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Abstract A multi-casing structure in drilling engineering

can be considered as an inhomogeneous body consisting of

many different materials. The mechanical behavior of the

inhomogeneous body in an infinite domain is very com-

plicated. In this paper, a detailed expression about the

fictitious stress method of the boundary element method

(BEM) is demonstrated for the inhomogeneous body. Then

the fictitious stress method is deployed to investigate the

stresses for the multi-casing structure under non-uniform

loading conditions and an irregular wellbore. Three

examples of the multi-casing structure in the borehole

imply the high effectiveness of BEM for complex

geometries related to the borehole in an infinite formation.

The effects of casing eccentricity and the interfacial gap on

the stress field are discussed. The eccentric casing takes the

potential yield when the eccentric orientation is along the

direction of Sh. Under different eccentric orientations, the

von Mises stress in the casing increases with increasing

degree of eccentricity. The radial stress in the multi-casing

structure is always continuous along the radius, but the

circumferential stress is discontinuous at the interface. The

radial stress decreases and the circumferential stress

increases with the increasing of the interfacial gap between

the adjacent materials.

Keywords Displacement discontinuity method � Fictitious
stress method � Drilling mechanics � Wellbore stress

concentration � Inhomogeneous body

1 Introduction

Wellbore integrity investigation in drilling engineering

involves stress and strength analyses of the pipe structure.

The stresses in a thick-walled cylinder with open ends

subjected to an internal pressure can be determined by

Lame’s equation. The cross section of this cylinder belongs

to a single-annulus structure (Fig. 1a). Similarly, the cross

section of a metal pipe with an anti-corrosive coating (Luo

et al. 2000) is usually treated as a double-annulus structure

(Fig. 1b). The cross section of a lined circular tunnel at

great depth (Bobet 2011) is usually treated as a single-

annulus structure in an infinite plane (Fig. 1c). The cross

section of a casing–cement sheath wellbore in the petro-

leum engineering is usually treated as a double-annulus

structure in an infinite plane (Fig. 1d). Due to the sym-

metry of the loading condition and the geometry structure,

the cross section of the problem in Fig. 1 satisfies the

plane-strain condition.

Although analytical solutions for multi-annulus prob-

lems exist, such solutions are not available for problems

where the annuluses are eccentric inside the wellbore or

discontinuities exist. The boundary element method (BEM)

will allow us to solve new and more realistic crack prob-

lems with complex geometry for geoscience applications

(Ritz et al. 2012). BEM requires fewer boundary elements

than the finite element method (FEM) when achieving the

same accuracy (Ghassemi et al. 2001; Elleithy and Tanaka

2003; Ghassemi and Zhang 2004; Soares et al. 2004; Gun

and Gao 2014; Cheng et al. 2015). The multi-annulus
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structure consisting different materials belongs to a set of

boundary value problems with the correlated constraints on

the boundary conditions. Stress or displacement continu-

ities for the interfaces of an inhomogeneous body (Zheng

et al. 1991; Sladek et al. 1993; Park 2003; Kandilas 2012),

as parts of constraints, are also required to solve the dif-

ferential equations in the BEM. However, an interfacial

crack (known as an interfacial gap) in an inhomogeneous

body affects the contact behavior of two different materials

under compression or tension, which probably leads to

further unexpected failures (Crouch 1976; Crouch and

Starfield 1983).

In this paper, the fictitious stress method in BEM is used

for solving the stress in a multi-casing structure under non-

uniform loading conditions and an irregular wellbore. The

effects of the casing eccentricity and the interfacial gap on

stress fields and strength are also discussed systematically.

Several examples about the multi-casing structure in the

borehole imply the high effectiveness of BEM for complex

geometries in an infinite formation. We recommend a

system with an infinite size, complex boundary geometry

and boundary conditions and a low aspect ratio of mesh be

solved by BEM.

2 BEM formulation for multi-annulus structures

2.1 Boundary element in an inhomogeneous body

An open wellbore in an infinite region is depicted in Fig. 2.

Thewall of thewellbore is labeled asC in a counterclockwise

sense. The local coordinates n and s are, respectively, per-

pendicular and tangential to the boundary C; they therefore

vary from point to point along the boundary. We now

imagine that constant resultant shear and normal stresses,

which are applied on the boundaryC, are denoted as fictitious
stress (Ghassemi et al. 2001; Ghassemi and Zhang 2004) Ps

andPn, respectively. By contrast, the actual shear and normal

stresses on curve C are, respectively, denoted as rs and rn,

which are induced byPs andPn. In the absence of body force,

the integral equations are given as follows

riðxÞ ¼
Z
C
Gijðx; ‘;E; vÞPjð‘Þd‘ i ¼ s; n; j ¼ s; n ð1Þ

where x ¼ ½x; y�, ‘ is the arc length of the boundary; Gij

represents the impact coefficient of the fictitious stress Pj

under stress conditions; E and v, respectively, represent the

elastic modulus and Poisson’s ratio of the material involved

in the problem. Similarly, if displacements along the

boundary are prescribed, the integral equations are given by

UiðxÞ ¼
Z
C
Hijðx; ‘;E; vÞPjð‘Þd‘ i ¼ s; n; j ¼ s; n ð2Þ

where Us and Un represent the shear and normal dis-

placements, respectively, and Hij represents the impact

coefficient of the fictitious stress Pj under displacement

conditions.

Cylinder Pipe Coating Formation

Liner

Formation

Casing

Cement sheath(a) (b) (c) (d)

Fig. 1 Cross section of engineering mechanical models. a Thick-walled cylinder. b Pipe with coating. c Lined circular tunnel. d Casing wellbore
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Equation (1) is suitable for solving the engineering

problem with stress boundary conditions, and Eq. (2) is

suitable for the engineering problem with displacement

boundary conditions. Mixed formulations involving the

specification of stress and displacement boundary condition

are handled by combining Eqs. (1) and (2). Since only one

material represented by the elastic constant (E, v) is

involved in Eqs. (1) and (2), the integral equations are

rewritten as

r

U

" #
¼

Z
C

G

H

" #
P½ �d‘ ð3Þ

where

r ¼
rs

rn

" #
;U ¼

Us

Un

" #
;G ¼

Gss Gsn

Gns Gnn

� �
;

H ¼
Hss Hsn

Hns Hnn

� �
;P ¼

Ps ‘ð Þ
Pn ‘ð Þ

� � ð4Þ

A pipe in a linearly elastic body is depicted in Fig. 3.

The inner and outer radius are labeled ri and ri?1

(ri?1[ ri), respectively, while the inner and outer bound-

aries for the annulus region are represented by Cðrþi Þ and
Cðr�iþ1Þ, respectively. The inner boundary requires the

boundary to be traversed in a counterclockwise sense,

whereas the outer boundary requires a clockwise traversal,

as shown in Fig. 3. Similar to Eq. (3), the integral equation

of the single-annulus structure is given

r

U

" #
¼

Z
Cðrþi ÞþCðr�

iþ1
Þ

G

H

" #
P½ �d‘ i ¼ 1; 2; . . .;N � 1 ð5Þ

The cross section of the multi-annulus structure inside a

long circular wellbore is depicted in Fig. 4. The radius of

the circle is represented by ri (i = 1, 2, 3, …, N). The

boundary of the formation is denoted as CðrþN Þ, while the

boundaries of the multi-annulus structure are denoted as

Cðrþi Þ and Cðr�iþ1Þ (i = 1, 2, 3, …, N - 1). Ei and vi,

respectively, represent the elastic modulus and Poisson’s

ratio of the material between Cðrþi Þ and Cðr�iþ1Þ. EN and vN
represent the elastic modulus and Poisson’s ratio of the

formation, respectively. The general equations of BEM for

the multi-annulus structure are expressed as follows:

r½i�

U½i�

" #
¼

Z
Cðrþi ÞþCðr�

iþ1
Þ

G½i�

H½i�

" #
P½ �d‘ i ¼ 1; 2; . . .;N � 1

ð6Þ

where the superscript i represents the ith material with the

elastic constant (Ei, vi).

2.2 Boundary and contact conditions of multi-

annulus systems

As shown in Fig. 4, P0 is the internal pressure acting inside

the wellbore. The correlation between the global and local

coordinates is given in Fig. 5.

The actual stresses on the boundary Cðrþ1 Þ are given by

rsjCðrþ
1
Þ¼ � 1

2
ðryy � rxxÞ sin 2bþ rxy cos 2b

rnjCðrþ
1
Þ¼ P0 � rxx sin

2 b� ryy cos2 bþ rxy sin 2b

8<
: ð7Þ

where b represents the angle between the local and global

coordinate systems.

The interface between two isotropic, linearly elastic

materials is depicted in Fig. 6. The interface can be treated as

two separate problems, one for thematerial i and the other for

material i ? 1. The local coordinates njCðr�i Þ; sjCðr�i Þ and

njCðrþi Þ; sjCðrþi Þ are oppositely directed along the interface,

n

s

n
s

x

y
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(ri
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г

г

Fig. 3 Section of a long pipe
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Fig. 4 Multi-annulus structure inside a long circular wellbore (rxx,
ryy and rxy represent the stress components)
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nCðr�i Þ ¼ �nCðrþi Þ sCðr�i Þ ¼ �sCðrþi Þ i ¼ 2; . . .;N ð8Þ

The continuity conditions for any point x on the inter-

face can be written as

rsjCðr�i Þ¼ rsjCðrþi Þ rnjCðr�i Þ¼ rnjCðrþi Þ
UsjCðr�i Þ¼ �UsjCðrþi Þ UnjCðr�i Þ¼ �UnjCðrþi Þ

i ¼ 2; . . .;N

(

ð9Þ

The minus signs in Eq. (9) are a consequence of the

opposite directions of the local coordinates njCðr�i Þ; sjCðr�i Þ

and njCðrþi Þ; sjCðrþi Þ along the interface. Note that only

the perfectly bonded parts of the interface satisfy the

continuity conditions. The non-perfectly bonded parts, say

an interfacial crack, will be considered as a displacement

discontinuity.

UsjCðr�i Þ¼ d½i�s � Us

���
Cðrþi Þ

UnjCðr�i Þ¼ d½i�n � Un

���
Cðrþi Þ

i ¼ 2; . . .;N
ð10Þ

where d½i�s ; d
½i�
n , respectively, represent the shear and normal

displacements of the opened interface crack.

Note that if the outer radius of the ith annulus is smaller

than the inner radius of the (i ? 1)th annulus and this

interfacial gap is initially larger than the deformation of the

outer surface of the ith annulus, the (i ? 1)th annulus will

not suffer the expansion caused by the internal pressure

inside the ith annulus, i.e., the annulus-wellbore structures

should be separated as isolated problems from the interface

between ith and (i ? 1)th annulus. If the interfacial gap is

initially smaller than the deformation of the outer surface

of the ith annulus, the ith annulus must be expanded to fit

the (i ? 1)th annulus. By contrast, if the outer radius of the

ith annulus is initially larger than the inner radius of the

(i ? 1)th annulus, the annulus must be compressed to fit

them.

A line of symmetry exists for a certain problem

when the elastic properties of the material, geometric

configuration of the boundaries and the loading condi-

tions are all symmetric with respect to the line in

question. For a concentric annulus in a circular well-

bore, such as in Fig. 4, a quarter of the structure can

represent the full structure. If multiple eccentric annu-

luses exist inside the wellbore, it requires all the

boundaries to be divided into boundary elements. The

use of symmetry conditions will involve fewer elements

and less computation time.

2.3 Algebraic equations in the fictitious stress

method

In setting up the algebraic equations in accordance with

Eq. (6), it is convenient to divide the boundaries into

m groups. The values of m are listed in Table 1 in accor-

dance with Fig. 1.

Each group contains Li (i = 1, 2, 3, ..., m) boundary

elements. The total number of boundary elements isPm
i¼1 Li. It requires at least 2

Pm
i¼1 Li equations to solve all

the fictitious stresses Ps and Pn on all the boundaries since

each constant element contains both Ps and Pn.

As stated previously, an interface element actually

consists of two coincident boundary elements. If the kth

element is on the one side of interface, there will be a

matching element k*th on the other side. The matching
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Fig. 5 Global and local coordinates
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Fig. 6 Interface between two linearly elastic materials
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element satisfies the following condition when using

Eq. (8).

bjCðrþi Þ¼ pþ bjCðr�i Þ i ¼ 2; . . .;N ð11Þ

Equation (9) must be satisfied at each matching element.

Therefore,

r½i�s
k

� r½iþ1�
s

k�

¼ 0 r½i�n
k

� r½iþ1�
n

k�

¼ 0

U
½i�
s

k

þU
½iþ1�
s ¼ 0

k�

U
½i�
n

k

þU
½iþ1�
n

k�

¼ 0

8><
>: ð12Þ

Algebraic equations are given in Table 2. The first

column indicates the boundaries of the multi-annulus

structure, whereas the last column represents the boundary

conditions. The central area (blue area) in Table 2 repre-

sents the coefficient matrix of the fictitious stresses. Pro-

ceeding in accordance with Table 2, we obtain a system of

2
Pm

i¼1 Li algebraic equations in 2
Pm

i¼1 Li unknown ficti-

tious stress components. If an interfacial crack exists, ½0� in
the last column must be replaced by ½d½i�s d

½i�
n �

T
.

3 Verification of the BEM model

3.1 Stress around an open hole

A fluid pressure is applied in the open wellbore of the

impermeable and isotropic, linearly elastic formation, as

shown in Fig. 2. The cross section of the wellbore is under

far-field stresses SH and Sh. An analytical solution (e.g.,

Wang et al. 2007) is available for this problem and reads

where SH, Sh represent the maximum and minimum in situ

stresses in the far field, respectively; Srr is the radial stress,

MPa; Stt is the circumferential stress (tangential stress),

MPa; h is the azimuth measured counterclockwise from the

direction of SH, rad; P0 is the fluid pressure inside the

wellbore, MPa; r is the inner radius of the wellbore while

R is the distance from the circle center to the point in the

formation, m. Comparisons of the numerical and exact

solutions are given in Fig. 7. Note that the ‘‘?’’ stands for

the tensile stress while ‘‘-’’ stands for the compressive

stress in this article. Only 80 elements are used in the BEM

model, which saves the computational time but still

achieves a high accuracy.

3.2 Stress around a lined circular tunnel

As shown in Fig. 1c, the region of interest consists of a

liner of a� r� b with elastic constants E1 and v1 inside a

circular borehole of radius r = b with elastic constants E2

and v2 in an infinite formation. The internal wall of the

annulus is subjected to the uniform pressure P0, and the

plate is unstressed at infinity. The analytical solution (e.g.,

Crouch and Starfield 1983) of this problem is

Srr ¼
P0a

2ð1=b2 � 1=R2Þ þ P0ða2=R2 � 1Þ½ �
1� a2=b2

Stt ¼
P0a

2ð1=b2 þ 1=R2Þ � P0ða2=R2 þ 1Þ½ �
1� a2=b2

8>><
>>:

a�R� b

ð14Þ

Srr ¼ �P0 b
2

r2
; Stt ¼ P0 b

2

r2
b�R ð15Þ

P0 ¼
2ð1� v1ÞP0a

2
�
b2

2ð1� v1Þ þ ð1� a2=b2Þ E1ð1þv2Þ
E2ð1þv1Þ � 1
h i ð16Þ

where a and b are the inner and outer radius of the annulus,

respectively. The comparisons (Fig. 8) between the

numerical and exact values prove the high accuracy of

BEM. There exists a discontinuity of the circumferential

stress at the annulus-formation interface, as shown in

Fig. 8. The circumferential strain at the two sides of the

interface is the same when the gap is zero. However, the

circumferential strain will lead to different circumferential

stresses (Fig. 8) due to two different material properties

around the interface. In other words, if Young’s modulus

and Poisson’s ratio of the liner are the same as the for-

mation, i.e., E1 = E2, v1 = v2, the discontinuity of the

circumferential stress will disappear. When E1 = E2,

v1 = v2 and the gap is zero, only one continuous medium is

included in the model. The model is simplified as a pres-

surized wellbore inside an infinite, elastic medium.

Table 1 Number of groups in several critical models

Models Figure 1a Figure 1b Figure 1c Figure 1d Figure 4

m 2 4 3 5 2N - 1

Srr ¼ �P0q2 þ
1

2
SH þ Shð Þ 1� q2

� �
þ 1

2
SH � Shð Þ 1� 4q2 þ 3q4

� �
cos 2h

Stt ¼ P0q2 þ
1

2
SH þ Shð Þ 1þ q2

� �
� 1

2
SH � Shð Þ 1þ 3q4

� �
cos 2h

8><
>: q ¼ R=r ð13Þ
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Another actual problem related to a lined circular tunnel is

that the displacement continuity condition on the interface is

not always perfect. An interfacial gap, say an opened inter-

face crack, will be considered as a displacement disconti-

nuity in Eq. (10). The numerical procedure in this paper still

works verywell. The radial stress is always continuous along

the radius because of the stress equilibrium equation in the

radial direction. By contrast, the circumferential stress is

discontinuous at the interface because of the sudden change

in the material properties at the interface (Fig. 9). The cir-

cumferential stress in the liner increases as the interfacial gap

increases, but the circumferential stress in the formation

decreases as the interfacial gap increases (Fig. 9). As men-

tioned in Sect. 2.2, when the interfacial gap is initially

smaller than the deformation of the outer surface of the liner,

the liner must be expanded to fit the inner surface of the

formation. Then the pressure P0 will be transferred to the

formation.When the interfacial gap is relative large, the liner

will suffer a higher circumferential stress for expansion.

4 Engineering examples

4.1 Example 1: stresses around an eccentric casing

in the wellbore

The circle centers of wellbore and casing are denoted by o

and o0, respectively. The inner radius of the wellbore is

represented by r3, and the outer radius of the casing is

represented by r2. The eccentric degree of the casing is

given by X ¼ oo0j j=ðr3 � r2Þ; X 2 ½0; 1�ð Þ, as shown in

Fig. 10. The eccentric orientation of the casing is given by

u (u 2 ½0�; 360��). If X ¼ 0, the structure is symmetric in

both the axes x and y. If X 6¼ 0, the structure is still sym-

metric along the line oo0. ½X;u� represents the state of the

eccentric casing.

An actual case in a salt formation in the Tarim Basin,

China, is given in Table 3. The elastic stress distribution

inside the cement sheath is given in Fig. 11. Since it is

difficult to observe the stress distribution inside the thin-

walled casing, the annulus is extended as a rectangle in

accordance with the radius and azimuth angle (Fig. 12).

The radial and circumferential stresses of the salt for-

mation are given in Fig. 13. In the region far from the

borehole center and along the axis x, the radial stress goes

to SH while the circumferential stress goes to Sh. In the

region far from the borehole center and along the axis y, the

radial stress goes to Sh while the circumferential stress goes

to SH. This implies the stress concentration disappears in

the remote region.

The von Mises stress in the casing under different

eccentricities is shown in Fig. 14. For the symmetry of

geometry, the eccentric orientation from 0� to 180� is given
in Fig. 14. Under the same eccentric degree, the von Mises

stress increases with the eccentric orientation from 0� to

90� and decreases with the eccentric orientation from 90�

Table 2 Algebraic equations of multi-annulus structure in the wellbore

Boundary Row k Column j Boundary 

value
2

1
1 i

i
j L

=

≤ ≤ ∑
2 4

1 1
1i i

i i
L j L

= =

+ ≤ ≤∑ ∑
4 6

1 1
1i i

i i
L j L

= =

+ ≤ ≤∑ ∑
6 8

1 1
1i i

i i
L j L

= =

+ ≤ ≤∑ ∑
2( 2) 2( 1)

11
1

NN

ii
ii

L j L
−−

==

+ ≤ ≤∑ ∑
2( 1) 2 1

11
1

N N

ii
ii

L j L
− −

==

+ ≤ ≤∑ ∑

1( )r+Γ 11 k L≤ ≤
[1]
k j

G
[ ]0 [ ]0 [ ]0 … [ ]0 [ ]0

1( )
[ ]

r+Γ
σ

2( )r−Γ 2

1
1

1 i
i

L k L
=

+ ≤ ≤ ∑ [1]
k j

G
*
[2]
k j

−G
[ ]0 [ ]0 … [ ]0 [ ]0 [ ]0

2( )r+Γ 2 3

1 1
1i i

i i
L k L

= =

+ ≤ ≤∑ ∑ *
[1]

k j

H [2]
k j

H
[ ]0 [ ]0 … [ ]0 [ ]0 [ ]0

3( )r−Γ 3 4

1 1
1i i

i i
L k L

= =

+ ≤ ≤∑ ∑ [ ]0
[2]
k j

G
*
[3]
k j

−G
[ ]0 … [ ]0 [ ]0 [ ]0

3( )r+Γ 4 5

1 1
1i i

i i
L k L

= =

+ ≤ ≤∑ ∑
[ ]0 *

[2]
k j

H [3]
k j

H
[ ]0 … [ ]0 [ ]0 [ ]0

4( )r−Γ 5 6

1 1
1i i

i i
L k L

= =

+ ≤ ≤∑ ∑ [ ]0 [ ]0
[3]
k j

G
*
[4]
k j

−G
… [ ]0 [ ]0 [ ]0

4( )r+Γ 6 7

1 1
1i i

i i
L k L

= =

+ ≤ ≤∑ ∑ [ ]0 [ ]0 *
[3]
k j

H [4]
k j

H
… [ ]0 [ ]0 [ ]0

… … … … … … … … …

( )Nr
−Γ 2 3 2 2

11
1

N N

ii
ii

L k L
−−

==

+ ≤ ≤∑ ∑ [ ]0 [ ]0 [ ]0 [ ]0 … [ 1]
k j
N−G

*
[ ]
k j
N−G

[ ]0

( )Nr
+Γ 2 2 2 1

11
1

N N

ii
ii

L k L
−−

= =

+ ≤ ≤∑ ∑ [ ]0 [ ]0 [ ]0 [ ]0 … *
[ 1]
k j
N−H [ 1]

k j
N−H

[ ]0
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to 180�. The von Mises stress reaches a maximum value at

an eccentric orientation of 90�, i.e., the eccentric casing

takes the potential yield when the eccentric orientation is

along the direction of the minimum in situ stress Sh. Under

different eccentric orientations, the von Mises stress

increases with increasing eccentric degree. However, the

von Mises stress changes little at different eccentric

degrees, when u = 0� (the direction of SH).

4.2 Example 2: stresses inside the multi-casing

structure in the wellbore

Another actual case with two casings and two cement

sheaths in a salt formation is given in Table 4. The cross

section of this case belongs to a multi-annulus structure.

The inhomogeneity of the multi-casing structure from the

center to the formation is denoted as casing–cement–cas-

ing–cement formation. For convenience, we assume that all

the casings in the problem are concentric.

Since it is also difficult to observe the stress distribu-

tion inside the thin-walled annulus of the casing or the

cement sheath, the annuluses are extended as a rectangle

in accordance with radius and azimuth angle, as shown in

Fig. 15. The radial stress decreases with the radial dis-

tance from the borehole center. The radial stress is always

continuous at the interface between the annuluses, while

the circumferential stress is continuous except the

interface.

-4.0
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-1.0

-0.5

0.0

1 2 3 4 5

Srr (θ=30°), analytical
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S
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ss
, M

P
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Srr (θ=30°), numerical

Stt (θ=30°), numerical

Srr (θ=45°), numerical

Stt (θ=45°), numerical

Stt (θ=30°), analytical

Srr (θ=45°), analytical

Stt (θ=45°), analytical
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4.3 Example 3: stresses for a multi-annulus

structure inside an irregular wellbore

After the breakout of the borehole, the new boundary of the

borehole is obtained. The borehole is irregular after the

breakouts during the process of drilling engineering

(Mastin 1988; Zoback et al. 2003; Zhang et al. 2008). A

casing is cemented inside the irregular wellbore in order to

keep the wellbore stable. This physical model is more

similar to the actual situation in drilling engineering. Since

the theoretical solution to this model does not exist in

linearly elastic mechanics, the BEM is deployed to solve

this model numerically. The basic parameters are listed in

Table 5. The frictional coefficient and cohesion of the rock

matrix are 0.5 and 5 MPa, respectively. The stress distri-

bution in the cement sheath is given in Fig. 16, which helps

the engineers to design the cement mud.

5 Conclusions

The application of the BEM on an inhomogeneous body

consisting of many different materials offers many possi-

bilities to solve complicated engineering problems with an

irregular or regular geometry. A multi-casing structure in a

wellbore in the formation belongs to a specific case of an

inhomogeneous body. Three examples about a multi-casing

structure in the borehole imply the high effectiveness of

BEM for complex geometries in an infinite formation. A

system with infinite size, complex boundary geometry and

boundary conditions and low aspect ratio of mesh is highly

recommended to be tackled by the BEM.

An eccentric casing takes the potential yield when the

eccentric orientation is along the direction of Sh. Under

different eccentric orientations, the von Mises stress in the

casing increases with an increase in eccentric degree. It

changes little at different eccentric degrees, when the

eccentric orientation is along the direction of SH. The radial

stress in the multi-casing structure is always continuous
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P0 = 1 MPa; 240 boundary elements in total)
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Table 3 Related parameters of

the wellbore in the Tarim Basin,

China

E1, E2, E3, GPa v1, v2, v3 r1, r2, r3, mm SH, Sh, MPa P0, MPa Eccentricity

210, 7, 5 0.30, 0.18, 0.45 109.5, 125.4, 155.6 -140, -134 61.25 [0.4, 60�]
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Table 4 Related parameters of multi-casing in the wellbore

E1, E2, E3, E4, E5, GPa v1, v2, v3, v4, v5 r1, r2, r3, r4, r5, mm SH, Sh, MPa P0, MPa

210, 7, 210, 7, 5 0.30, 0.18, 0.30, 0.18, 0.45 73, 88.9, 106.3, 122.2, 155.6 -140, -134 61.25
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along the radius while the circumferential stress is not

continuous at the interface. The radial stress decreases and

the circumferential stress increases with increasing inter-

facial gap between the adjacent materials.
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