual components of the rock–fluid system, then to

compute the interaction force between the rock and the

fluid of different densities through the MD simulation. This

calculated rock–fluid interaction force, combined with the

fluid–fluid force determined from the equation of state, is

then used in LBM modeling. Without parameter fitting, this

study presents a new systematic approach for pore-scale

modeling of multi-phase flow. We have validated this ap-

proach by simulating a two-phase separation process and

gas–liquid–solid three-phase contact angle. Based on an

actual X-ray CT image of a reservoir core, we applied our

workflow to calculate the absolute permeability of the core,

vapor–liquid H2O relative permeability, and capillary

pressure curves.

Keywords Molecular dynamics � Lattice Boltzmann �
Multi-phase flow � Core simulation

1 Introduction

Multi-phase flow in porous media is a common process in

production of oil, natural gas, and geothermal fluids from

natural reservoirs and in environmental applications such

as waste disposal, groundwater contamination monitoring,

and geological sequestration of greenhouse gases. Con-

ventional computational fluid dynamics (CFD) methods are

not adequate for simulating these problems as they have

difficulty in dealing with multi-component multi-phase

flow systems, especially phase transitions. In addition, the

complex pore structure of rocks is a big challenge for

conventional grid generation and computational efficiency

(Guo and Zheng 2009).

In hydrology and the petroleum industry, it is common

practice to model multi-phase flow using Darcy’s law and

relative permeability theory. The relative permeability

curve, usually obtained from laboratory experiments, is the

key to calculate flow rates of different phases. Although

measuring approaches have been widely used and results

have been largely accepted for many years in most cases,

laboratory experiments are usually expensive, not robust

especially for low and ultra-low permeability core mea-

surements, can damage the cores, and cannot always be

repeated for different fluids or under different flow

scenarios.

It is desirable to obtain the core properties through nu-

merical modeling based on actual pore structure charac-

terizations. Recently, the lattice Boltzmann (LB) method,

which is based on a molecular velocity distribution func-

tion, has been proposed as a feasible tool for simulation of

multi-component multi-phase flow in porous media (Huang

et al. 2009, 2011; Huang and Lu 2009). In 1991, Chen et al.

proposed the first immiscible LB model that uses red and

blue-colored particles to represent two types of fluids
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(Chen et al. 1991). The phase separation is produced by the

repulsive interaction based on the color gradient. In 1993,

Shan and Chen proposed to impose nonlocal interactions

between fluid particles at neighboring lattice sites by adding

an additional force term to the velocity field (Shan and Chen

1993, 1994; Shan and Doolen 1995). The potentials of the

interaction control the form of the equation of state (EOS)

of the fluid, and phase separation occurs naturally once the

interaction potentials are properly chosen. In 1995, Swift

et al. (1995, 1996) proposed a free-energy model, in which

the description of non-equilibrium dynamics, such as the

Cahn–Hilliard approach, is incorporated into the LB model

using the concept of the free-energy function. However, the

free-energy model does not satisfy Galilean invariance, and

the temperature dependence of the surface tension is in-

correct (Nourgaliev et al. 2003). In 2003, Zhang and Chen

proposed a new model, in which the body force term was

directly incorporated in the evolution equation (Zhang and

Chen 2003). Compared with the Shan and Chen (SC)

model, the Zhang and Chen (ZC) model avoids negative

values of effective mass. However, simulation results from

the Zhang and Chen model show that the spurious current

gets worse and the temperature range that this model can

deal with is much smaller than the SC model (Zeng et al.

2009). In 2004, by introducing the explicit finite difference

(EFD) method to calculate the volume force, Kupershtokh

developed a single-component Lattice Boltzmann model

(LBM) (Kupershtokh and Medvedev 2006; Kupershtokh

et al. 2009; Kupershtokh 2010). Compared to previous

models, this model has a significant improvement in pa-

rameter ranges of temperature and density ratio. Our work

in this paper is partially based on this model.

In conventional LB models, the force between fluid and

rock is supposed to be proportional to the fluid density.

This assumption lacks theoretical support and cannot de-

scribe the true physical phenomena under certain circum-

stances. As an improvement, we propose to simulate the

force between the fluid component and rock for different

fluid density using the molecular dynamics (MD) method.

Molecular dynamics simulation is an effective method

for investigating microscopic interactions and detailed

governing forces that dominates the flow. Among the MD

studies, various issues in multi-phase processes were paid

close attention. Ten Wolde and Frenkel studied the ho-

mogeneous nucleation of liquid phase from vapor (Ten

Wolde and Frenkel 1998). Wang et al. studied thermody-

namic properties in coexistent liquid–vapor systems with

liquid–vapor interfaces (Wang et al. 2001). A sharp peak

and a small valley at the thin region outside the liquid–

vapor interface were found to be evidence of a non-equi-

librium state at the interface. In our work, we established a

similar system to simulate forces between the fluid and

solid components for different fluid densities.

Previous work in combining LB and MD methods to-

gether can be classified into two types: one is conducted by

Succi, Horbach, and Sbragalia (Chibbaro et al. 2008;

Horbach and Succi 2006; Sbragaglia et al. 2006; Succi

et al. 2007). They applied MD and LB methods for the

same problem and then compared the results. The second

type is conducted by Duenweg, Ahlrichs, Horbach, and

Succi (Ahlrichs and Dünweg 1998, 1999; Fyta et al. 2006).

They applied the two methods to the motion simulation of

polymer, DNA, or other macromolecules in water. The

coupling of the MD calculation for the macromolecule part

and the LB modeling for the solvent is achieved via a

friction ansatz, in which they assumed the force exerted by

the fluid on one monomer was proportional to the differ-

ence between the monomer velocity and the fluid velocity

at the monomer’s position.

To be exact, the first type summarized above is not the

coupling of LB and MD. The second approach is consid-

ered as multi-scale coupling of LB and MD, where MD is

used for the focus part such as the polymer or the fluid–gas

interface, while LB is used for other parts of the system,

such as the solvent or the fluid flow. LB and MD simula-

tions are conducted at the same time step, and the variables

are exchanged between these two simulation domains un-

der certain boundary constraints. Such a synchronous cal-

culation method is extremely time-consuming in porous

media flow simulation because of the large amount of

calculation of MD simulation on both gas–liquid and rock–

fluid interfaces.

Our proposed method integrates, rather than couples si-

multaneously, the LB and MD models efficiently. In this ap-

proach, the interaction forces between rock and fluid of

different density are firstly calculated by MD simulation.

Combinedwith the fluid–fluid force determined from the EOS,

the two types of interaction forces are then accurately described

for LBM modeling. We validated our integrated model by

simulating a two-phase separation process and gas–liquid–

solid three-phase contact angle. The success of MD–LBM re-

sults in agreement with published EOS solution, and ex-

perimental results demonstrated a breakthrough in pore-scale,

multi-phase flow modeling. Based on an actual X-ray CT im-

age of a reservoir core, we applied our workflow to calculate

the absolute permeability of the core, the vapor–liquid H2O

relative permeability, and capillary pressure curves.

2 Methodology

2.1 The lattice Boltzmann model

The Boltzmann equation describes the evolution with re-

gard to a space–velocity distribution function from motions

of microscopic fluid particles (Atkins et al. 2006).
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of

ot
þ n � rxf þ a � rnf ¼ Xðf Þ; ð1Þ

where t is time, vector x is location, vector n is the fluid

molecular velocity at time t and location x, and f is the

velocity distribution function of the fluid molecules, which

is equivalent to the density of the fluid molecules whose

velocity is n at time t on location x, a is the acceleration of

the fluid molecules, and X(f) is the velocity distribution

function change caused by collision between fluid

molecules.

It is not realistic to solve the integral–differential

Boltzmann equation directly. An alternative approach is to

solve the discrete form of the Boltzmann equation. The

most widely used approach is the LBM. The key idea of

LBM is both the location and velocity of the particles

which are discretely characterized (Fig. 1). A typical LB

equation can be written as (Shan and Chen 1993; Qian

et al. 1992)

fi xþ eidt; t þ dtð Þ � fi x; tð Þ

¼ 1

s
f
eq
i x; tð Þ � fi x; tð Þð Þ þ wi x; tð Þ;

ð2Þ

where x denotes the position vector, ei (i = 0, 1,…, q - 1)

is the particle velocity vector to the neighbor sites, q is the

number of neighbors, which depends on the lattice ge-

ometry, fi is the particle velocity distribution function along

the ith direction, fi
eq is the corresponding local equilibrium

distribution function satisfying the Maxwell distribution, s
is the collision relaxation time, and wi is the change in the

distribution function due to the body force. The LB

equation implies two kinds of particle operations: stream-

ing and collision. The term on the left side of Eq. (2) de-

scribes particles moving from the local site x to one of the

neighbor sites x ? eidt within each time step. The first term

on the right side of Eq. (2) describes the collisions con-

tributing to loss or gain of the particles with a velocity of ei.

After collision, the velocity distribution will relax to an

equilibrium distribution, fi
eq.

The fluid density q and its velocity u at one node are

calculated in Eqs. (3) and (4) (Qian et al. 1992). The re-

lationship between s and fluid kinematic viscosity m can be

described as v ¼ 2s� 1ð Þdx2�
6dtð Þ, where dx is the lattice

constant and dt is the lattice time (Qian et al. 1992; Swift

et al. 1996).

q ¼
Xq�1

i¼0

fi ð3Þ

qu ¼
Xq�1

i¼0

fiei ð4Þ

We use the equilibrium distribution function fi
eq in the

standard form (Yuan and Schaefer 2006)

f
eq
i ðx; tÞ ¼ f

eq
i ðq; uÞ

¼ qxi 1þ ei � u
h

þ ei � uð Þ2

2h2
� u2

2h

 !
; ð5Þ

where q and u are for q(x, t) and u(x, t), respectively,

corresponding to local fluid density and macro velocity.

With this equilibrium distribution function, the ‘‘kinetic

temperature’’ in standard LB models, such as ‘‘D2Q9’’ and

‘‘D3Q19,’’ is equal to h ¼ dx2�
3dt2ð Þ (Yuan and Schaefer

2006).

In this work, we use the D2Q9 model for the 2D

simulations. The weighting factor and discrete velocity for

this model are given below:

ei ¼
0; 0ð Þ; i ¼ 0

�1; 0ð Þ 0; �1ð Þ; i ¼ 1; 2; 3; 4

�1; �1ð Þ; i ¼ 5; 6; 7; 8

8
><

>:

xi ¼
4=9;
1=9;
1=36;

8
<

:

i ¼ 0

i ¼ 1; 2; 3; 4
i ¼ 5; 6; 7; 8

For the implementation of the body force term, wi, it is

appropriate to use the exact difference method (Kupersh-

tokh and Medvedev 2006; Kupershtokh 2010)

wi x~; tð Þ ¼ f
eq
i q; u~þ Du~ð Þ � f

eq
i q; u~ð Þ; ð6Þ

where the change of the velocity is determined by the force

F acting on the node

6 2 5

3 0 1

7 4 8

e1

e5e2e6

e3

e7 e4 e8

e0

Fig. 1 Illustration of the lattice Boltzmann model
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Du ¼ FDt=q ð7Þ

F is identified in three categories: attractive (or repulsive)

force between local fluid and the fluid of their neighbor

lattices Fff, attractive force between the local lattice fluid

and the boundary wall Fsf, and the macro body force, e.g.,

the gravity, Fg.

With the body force F, the real fluid velocity v should be

evaluated at half the time step (Kupershtokh 2010)

qv ¼
Xq�1

i¼0

fiei þ
1

2
FDt ð8Þ

Thus, the most important part for LB modeling is the de-

termination of the interaction forces between neighboring

fluids Fff and the fluid and rock wall Fsf.

2.2 Application of the equation of state to obtain

fluid–fluid interaction forces Fff

It is suggested that the fluid–fluid interacting force can be

obtained by solving the state equations (Shan and Chen

1993, 1994; Kupershtokh and Medvedev 2009; Yuan and

Schaefer 2006)

Fff x; tð Þ ¼ �rU x; tð Þ; ð9Þ

where U(x, t) is a function of state that can be expressed as

(Kupershtokh 2010)

U x; tð Þ ¼ p qm x; tð Þ; T x; tð Þð Þ � qm x; tð Þh; ð10Þ

where qm is the specific density of the fluid, which can be

expressed as q = qmM where M is the standard molar

quality of fluid component. T is temperature. p(qm, T) is a
certain state equation. Replacing U with the effective mass

density u, we get

u2 x; tð Þ ¼ U x; tð Þj j ð11Þ

Then the interacting force between fluids can be written as

Fff x; tð Þ ¼ 2u x; tð Þru x; tð Þ ð12Þ

In our work, the Peng–Robinson (P–R) state equation is

used in the expression

p ¼ qmRT
1� bqm

� aa Tð Þq2m
1þ 2bqm � bqmð Þ2

ð13Þ

where a = 0.458R2Tc
2/pc, b = 0.0778RTc/pc, a(T) =

[1 ? f(x)(1-(T/Tc)
0.5)]2 where Tc and pc are the critical

temperature and pressure of fluid components, x is the

acentric factor which depends on the fluid composition itself.

According to the correspondence principle, the molar

density qm, viscosity l, etc. are the same when the two

fluids have the same values of T/Tc and p/pc. Following this

principle, the lattice fluid and the real fluid should satisfy

the following equations for the P–R equation to be used in

the LB model (Yuan and Schaefer 2006)

T l

T l
c

¼ T r

T r
c

pl

plc
¼ pr

prc

qlm
qlm;c

¼ qrm
qrm;c

; ð14Þ

where the superscript l and r stand for the lattice and real

systems, respectively, and c means the critical state.

2.3 Application of the molecular dynamics

simulation to obtain rock–fluid interaction

forces Fsf

It is clear that the force acting between fluid components

and the rock boundary wall has a significant effect on flow

modeling with LBM. In fact, this force decides the capil-

lary force and relative permeability curve for multi-phase

systems.

In previous studies (Huang et al. 2009, 2011; Huang and

Lu 2009; Martys and Chen 1996; Hatiboglu and Babadagli

2007, 2008), the force between the fluid and boundary wall

is simplified as

Fsf x; tð Þ ¼ �u q x; tð Þð ÞGsf

Xq

i¼0

xid xþ eið Þei; ð15Þ

where q is the fluid component density, boolean d = 0, 1 to

indicate if it is the fluid or solid lattice, respectively. Gsf is

the force strength factor between fluid and solid, and it is

usually determined by fitting the macroscopic fluid–solid

contact angle.

There are two disadvantages of this method. One is that

Gsf cannot always be obtained because of the lack of

contact angle data for some common fluids such as

methane, nitrogen, carbon dioxide, and polymers for in-

stance. Another disadvantage is that the assumption that Fsf

is directly proportional to the fluid effective mass density

yields significant error under actual conditions. For ex-

ample, this assumption cannot represent the adsorption

force for coal gas and shale gas to the formation rock.

To overcome these limitations, we propose to obtain the

force between fluid components and the rock through

molecular dynamic simulation.

There are a variety ofminerals in the reservoir rock.But it is

mainly composed of minerals including quartz (SiO2), calcite

(CaCO3), dolomite (CaMg(CO3)2), feldspar (KAlSi3O8,

NaAlSi3O8, CaAl2Si2O8 mixture), and clay (Al3Si2O5(OH)4)

with amixing ratio. In our preliminary investigation, we chose

monocrystalline silicon to represent the rock solid, although

elemental silicon does not occur in reservoir rocks. It is

however convenient for model validation against theoretical

and experimental results. In our on-going research, we now

use the more realistic assumption that the rock grains are

composed of SiO2 and other components.
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The SPC/E model (Jorgensen et al. 1983) was used to

model water molecules. This model specifies a 3-site rigid

water molecule with charges and Lennard-Jones pa-

rameters assigned to each of the 3 atoms. The bond length

of O–H is 1.0 Angstrom, and the bond angle of H–O–H is

109.47�.
The well-known LJ potential and the standard

Coulombic interaction potential were applied to calculate

the intermolecular forces between all the molecules. The

parameters are listed in Table 1. The cross parameters of

LJ potential were obtained by Lorentz Berthelot combining

rules. As originally proposed, this model was run with a 9

Angstrom cut-off for both LJ and Coulombic terms.

LAMMPS code was used to construct the simulation

system.

As shown in Fig. 2, the simulation domain was a boxwith

periodic boundary conditions applied in the x and

y directions. The length along these two directions is both

43.45 Angstrom, and the length along the z direction is 60.14

Angstroms. The solid walls were represented by layers of

DM (face-centered cubic) silicon atoms (1152 9 2). The

speed and the force applied on the Si atoms were both set as

zero to make them represent boundary walls and to keep a

constant volume of the system.

For different cases, at the beginning of simulation, water

molecules of different numbers were sandwiched by the

two solid walls.

Firstly, using the constant NVT (certain number, vol-

ume, and temperature–canonical ensemble) time integra-

tion via the Nose/Hoover method, the whole system was set

at a uniform temperature of 373.15 K (110 �C).
Then an annealing schedule of 340,000 steps was ap-

plied to allow the system to reach equilibrium (there were

four cycles altogether in the annealing schedule. In one

single cycle, the temperature is raised from 373.15 to

423.15 K in 20,000 steps, to 473.15 K in 20,000 steps, and

then reduced to 423.15 K in 20,000 steps, to 373.15 K in

20,000 steps). After that, the equilibrium state of the sys-

tem was reached at 373.15 K (110 �C). Then the NVT

ensemble was changed into NVE (certain number, volume,

and energy– micro-canonical ensemble) and run for 20,000

steps. In these two processes, the equivalent length scale

for the simulations was 0.5 feets to ensure energy

conservation.

With the equilibrium system, the force between Si and

H2O can be calculated. As Fig. 2 shows, since the distance

between domain 1 and the solid wall is larger than the cut-

off radius (9 Angstroms), the water molecules in domain 1

can be considered as free molecules. So the mass densities

of free water in different cases were calculated based on the

molecules in this domain. For the water molecules in do-

main 2, the force F applied by the silicon solid wall was

directly calculated according to the potential field in the

simulation. Then we can get the stress r = F/A, where A is

the area of the wall.

2.4 Integrated workflow from MD to LBM

simulation

For the first step, we build a MD model as presented in

Sect. 2.3 to calculate the rock–fluid interaction forces Fsf

between any solid component of the wall and the fluid of

different density. Input parameters for this step include

molecular species of the fluid and boundary solid and the

potential parameters. The result of this step is the rela-

tionship between the solid–fluid interface and the fluid

density.

Then we calculate u(q) of different fluid density q from

P–R EOS calculations as presented in Sect. 2.2. The fluid–

fluid interaction force Fsf is then determined from Eq. (12).

Fig. 2 The molecular dynamics model of the Si–H2O system.

Lx = Ly = 43.45 Angstrom, Lz = 60.14 Angstrom. Green atom is

for Si, pink for O, and white for H. The density of water phase is

determined by H2O molecules in domain 1. Force between water and

the boundary is determined by H2O molecules in domain 2

Table 1 Parameters for LJ potential and Coulombic potential

Parameters r, Angstroms e, kcal/mole q, e

Silicon 3.826 0.4030 0

Oxygen 3.166 0.1553 -0.8476

Hydrogen 0.0 0.0 0.4238

286 Pet. Sci. (2015) 12:282–292
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Input parameters for this step include fluid density, critical

pressure and temperature, and acentric factor of the fluid

component.

With an actual core X-ray scan image for lattice grid

construction and the interaction forces being determined

from MD and EOS calculation, we use the LB method to

simulate the fluid flow in porous media and to obtain the

absolute permeability, relative permeability, and capillary

pressure curves.

The integrated workflow is illustrated in Fig. 3.

3 Results

3.1 LBM simulation on liquid–vapor phase

transition process of water

To validate the EOS model, the single-component fluid

phase transition process was simulated using the model

described in Sect. 2.2.

Water is the fluid we choose in our simulation. Its cri-

tical temperature is 373.99 �C, critical pressure is

22.06 MPa, critical density is 322.0 kg/m3, and its acentric

factor is 0.344.

A 2D 200 9 200 square lattice was used in this

simulation, and the periodic boundary conditions were

applied on the four boundaries. The average mass density

of the computational domain was set to be 500 kg/m3. At

the beginning of simulation, the mass density was ho-

mogenously initialized with a small (0.1 %) random

perturbation.

Figure 4 shows the mass density contour in the com-

putation domain at different time steps (t = 250, 500, 1000

and 2000) when the temperature is 110 �C. The density in

the pink area is high (793 kg/m3), which indicates it is

saturated with water liquid. The density in the green area is

low (about 0.76 kg/m3), which indicates it is saturated with

water vapor. It is clearly shown in this figure that the small

liquid droplets aggregate to form bigger ones as time in-

creases. Eventually, all these small droplets coalesce to

form bigger droplets and the rest of the space of the

computational domain is occupied by vapor only. All these

simulation results for the single-component phase transi-

tion process are consistent with those reported by Zeng

et al. (2009) and Qin (2006).

We then repeated the simulation at different tem-

peratures for model validation. Figure 5 shows the density

(b)

(d)(c)

(a)
1000

800

600

400

200

0

Fig. 4 Mass density (kg/m3) distribution of water vapor and liquid at

different time steps t. a t = 250. b t = 500. c t = 1000. d t = 2000
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Liquid density, Exp.
Vapor density, Exp.
Liquid density, EOS
Vapor density, EOS
Liquid density, LBM
Vapor density, LBM

Fig. 5 Saturated water (in blue) and vapor (in red) densities versus

temperature. ‘‘o’’ is the result of LB simulation. The solid line is the

solution of the P–R equation using the Maxwell equal-area construc-

tion. asterisk Denotes the experimental data from Handbook of

Chemical Engineering (Liu et al. 2001)

Single component multi-phase flow
in porous media

Lattice Boltzmann model

Interaction between
fluid component

Interaction between
fluid and rock media

P–R EOS MD simulation

Pore network structure

Absolute
permeability 

Capillary
pressure 

Relative
permeability 

Fig. 3 Schematic illustrations of the workflow. First, the interaction

forces between fluids are determined from P–R EOS calculation, and

the rock–fluid interaction force is determined from MD simulation.

Then we run the lattice Boltzmann simulation based on the grid

constructed from the core X-ray scan image to obtain the absolute

permeability, relative permeability, and capillary pressure curves

Pet. Sci. (2015) 12:282–292 287

123



distribution curves of both vapor and liquid when they

reach phase equilibrium at different temperatures. This

figure indicates that the density curve calculated with LBM

is nearly identical to that obtained from P–R EOS using the

Maxwell equal-area construction (Yuan and Schaefer

2006). It suggests that the LBM, combined with EOS,

provides an accurate method to model single-component

gas–fluid two-phase flow.

It is noted that there are some differences between the

theoretical solution using EOS and the experimental results

for liquid density calculations, and this is originated from

the inadequacy of P–R EOS and is in agreement with

(Atkins and William 2006).

3.2 MD simulation in determination of force

between fluid components and the boundary

wall

In the MD simulation, 42 sets of systems with different

H2O densities were generated. We select 4 cases for il-

lustration in Fig. 6.

As shown in Fig. 5, at the simulation temperature

(110 �C), the force calculation is only meaningful when the

vapor density is smaller than 0.787 kg/m3 or the liquid

density is greater than 793 kg/m3. The relationship be-

tween density and stress is plotted in Fig. 7. It clearly

shows that the stress varies with the fluid density nonlin-

early, thus demonstrates the assumption that ‘‘the force

between fluid and rock is supposed to be proportional to the

fluid density’’ used by former studies (Martys and Chen

1996; Hatiboglu and Babadagli 2007, 2008) is not

appropriate.

3.3 Calculation of monocrystalline silicon–water

contact angle

Contact angle reflects the interaction forces at the phase

interfaces and the wettability. Thus, it is a significant pa-

rameter to describe the interaction between oil, gas, water,

and rock in petroleum reservoirs (Wolf et al. 2009).

We simulated the contact angle of the monocrystalline

Si–water liquid–water vapor system by applying our inte-

grated MD–LBM approach and then compared the value

with literature for validation.

Figure 8 demonstrates the equilibrium state of the sys-

tem after LBM simulation. In the simulation, the compu-

tational domain is 100 9 50, where the upper and lower

boundaries are solid walls, and the east and west boundary

is periodic. For the solid node, before the streaming step, a

bounce–back algorithm was implemented to mimic the

non-slip wall boundary condition.

In Fig. 8, the gray grid on the top and bottom is for Si,

the red is for water liquid, and the blue is for water vapor.

The interaction force between water fluids was calculated

by EOS, and the interaction force between water and Si

was obtained by MD. This figure shows that the macro

contact angel is approximate 101�, which is consistent with

the result given by (Williams and Goodman 1974) in which

it states that the contact angle is near 90�. Therefore, the
method of MD used in fluid–solid interaction force calcu-

lation incorporated into LBM is reasonable in porous me-

dia flow simulation.

3.4 Rock permeability determination based

on an actual X-ray CT image of a reservoir core

Similar to the methodology in previous literature (Guo and

Zheng 2009; Huang et al. 2009, 2011; Huang and Lu 2009;

Hatiboglu and Babadagli 2007, 2008; Jorgensen et al.

1983), we calculated the relative permeability curves by

simulating a two-phase flow in the porous media. Figure 9

is a post-processed 2D X-ray image of a reservoir core in

Tarim Basin conglomerate with a length L = 2.7 mm and

width A = 1.35 mm. The domain is gridded into

540 9 270 = 145,800 cells with each one being a

5 9 5 lm square. In this image, the part in black

Fig. 6 Si–H2O system in equilibrium with 4 different water densities.

In vapor phase: a q = 0.43 kg/m3 and b q = 0.66 kg/m3. In liquid

phase: c q = 842 kg/m3 and d q = 911 kg/m3
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represents pores and white for the rock grains. Porosity /
= 43.5 %.

We applied a single-vapor phase flow of water to cal-

culate the absolute permeability of the core represented by

the image in Fig. 9. The system is at temperature

T = 110 �C. At the initial state, each cell was saturated

with H2O steam with a density of 0.754 kg/m3. In order to

use the MD simulation results on interaction forces be-

tween H2O and Si consistently, we assumed that the rock

grain is made of Si (in our on-going research, we use the

more realistic assumption that the rock grains are com-

posed of quartz (SiO2) and other minerals).

As in Fig. 10, we applied a virtual body force g and

periodic boundary conditions in calculating permeability

based on LBM solution of the water flow problem. The

body force is equivalent of adding a pressure drop Dp ¼

�qgL (�q ¼
Pn

i¼1

qi=n is the average density of water in the
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Fig. 7 The stress–density relationship. a in the vapor region, linear fitted by the least squares method and b in the liquid region, quadratic fitted

by the least squares method

Fig. 8 Equilibrium state simulated from LBM for a water liquid drop

in contact with the Si surface. The gray grid on the top and bottom is

for Si, the red for water liquid, and the blue for water vapor

L = 2.7 mm

 A
 =

 1.
35

 m
m

Fig. 9 A 2D CT image of a reservoir rock in Tarim Basin

conglomerate

Body force g 

Periodic boundary condition

Fig. 10 The flow problem in calculating absolute permeability.

Closed boundaries on the top and bottom. A virtual body force

g towards right is applied to the simulation domain, and periodic

boundary condition is set on left and right sides of the simulation

domain
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simulation domain, n is the total number of the grids filled

with water) between the left and right side of the core. By

applying different values of g, we can calculate flow ve-

locity under different pressure drops.

For a given pressure drop Dp, the flow velocity of H2O

steam reaches equilibrium after some steps of simulation.

The volumetric velocity of H2O steam flow is calculated as

vg ¼ /
Pn

i¼0

vi=n (Cihan et al. 2009). Figure 11 depicts the

calculated relationship between vg and Dp.
The linearity between vg and Dp shown in Fig. 11 is in

agreement with Darcy’s law v = KDp/(lL), where l is the

viscosity of water vapor, L is the length of the core, and

K is permeability of the core.

Plug L = 2.7 mm and lg = 12.4 9 10-6 Pa s into

Darcy’s law and use least square linear fitting of calculated

points in Fig. 11, we calculate the permeability of the rock

as 636 mD.

3.5 Vapor–liquid two-phase relative permeability

determination based on an actual X-ray CT

image of a reservoir core

Relative permeability, as a function of phase saturation,

could be modeled by multi-phase flow simulation using the

proposed workflow. Similar to the conditions set for ab-

solute permeability simulation, virtual body force g and

periodic boundary condition were applied to the simulation

domain, and temperature was set at 110 �C.
At initial state, the core was randomly filled with vapor–

liquid two-phase water at different mixing ratios to

represent different saturations (Fig. 12). At the simulation

temperature, 110 �C, saturated water vapor density is

0.787 kg/m3, and saturated water liquid density is 793 kg/

m3. Then the average density of water in simulation do-

main, �q, was calculated for different saturations. Given that

Dp ¼ �qgL, the pressure drop for any values of g can be

obtained.

At the simulation temperature, the viscosities of

saturated water vapor and liquid are lg = 12.4 9 10-6 Pa

s and lw = 252 9 10-6 Pa s.

We calculated the permeability of the vapor and liquid

phases using Darcy’s law for different phases, Kg = vglgL/
Dp, Kw = vwlwL/Dp. Kg and Kw at different saturations

were obtained from repeated simulations and calculations

of volumetric velocity of each phase. Finally, the relative

permeability Krg = Kg/K and Krw = Kw/K is obtained as

shown in Fig. 13.
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Fig. 11 Calculated water flow velocity versus pressure drop

Fig. 12 Distribution of vapor (in pink) and liquid (in blue) phases of

H2O in rock pores
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Fig. 13 Calculated vapor–liquid two-phase water relative perme-

ability curves
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Different from the simulation of absolute permeability,

the multi-phase flow modeling results using a statistical

method such as LBM could be unstable, thus causing the

volumetric velocity obtained at different times be slightly

different. This means that the relative permeability of each

phase at a given saturation could be a distribution as shown

in Fig. 13. The relative permeability curves were con-

structed by taking the average values of Kr at each

saturation.

3.6 Capillary pressure curve determination based

on an actual X-ray CT image of a reservoir core

We also applied our methodology to calculate the capillary

pressure curve. As shown in Fig. 14, constant pressure

boundary conditions (p1 on the left and p2 on the right) and

closed boundary conditions on the top and bottom were

applied to the simulation domain.

In the initial state, the domain was filled with saturated

water vapor. We injected saturated water liquid from the

left side under constant pressure p1. Since p1[ p2, water

vapor will flow out of the domain from the right side. By

applying different pressure drops Dp = p1-p2, the injected

liquid flowed into the pores to yield different phase

saturations. At an equilibrium state as shown in Fig. 15, the

capillary pressure is equal to the pressure drop, i.e.,

pc(Sg) = Dp. The calculated capillary pressure curve is

shown in Fig. 16.

4 Conclusions

In this work, we proposed a new systematic workflow to

integrate MD simulation with the LB method to model

multi-phase flow in porous media. As an improvement, this

new approach avoids parameter fitting or incorrectly as-

suming a linear relationship between the rock–fluid inter-

action force and fluid density. We have validated this

approach by simulating a two-phase separation process and

a gas–liquid–solid three-phase contact angle. The success

of MD–LBM results in agreement with published EOS

solution, and experimental results demonstrated a break-

through in pore-scale, multi-phase flow modeling. Based

on an actual X-ray CT image of a reservoir core, we ap-

plied our workflow to calculate absolute permeability of

the core, vapor–liquid water relative permeability, and

capillary pressure curves. With the application of this

workflow to a more realistic model considering actual

reservoir rock and fluid parameters, the ultimate goal is to

develop an accurate method for prediction of permeability

tensor, relative permeability, and capillary curves based on

3D CT image of the rock, actual fluid, and rock

components.
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