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Abstract Nuclear Magnetic Resonance (NMR) T2

inversion is the basis of NMR logging interpretation. The

regularization parameter selection of the penalty term

directly influences the NMR T2 inversion result. We

implemented both norm smoothing and curvature

smoothing methods for NMR T2 inversion, and compared

the inversion results with respect to the optimal regular-

ization parameters (aopt) which were selected by the dis-

crepancy principle (DP), generalized cross-validation

(GCV), S-curve, L-curve, and the slope of L-curve meth-

ods, respectively. The numerical results indicate that the

DP method can lead to an oscillating or oversmoothed

solution which is caused by an inaccurately estimated noise

level. The aopt selected by the L-curve method is occa-

sionally small or large which causes an undersmoothed or

oversmoothed T2 distribution. The inversion results from

GCV, S-curve and the slope of L-curve methods show

satisfying inversion results. The slope of the L-curve

method with less computation is more suitable for NMR T2

inversion. The inverted T2 distribution from norm

smoothing is better than that from curvature smoothing

when the noise level is high.

Keywords NMR T2 inversion � Tikhonov regularization �
Variable substitution � Levenberg–Marquardt method �
Regularization parameter selection

1 Introduction

NMR logging directly measures the signal from protons in

the fluid in formation of pores. Its applications include fluid

typing, porosity calculation, permeability estimation, fluid

saturation determination, and bound water estimation.

NMR logging interpretation is based on the inverted T2

distributions from acquired echo trains. NMR T2 inversion

is an ill-posed problem, so it is critical to choose a robust

and efficient inversion method to obtain credible NMR

spectra. For NMR T2 inversion, scholars have proposed

many kinds of inversion methods. Butler, Reeds, and

Dawson (BRD) proposed a method to solve norm

smoothing with a non-negative constraint of solution

(Butler et al. 1981). Dunn et al. (1994) proposed another

method for solving norm smoothing with a non-negative

constraint of solution. Prammer (1994) used the singular

value decomposition (SVD) method for NMR T2 inversion,

and adopted a series of measures to improve the inversion

speed for the purpose of real-time processing. Borgia et al.

(1998) put forward a complex curvature smoothing method

which is called uniform-penalty (UPEN) method, and then

made further modifications to the method which allows the

regularization parameter to be a variable in the iterative

process (Borgia et al. 2000). The SVD method implements

the non-negative constraint of solution by singular value

truncation which decreases the accuracy of the solution

(Prammer 1994; Ge et al. 2016). For the SVD method, the

low signal-to-noise ratio of NMR logging data leads to a

large cutoff of singular value, which seriously decreases
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the accuracy of the solution. Norm smoothing and curva-

ture smoothing can usually obtain more satisfactory solu-

tions than the SVD method.

The critical issue of norm smoothing and curvature

smoothing methods (Dunn et al. 1994) is to determine the

optimal regularization parameter. The different optimal

regularization parameters selected by different regulariza-

tion parameter selection methods will cause slightly dif-

ferent inversion results. The published literature mainly

used the BRD (Butler et al. 1981) and S-curve (Sezginer

1994; Song et al. 2002) methods to select the regularization

parameter for NMR T2 inversion. Compared with BRD

method, the S-curve method does not need to know the

noise level. Except for the above two methods, the gener-

alized cross-validation (GCV) (Golub et al. 1979) and

L-curve (Hansen 1992) methods are often widely used to

select the regularization parameter for data inversion in

many fields. But every regularization parameter selection

method has its own advantages and disadvantages. For

different inversion problems, we need to comprehensively

account for both the amount of calculation and the accuracy

of inversion result to determine the most satisfactory

parameter selection method for the studied inverse problem.

For NMR logging T2 inversion, we implement the inversion

procedure at each well-logging depth point, so inversion

speed should also be an important consideration. This paper

implemented norm smoothing and curvature smoothing

methods for NMR T2 inversion, and compared the inversion

results with respect to the optimal regularization parameters

which were selected by the DP, GCV, S-curve, L-curve, and

the slope of L-curve methods, respectively.

2 NMR T2 inversion

The measured echo amplitude of NMR logging using a

Carr–Purcell–Meiboom–Gill (CPMG) pulse sequence with

sufficient polarization time has the following equation:

bðtÞ ¼
Z

f ðT2Þ exp �t=T2ð ÞdT2 þ e; ð1Þ

where b(t) is the echo amplitude at time t, T2 is the

transverse relaxation time, exp(-t/T2) is the kernel func-

tion, f(T2) is the amplitude of T2 distribution, and e is noise.
The discrete form of Eq. (1) is

Am�nfn�1 ¼ bm�1 þ em�1; ð2Þ

where Am9n is kernel matrix, fn91 = [f(T2,1), …, f(T2,n)]
T,

bm91 = [b(t1), …, b(tm)]
T.

As is known, NMR T2 inversion is an ill-posed problem,

so regularization terms are needed to be added. The most

common form of regularization is the Tikhonov regular-

ization, which has the following objective function:

min /ðf Þ ¼ 1

2
WðAf � bÞk k2 þ a

2
Lfk k2

� �
; ð3Þ

where ||�|| means Euclidean norm and W is a weighted

matrix whose diagonal elements equal to the reciprocal of

the noise level. If the noise level of data is a constant,

W can be an identity matrix. L is the regularization matrix,

can be a zero-, or first-, or second-derivative operator

which corresponds to norm smoothing, slope smoothing,

and curvature smoothing (Dunn et al. 1994). a is the reg-

ularization parameter.

To obtain the non-negative constraint of solution, the

iterative solution is commonly made by eliminating the

columns of kernel matrix corresponding to the negative

components in the solution or replacing them with large

constants. Unlike the above-mentioned methods, we use a

variable substitution method to obtain a non-negative con-

straint of solution, in which the solution is substituted by a

non-negative expression. For example, set f = exp(x) or x2,

the above objective function of Eq. (3) can be rewritten as

min /ðxÞ ¼ 1

2
W A expðxÞ � bð Þk k2 þ a

2
L expðxÞk k2

� �
; ð4aÞ

or

min /ðxÞ ¼ 1

2
WðAx2 � bÞ

�� ��2 þ a
2

Lx2
�� ��2

� �
: ð4bÞ

The objective functions of Eqs. (4a) and (4b) without

constraint conditions can be solved by the Levenberg–

Marquardt method, an iterative method. The new solution

xnew is updated by the following equations (Madsen and

Nielsen 2010):

ð/00 þ lIÞDx ¼ �/0; ð5Þ
xnew ¼ xold þ Dx; ð6Þ

where I is an identity matrix, /0 is the gradient of objective

function, /00 is the Hessian matrix of objective function, l
is a parameter that can be updated in every iteration by the

updating strategy of Madsen and Nielsen (Madsen and

Nielsen 2010).

By calculating the partial derivatives of the objective

functions of Eqs. (4a) and (4b) with respect to x, we can

obtain the gradients /0 and approximate symmetric positive

definite Hessian matrices /00 of the objective functions of

Eqs. (4a) and (4b), respectively.

For f = exp(x),

/0 ¼ W � A � diag expðxÞð Þð ÞT W � A � exp(xÞ �W � bð Þ
þ a L � diag(exp(xÞÞð ÞT L � exp(xÞð Þ;

ð7aÞ

/00 � W � A � diag exp(xÞð Þð ÞT W � A � diag exp(xÞð Þð Þ
þ a L � diag exp(xÞð Þð ÞT L � diag exp(xÞð Þð Þ: ð7bÞ
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For f = x2,

/0 ¼ 2:0 � W � A � diag(xÞð ÞT W � A � x2 �W � b
� �

þ 2:0

� a L � diag(xÞð ÞTðL � x2Þ;
ð8aÞ

/00 � 4:0 � W � A � diag(xÞð ÞT W � A � diag(xÞð Þ þ 4:0

� a L � diag(xÞð ÞT L � diag(xÞð Þ; ð8bÞ

where diag(exp(x)) and diag(x) are diagonal matrices

which are generated by vectors exp(x) and x, respectively.

3 Regularization parameter selection

Since a too small or too large regularization parameter can

result in an undersmoothed or oversmoothed solution, it is

critical to choose an optimal regularization parameter

(aopt). The commonly used regularization parameter

selection methods include the DP, GCV, S-curve, and

L-curve methods (Morozov 1966; Golub et al. 1979; Sez-

giner 1994; Hansen 1992).

3.1 Discrepancy principle (DP)

If the noise level r is known, the DP (Morozov 1966)

suggests that the aopt should be chosen to satisfy the fol-

lowing equation:

fðaÞ ¼ Af � bk k2¼ smr2; ð9Þ

where m is the number of the echoes of the echo train

b. s C 1 is a predetermined real number, typically s = 1.

Figure 1 shows the typical ‘‘S’’ shape curves of the

variation of regularization parameter (a) with residual

norm (f(a)) for norm smoothing and curvature smoothing.

This method needs to know the noise level r, but some-

times it is difficult to estimate an accurate r.

3.2 Generalized cross-validation (GCV)

The GCV method was proposed by Golub et al. (1979) to

find the aopt that minimizes the GCV function. For

Tikhonov regularization, the GCV function is

GðaÞ ¼ b� Afak k2

trace I � AA#ð Þ2
; ð10Þ

where I is an identity matrix, A# denotes the regularized

pseudo-inverse of A, fa = A#b. For Tikhonov regulariza-

tion, A# ¼ ðATAþ aLTLÞ�1
AT:

Figure 2 shows the variation of the GCV function value

with a regularization parameter (a) for norm smoothing

and curvature smoothing. As shown in Fig. 2, as a
increases, the GCV function value first decreases and then

increases.

3.3 S-curve

The S-curve method (Sezginer 1994; Song et al. 2002)

finds the minimum a as aopt that satisfies

d log f
2d log a

¼ tol; ð11Þ

where 0\ tol\ 1 is a predetermined constant, typically

tol = 0.1.

This method uses the slope of the S-curve as the crite-

rion of aopt selection. Eq. (21) in Appendix shows the

specific formula of the slope of S-curve. The heel of the

S-curve is selected as aopt, which balances the residual and

known noise variance (Song et al. 2002).

Figure 3 shows the variation of slope of S-curve with

regularization parameter (a). Typically, the slope of the

S-curve gradually increases at first, then remains at a large

value, and finally gradually decreases. We choose the

smallest a that satisfies the Eq. (11) as aopt.
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Fig. 1 The variation of residual norm with regularization parameter. a Norm smoothing, b curvature smoothing
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3.4 L-curve

As a increases, solution norm g(a) = ||Lf||2 decreases, while

residual norm f(a) increases. In the log–log scale, the curve
formed by g(a) versus f(a) for each of a set of a has an ‘‘L’’
shape, so it is called the L-curve. The method was proposed

by Lawson and popularized by Hansen (Hansen 1992).

Figure 4 shows the typical L-curves of norm smoothing

and curvature smoothing. Intuitively, aopt should lie on the

‘‘corner’’ of the L-curve, for values higher than this ‘‘cor-

ner’’, f(a) increases without reducing g(a) too much, while

for values smaller than this ‘‘corner’’, f(a) decreases little
but with a rapid increase of g(a).

People have proposed many kinds of methods to locate

the ‘‘corner’’ (the point of maximum curvature) of the

L-curve. Castellanos et al. (2002) analyzed the drawbacks of

three methods for finding the corner of L-curve (Kaufman

and Neumaier 1996; Hansen 1998; Guerra and Hernandez

2001), and proposed a robust triangle method. Hansen et al.

(2007) proposed an adaptive pruning algorithm, which first

calculates the corner candidates at different scales or reso-

lutions and then selects the overall optimal corner from the

candidates. The above-mentioned methods are indirect

methods to calculate the corner of L-curve. However, indi-

rect methods cannot guarantee correct results in all cases.

This article gives an Eq. (27) for directly calculating the

curvature of the L-curve of single-parameter Tikhonov

regularization, and the specific derivation is shown in Ap-

pendix. Figure 5 shows the variation of the curvature of

L-curve with regularization parameter (a).

3.5 The slope of the L-curve

Comparing the S-curve (Fig. 1) with the L-curve (Fig. 4),

we can see that the two types of curves have similar shapes.

If we exchange the horizontal and vertical coordinates of

the L-curve, the resulting curve is the mirror image of the

S-curve. It naturally refers us to the S-curve method, so we
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Fig. 2 The variation of GCV function value with regularization parameter. a Norm smoothing, b curvature smoothing
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can use the slope of the L-curve to select the regularization

parameter. According to Eq. (24), the slope of the L-curve

has a simple formula and can avoid the matrix inversion of

the S-curve method (see Eq. (21)). Figure 6 shows the

variation of the reciprocal of the absolute value of the slope

of the L-curve with regularization parameter (a).
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Comparing Fig. 6 with Fig. 3, it can be found that the two

types of curves have striking similarities. So, we attempt to

use the slope of the L-curve criterion to select the regu-

larization parameter, and compare its results with those of

the other methods. The threshold of the reciprocal of the

absolute value of the slope of the L-curve can be selected

in the interval [0.1, 10]. Here we choose the threshold

values of 5 and 0.25 for norm smoothing and curvature

smoothing methods, respectively.

4 Numerical results

A bimodal T2 distribution model is constructed as shown in

Fig. 7, where 64 T2 components are preselected between

0.1 and 10,000 ms. Using this T2 distribution model, we

generated echo trains with 500 echoes, where echo spacing

is 0.9 ms. Different level Gaussian random noise was

applied, as shown in Fig. 8. The red line represents the

echo train without noise, and the green, blue, magenta, and

black lines show the echo trains with noise levels of 0.25,

0.5, 1.0, and 2.0 porosity unit (pu), respectively.

To improve the inversion speed of NMR echo data, the

echo trains are usually compressed before inversion (Sez-

giner 1994; Dunn and LaTorraca 1999; Venkataramanan

et al. 2002; Zou and Xie 2015). Here, we compress the

NMR echo data with the SVD method (Sezginer 1994; Zou

and Xie 2015). After compression, echoes in each echo

train shown in Fig. 8 are all compressed to 20 data points

for NMR T2 inversion.

We select optimal regularization parameters (aopt) by

the DP, GCV, S-curve, L-curve, and the slope of L-curve

methods, respectively, and compare the NMR T2 inversion

results from different regularization parameter selection

methods. Figure 9 shows the NMR T2 inversion results of

norm smoothing and curvature smoothing methods with

respect to noise levels of 0.25, 0.5, 1.0, and 2.0 pu. The

black line is the T2 distribution model, and the green, blue,

magenta, red, and cyan lines are the T2 distribution

inversion results according to the DP, GCV, S-curve,

L-curve, and the slope of L-curve methods, respectively.

As shown in Fig. 9, the selected aopt from the DP method is

sometimes small or large (because of the underestimated or

overestimated echo data noise level) that leads to an

undersmoothed or oversmoothed solution. The aopt selected
by L-curve method is occasionally small or large which

leads to an undersmoothed or oversmoothed T2 distribu-

tion. The inversion results from the GCV, S-curve, and the

slope of L-curve methods are close and satisfactory. Cur-

vature smoothing can better suppress the oscillation caused

by noise than norm smoothing, and can obtain a smoother

solution than norm smoothing. The curvature smoothing

makes the inverted T2 distribution prone to show single

peak shape than norm smoothing when the noise level is

high. Table 1 shows the porosity errors of different regu-

larization parameter selection methods, and finds that the

DP method occasionally obtains a large porosity error, and

the porosity errors of the GCV, S-curve, L-curve, and slope

of L-curve methods are close.

5 Well data processing results

Well A is in a tight sandstone reservoir with low porosity.

The signal-to-noise ratio (SNR) of the NMR logging data is

low. Figure 10 shows the inverted T2 distributions of norm

smoothing, where the fourth track represents the inverted

T2 distributions of the SVD method, the fifth to ninth tracks

represent the inversion results of the DP, GCV, S-curve,
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L-curve, and slope of L-curve methods, respectively. As

shown in Fig. 10, the inverted T2 distributions of the SVD

method, usually with single peak shapes, are over-

smoothed. The inverted T2 distributions of norm smoothing

are satisfactory. The inverted T2 distributions from the DP

and L-curve methods are slightly oversmoothed. However,

the inverted T2 distributions from the GCV and S-curve

methods are slightly undersmoothed. The inverted T2 dis-

tributions from the slope of L-curve method are relatively

more satisfactory than those from other methods.

6 Conclusions

This paper uses the Tikhonov regularization with a non-

negative constraint of solution for NMR T2 inversion. The

non-negative constraint of solution is implemented by

variable substitution, and then themodified objective function

is solved by the Levenberg–Marquardt method. The optimal

regularization parameters (aopt) from norm smoothing and

curvature smoothing methods are selected by the DP, GCV,

S-curve, L-curve, and the slope of L-curve methods, respec-

tively. The following conclusions are obtained.

(1) The inverted NMR T2 distributions from the DP

method depend on the estimated noise level which is

difficult to estimate accurately. The inversion results

from the GCV, S-curve, and the slope of L-curve

methods are satisfactory. The small or large aopt
selected by the L-curve method leads to an oscilla-

tion or oversmoothed T2 distribution. When the

noise level is high, norm smoothing can more

effectively than curvature smoothing avoid the

bimodal T2 distribution being converted to a single

peak distribution. The inverted T2 distribution of
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Fig. 9 The inversion results from different regularization parameter selection methods. i Noise level is 0.25 pu. a norm smoothing; b curvature

smoothing. ii Noise level is 0.5 pu. a norm smoothing; b curvature smoothing. iii Noise level is 1.0 pu. a norm smoothing; b curvature
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norm smoothing is better than that of curvature

smoothing.

(2) The GCV and L-curve methods need to calculate the

solution of the regularization parameter over a wide

range, which needs a large amount of calculation.

The S-curve and the slope of L-curve methods can

quickly find the aopt by iteration, suitable for norm

smoothing and curvature smoothing. The slope of

L-curve method needs less calculation than the

S-curve method does, but the T2 inversion results
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Fig. 9 continued

Table 1 Porosity errors

obtained from different

regularization parameter

selection methods (unit: pu)

Method DP GCV S-curve L-curve Slope of L-curve

Norm smoothing

Noise = 0.25 0.1835 -0.5536 -0.5489 -0.5857 -0.5858

Noise = 0.5 0.9424 0.5039 0.5047 0.5017 0.5295

Noise = 1.0 1.7092 1.1347 1.1220 1.0929 1.1759

Noise = 2.0 -2.2772 -0.1316 -0.3117 0.2869 -0.3521

Curvature smoothing

Noise = 0.25 -1.0283 -1.1421 -1.0202 -1.0802 -0.8769

Noise = 0.5 -0.8131 -0.8078 -0.4299 -0.8134 -0.6150

Noise = 1.0 -0.6772 -0.5187 -0.6139 -0.9139 0.0128

Noise = 2.0 -3.6340 -1.1841 -1.0550 0.0955 -1.6763
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from these two methods are close. So, the slope of

the L-curve method can be an efficient alternative to

the S-curve method.
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Appendix

The objective function of single-parameter Tikhonov reg-

ularization is given by

min
1

2
WðAf � bÞk k2 þ a

2
Lfk k2

� �
: ð12Þ

The derivative of the above equation with respect to f is

written as

ðWAÞTðWAÞ þ aLTL
� �

f ¼ ðWAÞTWb: ð13Þ

Let f = ||W(Af - b)||2, g = ||Lf||2. The curvature j of L-

curve (logf, logg) is

j ¼
d2 log g
d log fð Þ2

1þ d log g
d log f

� �2
	 
3=2

: ð14Þ

To calculate the j, we need to compute d2 log g
d log fð Þ2 and

d log g
d log f

: Since

d log g
d log f

¼ f
g
dg
df

; ð15Þ

d2 log g

d log fð Þ2
¼ f

g
dg
df

� f2

g2
dg
df

	 
2

þ f2

g
d2g

df2
; ð16Þ

the computation of Eq. (14) is converted to compute dg
df

and
d2g
df2

:

The derivative of Eq. (13) with respect to a is
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Fig. 10 The inversion results of NMR logging data
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LTLf þ ðWAÞTðWAÞ þ aLTL
� � df

da
¼ 0: ð17Þ

So,

df

da
¼ � WAð ÞT WAð Þ þ aLTL

� ��1

LTLf : ð18Þ

We should note that according to the non-negative

constraint, only the rows and columns of the matrices

(WA)T(WA) and LTL corresponding to f[ 0 will be

involved in the calculation.

So, the derivative of g with respect to a is

dg
da

¼ �2f TLTL ðWAÞTðWAÞ þ aLTL
� ��1

LTLf : ð19Þ

The derivative of f with respect to a is

df
da

¼ 2af TLTL ðWAÞTðWAÞ þ aLTL
� ��1

LTLf : ð20Þ

So,

d log f
d log a

¼
2a2f TLTL ðWAÞTðWAÞ þ aLTL

� ��1

LTLf

f
: ð21Þ

And,

dg
df

¼ dg
da

da
df

¼ �1

a
; ð22Þ

d2g

df2
¼

d dg
df

� �

df
¼

d � 1
a

� �
df

¼ 1

a2
da
df

: ð23Þ

Substituting Eqs. (22) and (23) into Eqs. (15) and (16),

then

d log g
d log f

¼ �f
ag

; ð24Þ

d2 log g

d log fð Þ2
¼ � f

ag
� f2

a2g2

þ f2

2a3g
1

f TLTL WAð ÞT WAð Þ þ aLTL
� ��1

LTLf

:

ð25Þ

Substituting Eqs. (21) and (24) into Eq. (25), then

d2 log g

d log fð Þ2
¼ d log g

d log f
� d log g

d log f

	 
2

� dloga
dlogf

d log g
d log f

: ð26Þ

Substituting Eq. (26) into Eq. (14), then

j ¼
d log g
d log f �

d log g
d log f

� �2

� dloga
dlogf

d log g
d log f

1þ d log g
d log f

� �2
	 
3=2

: ð27Þ

References

Borgia GC, Brown RJS, Fantazzini P. Uniform-penalty inversion of

multiexponential decay data. J Magn Reson. 1998;132(1):65–77.

Borgia GC, Brown RJS, Fantazzini P. Uniform-penalty inversion of

multiexponential decay data II. Data spacing, T2 data, systematic

data errors, and diagnostics. J Magn Reson. 2000;147(2):273–85.

Butler JP, Reeds JA, Dawson SV. Estimating solutions of first kind

integral equations with nonnegative constraints and optimal

smoothing. SIAM J Numer Anal. 1981;18(3):381–97.
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