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Abstract
Control of various factors, including mineral components, primary productivity and redox level, on the total organic carbon

(TOC) in the lower Cambrian black shale from southeastern margin of Upper Yangtze (Taozichong, Longbizui and Yanbei

areas) is discussed in detail in this article. Mineral components in the study strata are dominated by quartz and clay

minerals. Quartz in the Niutitang Formation is mainly of biogenic origin, and the content is in positive correlation with

TOC, while the content of clay minerals is negatively correlated with TOC. Primary productivity, represented by the

content of Mobio (biogenic molybdenum), Babio (biogenic barium) and phosphorus, is positively correlated with TOC. The

main alkanes in studied samples are nC18–nC25, and odd–even priority values are closed to 1 (0.73–1.13), which suggest

the organic matter source was marine plankton. Element content ratios of U/Th and Ni/Co and compound ratio Pr/Ph

indicate dysoxic–anoxic bottom water, with weak positive relative with TOC. In total, three main points can be drawn to

explain the relationship between data and the factors affecting organic accumulation: (1) quartz-rich and clay-mineral-poor

deep shelf–slope–basin environment was favorable for living organisms; (2) high productivity provided the material

foundation for organic generation; (3) the redox conditions impact slightly on the content of organic matter under high

productivity and dysoxic–anoxic condition.

Keywords Upper Yangtze � Lower Cambrian � Black shale � Total organic carbon

1 Introduction

The early Cambrian recorded substantial changes in global

ocean geochemical conditions and biological features

compared with late Ediacaran (Knoll and Carroll 1999;

Kimura and Watanabe 2001; Wille et al. 2008): a rapid

large-scale transgression occurred during the early Cam-

brian resulted in the global ocean transforming to an anoxic

environment from an oxic environment in the late Edi-

acaran (Fike et al. 2006; Jiang et al. 2009; Babcock et al.

2015); a biological event known as the ‘Cambrian Explo-

sion’ happened represented by the abundance and species

of fossils increasing abruptly (Brasier 1992; Marshall

2006). Based on the geochemical data, the early Cambrian

ocean in the Upper Yangtze was strongly stratified and

stagnant, with euxinic bottom water (Pi et al. 2013; Feng

et al. 2014; Jin et al. 2016) and multiple periods of

hydrothermal activities in local areas (Steiner et al. 2001;

Pašava et al. 2008; Li et al. 2015).

The lower Cambrian black shale (LCBS) has generally

been considered as depositing in an anoxic–euxinic envi-

ronment in the early Cambrian global transgression (Guo

et al. 2007; Lehmann et al. 2007; Liu et al. 2016a, b; Zhang

et al. 2017a, b) and it is a high-quality source rock (Hu

et al. 2015; Song et al. 2015; Wu et al. 2016; Liu et al.
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2017a, b; Zhang et al. 2018) similar to typical black shale

in North America, characterized by wide distribution, large

thickness (100–400 m), high TOC (2%–10%), which

means LCBS has geological advantages for shale gas

accumulation (Dong et al. 2009; Liu et al. 2009; Wang

et al. 2009a, b; Xiao et al. 2015; Zhang et al. 2015). The

LCBS in Upper Yangtze has been well analyzed, focusing

on sedimentary environment assessment (Zhu et al.

2003, 2006; Wang et al. 2015a), redox conditions (Guo

et al. 2007; Lehmann et al. 2007; Jiang et al. 2009; Wang

et al. 2012, 2015b; Xu et al. 2012; Och et al. 2013) and

hydrothermal activity (Lott et al. 1999; Steiner et al. 2001;

Jiang et al. 2006, 2007; Chen et al. 2009). However, the

controlling factors of TOC in the LCBS are still unclear,

especially the control from multiple conditions in the

sedimentary process.

The southeastern margin of the Upper Yangtze (SMUY)

is a promising area in shale gas exploration. This was the

important depositional center of black shale during the

early Cambrian, with thicker black shale deposited

(80–120 m) and larger TOC values (1.5%–20%) than other

regions. This study selected three locations (Taozichong,

Longbizui and Yanbei) in SMUY, located in deep shelf,

slope and deep basin environments, respectively, in the

early Cambrian (see locations in Fig. 1).

Furthermore, black shale samples in the lower Cambrian

were collected from these 3 locations for geochemical tests

to reveal the relationship between geochemical data and

TOC. Confirming controlling factors of TOC could provide

important theoretical and practical significance for shale

gas exploration.

2 Geological setting

The South China Platform was formed by the collision of

Yangtze Platform and Cathaysia Platform during the early

Neoproterozoic Sibao Orogeny (ca. 1.0 Ga) (Li et al.

2002). Then the South China Platform evolved from a rift

basin into a passive continental margin basin at ca.

750 Ma–690 Ma, when it separated from the Rodinia

supercontinent during its breakup (Li et al. 1995; Wang

and Li 2003).

The Upper Yangtze changed into a deep muddy shelf

system in the early Cambrian from a carbonate platform in

late Neoproterozoic as a result of large-scale transgression,

which could be divided, from west to east, into six sedi-

mentary facies: (1) platform, (2) extension zone, (3) shal-

low shelf, (4) deep shelf, (5) slope, (6) deep basin (Zhu

et al. 2003; Liu et al. 2013, 2016a, b, 2017a, b) (Fig. 1a).

At the beginning of the early Cambrian, the relative sea

level in the Yangtze Platform was low with high energy, so

anoxic water infiltrated to the euphotic zone during

transgression. In this stage, it deposited black chert and

black siliceous shale in SMUY under the influence of two

short periods of siliceous hydrothermal activities (Fig. 1b).

During the early Niutitang Stage, the Upper Yangtze

became quiet and stratified, when the relative sea level

reached its maximum flooding surface, and the chemocline

migrated to the euphotic zone. Afterward to the end of the

Niutitang Stage, the reducing conditions in the bottom

water weakened due to the sea-level falling, while sulfu-

ration appeared in the deep basin only (Xu et al. 2012; Li

et al. 2015; Wang et al. 2015b). At the end of the early

Cambrian, black shale deposited only in SMUY when the

main part of the Upper Yangtze changed to a carbonate

platform.

Taozichong area located in Guizhou Province was in a

deep shelf environment during the early Cambrian

(Fig. 1a); the lower Cambrian strata (overlying the

Dengying Formation dolomite unconformably on top of the

Ediacaran) are divided into the Taozichong and Niutitang

Formations (Fig. 1b). Taozichong Formation is composed

of phosphorite (2 m) at the bottom, phosphorous and

dolomitic cherts intercalated with thin biological phos-

phorite with abundant algae microfossils and small shell

fossils (Fig. 2a). There was Qingzhen Fauna, consisted of

hyoliths, analogous Ediacaran Fauna, Monoplacophora,

bradoriid and sponges, found in argillaceous siltstone and

silty mudstone upon the siliceous phosphorite (Yang et al.

2002). The lower member of the Niutitang Formation is

composed of black siliceous shale (42 m), with simple

trace fossils and sponge spicules on the bottom. The upper

member of the Niutitang Formation is composed of black

carbonaceous shale, dark-gray shale containing trilobites,

and siltstone (Fig. 2a).

Longbizui area, located in Hunan Province, was in a

slope environment in the early Cambrian (Fig. 1a); the

lower Cambrian strata (overlying the Doushantuo Forma-

tion conformably) are divided into the Liuchapo and Niu-

titang Formations (Fig. 1b). The Liuchapo Formation is

composed of dark-gray thin-medium chert intercalated by

thin siliceous shale.

The lower member of the Niutitang Formation is com-

posed of phosphoric siliceous shale with phosphorite

interlayers. The upper member of the Niutitang Formation

is composed of thick black carbonaceous shale and mud-

stone (Fig. 2b). Fossils are rare in the Liuchapo Formation

and the lower member of the Niutitang Formation, but

sponges and sponge spicules which possibly belong to the

Protospongiidae sp are common in the upper member of

the Niutitang Formation (Wang et al. 2012) (Fig. 2b).

Yanbei area, located in Hunan Province, was in a deep

basin environment in the early Cambrian (Fig. 1a); the

lower Cambrian strata (overlying the Doushantuo Forma-

tion conformably) are divided into the Liuchapo and
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Niutitang Formations (Fig. 1b). The Liuchapo Formation is

composed of black chert, siliceous shale and carbonaceous

shale. The lower member of the Niutitang Formation is

composed of black carbonaceous shale, with some chert

layers occurring at the base. The upper member of the

Niutitang Formation is composed of dark-gray carbona-

ceous shale and mudstone intercalated by black coal beds,

and gray marl at the top (Fig. 2c). Benthic fossils are rare,

indicating a deep basin environment in the early Cambrian.

3 Materials and methods

We studied the LCBS from three locations introduced

above in SMUY. The fresh rock samples were ground into

powders to test TOC (total of 140 samples), mineral

components (total of 47 samples), element contents (total

of 30 samples) and molecular biomarkers. TOCs were

analyzed with a CS-200 Carbon Sulfur Analyzer, and

mineral components were examined with a D8 ADVANCE

XRD Diffractometer, at the Key Laboratory of Hydrocar-

bon Accumulation, SINOPEC. The mineral components

are presented in Table 1, and TOC results are shown in

Fig. 2.
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Element contents were analyzed by X-ray fluorescence

(major elements) and inductively coupled plasma mass

spectrometry (ICP-MS) (trace elements) at the laboratory

of Beijing Research Institute of Uranium Geology, CNNC

(China National Nuclear Corporation). Saturated hydro-

carbon gas was analyzed by gas chromatography based on

standard GB/T 18340.5-2010 at the Key Laboratory of

Hydrocarbon Accumulation, SINOPEC (Table 2).

Eu/Eu*, representing Eu enrichment anomaly, was cal-

culated as suggested by Dulski (1994):

Eu=Eu� ¼ ð3 � EuNÞ= ð2 � SmN þ TbNÞ

where XN refers to normalized concentration against PAAS

(post-Archean Australian shale) (Taylor and McLennan

1985). The results of Eu/Eu* are presented in Table 3.

Only biogenic elements can indicate primary produc-

tivity (Brumsack 2006), so the content of terrigenous ele-

ments should be deducted when calculating primary

productivity using geochemical elements. Much previous

research shows that aluminum (Al) can be used to represent

the terrigenous constituent, since Al in silicate minerals is

largely immobile during diagenesis as a main component

of crustal rocks (Saito et al. 1992). Mobio and Babio, rep-

resenting biogenetic origin molybdenum and barium,

respectively, have been calculated in the formula:

w Xbioð Þ ¼ w Xsample

� �
� w Alsample

� �
� w Xð Þ=w Alð Þ½ �N

where w(Xbio) represents the mass fraction of biogenic

element X; w(Xsample) represents mass fraction of element

X in sample; [w(X)/w(Al)]N represents mass fraction of

X and Al in PAAS. The results of Mobio and Babio are

presented in Table 3.

Table 1 Mineral components from XRD

Location Depth, m Sample Clay minerals, % Quartz, % Location Depth, m Sample Clay minerals, % Quartz, %

Taozichong 111.38 TZC-2 41 44 Longbizui 145.64 LBZ-43 37 50

Taozichong 107.75 TZC-4-1 40 36 Longbizui 129.42 LBZ-47 45 41

Taozichong 103.49 TZC-6 41 48 Longbizui 116.29 LBZ-51 43 41

Taozichong 102.42 TZC-7-1 41 37 Longbizui 104.71 LBZ-54 39 41

Taozichong 98.16 TZC-8-1 45 38 Yanbei 143.31 YB-6 28 64

Taozichong 81.46 TZC-10 34 47 Yanbei 137.66 YB-9 29 59

Taozichong 67.27 TZC-13 36 40 Yanbei 109.6 YB-12 45 32

Taozichong 64.67 TZC-15 37 41 Yanbei 106.44 YB-15 36 43

Taozichong 62.67 TZC-17 36 38 Yanbei 102.6 YB-18 27 58

Taozichong 57.11 TZC-21 40 34 Yanbei 95.98 YB-23 7 86

Taozichong 50.85 TZC-25 37 35 Yanbei 74.44 YB-30 17 76

Taozichong 46.8 TZC-28 49 33 Yanbei 64.32 YB-34 14 63

Taozichong 41.36 TZC-31 57 31 Yanbei 60.16 YB-36 16 74

Taozichong 33.86 TZC-35 41 40 Yanbei 54.99 YB-38 17 76

Taozichong 17 TZC-39 40 42 Yanbei 46.71 YB-40 17 71

Longbizui 288.67 LBZ-11 7 85 Yanbei 44.13 YB-42 23 61

Longbizui 278.22 LBZ-14 8 76 Yanbei 34.26 YB-47 24 66

Longbizui 253.59 LBZ-19 7 85 Yanbei 29.24 YB-49 23 67

Longbizui 238.82 LBZ-23 21 54 Yanbei 22.06 YB-52 27 67

Longbizui 225.93 LBZ-27 14 65 Yanbei 17.29 YB-54 12 82

Longbizui 205.85 LBZ-33 27 53 Yanbei 13.24 YB-56 33 59

Longbizui 198.13 LBZ-35 28 49 Yanbei 4.49 YB-60 28 64

Longbizui 166.48 LBZ-37 20 68 Yanbei 0.08 YB-62 15 80

Longbizui 157.22 LBZ-40 38 49

Table 2 Geochemical parameters of saturated hydrocarbons in the

Niutitang Formation

Sample Location Depth, m Main alkane OEP Pr/Ph

TZC-6 Taozichong 103.49 C25 1.13 0.44

TZC-28 Taozichong 46.8 C23 1.12 0.18

LBZ-23 Longbizui 238.82 C23 1.08 0.44

YB-18 Yanbei 102.6 C18 0.73 0.63
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4 Results and discussion

4.1 Relationship between TOC and mineral
components

Mineral components of the lower Cambrian strata in

SMUY are dominated by quartz, followed by clay miner-

als, with a little feldspar, carbonate, pyrite and anhydrite

(Table 1). The SMUY was located in a deep shelf–deep

basin environment during the early Cambrian (Steiner et al.

2001; Zhu et al. 2003) far from the western ancient land

(Fig. 1), where the depositional interface was under wave

base or storm-wave base. Therefore, clay minerals depos-

ited through a long transportation by wind and waves, in

this case the content of clay minerals was mainly controlled

by offshore distance. Europium (Eu) shows a positive

anomaly generally in oceanic hydrothermal deposition

(Ruhlin and Owen 1986; Douville et al. 1999), in which

Eu/Eu*[ 1 represents a positive anomaly. The formula for

Eu/Eu* is discussed in Sect. 3.

The SMUY experienced multi-period hydrothermal

activities in the early Cambrian, resulting in Eu/Eu*[ 1

for all the samples from Taozichong (except TZC-8-1 and

TZC-13), and most of the samples in the Liuchapo For-

mation from Longbizui and Yanbei (Table 3). The quartz

in the strata affected by hydrothermal activities was

hydrothermal origin without any obvious linear relation

with TOC. Therefore, the relationship between TOC and

the content either of biogenic quartz or of clay minerals in

the samples from the Niutitang Formation in Longbizui and

Yanbei would be discussed mainly in this article. The

microlitic quartz in black shale was derived mainly from

Table 3 Calculated results of geochemical proxies

Location Formation Sample Depth, m Babio, ppm Mobio, ppm P, % Ni/Co U/Th Eu/Eu*

Taozichong Taozichong Formation TZC-2 111.38 427.32 2.06 0.647 10.52 0.92 1.21

Taozichong

Longbizui

Taozichong Formation

Niutitang Formation

TZC-6 103.49 22.00 4.26 0.081 7.96 1.83 1.09

TZC-8-1 98.16 439.65 99.43 0.177 31.04 1.53 0.82

TZC-21 57.11 65.17 52.55 0.247 5.64 1.60 1.04

Niutitang Formation

Liuchapo Formation

TZC-25 50.85 183.59 96.50 0.293 10.35 2.61 1.07

TZC-28 46.8 385.12 170.55 0.319 7.71 2.36 1.01

TZC-33 37.23 501.44 46.85 0.263 4.27 2.66 1.12

TZC-37 28 444.65 44.08 0.175 5.68 1.18 1.01

TZC-41 3.5 0.00 0.00 0.139 5.02 0.29 1.04

LBZ-11 288.67 452.16 0.11 0.023 16.22 6.54 1.16

Longbizui

Yanbei

Liuchapo Formation

Niutitang Formation

LBZ-13 281.35 9898.51 2.02 0.04 27.27 3.05 0.52

LBZ-14 278.22 1276.17 0.12 0.023 5.98 1.98 0.66

LBZ-22 240.92 4177.66 0.36 0.091 18.29 15.48 1.16

LBZ-26 229.02 23,064.73 1.42 0.218 16.45 6.39 0.29

Niutitang Formation

Liuchapo Formation

LBZ-31 212.03 14,506.03 1.93 0.062 11.27 2.75 0.63

LBZ-40 157.22 3265.33 2.39 0.079 8.68 0.63 0.88

LBZ-44 137.92 2807.70 2.53 0.06 7.04 0.63 0.94

LBZ-47 129.42 3096.87 2.69 0.049 10.40 0.46 0.86

LBZ-51 116.29 2292.88 2.80 0.077 4.10 0.54 0.87

LBZ-54 104.71 1769.55 2.55 0.082 4.54 0.44 0.89

YB-6 143.31 3661.34 33.36 0.124 39.45 4.98 1.05

Yanbei Liuchapo Formation

Niutitang Formation

YB-9 137.66 10,750.06 64.93 0.032 7.20 3.53 0.59

YB-14 107.98 2471.04 20.13 0.071 15.34 9.49 0.92

YB-18 102.6 6586.21 138.77 0.259 11.66 7.92 1.05

YB-20 99.67 1720.12 43.81 0.036 8.11 1.61 1.09

YB-35 61.71 1304.88 60.70 0.067 4.45 3.02 1.00

Niutitang Formation YB-40 46.71 926.42 43.94 0.034 6.35 1.54 0.98

YB-45 38.56 1391.91 15.75 0.018 4.08 0.63 0.91

YB-52 22.06 2795.35 44.82 0.024 16.17 4.29 0.73

YB-56 13.24 3478.19 419.06 0.068 20.38 2.69 0.93
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the opals in sponge spicules and radiolarians (Bowker

2003), the content of which was far more than the terres-

trial quartz in such as Niutitang black siliceous shale

(Loucks and Ruppel 2007). As suggested by Rowe et al.

(2008), ratios of Si/Al located above Si/Al in illite (fitted

by contents of Si and Al in the Barnett shale) represent

biogenic excess Si contained in shale. The majority of Si/

Al in the Niutitang Formation has been located in silica

excess region, which means biogenic quartz dominated in

the Niutitang shale (Fig. 3). It shows an obvious positive

relation between TOC and content of quartz (Fig. 4a, c)

and an obvious negative relation between TOC and content

of clay minerals in the Niutitang shale from these two

locations (Fig. 4b, d). That is to say, more quartz and less

clay minerals accompany higher TOC (Fig. 5). Because

more quartz represents larger biomass in the Niutitang

shale, the deep shelf and deep basin environments, quartz-

rich and clay-mineral-poor, provided a favorable living

environment for marine organisms (i.e., bacteria, algae,

radiolarian, sponge, bradoriid and eodiscid). In general, the

TOC is positively correlated with the content of quartz and
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negatively correlated with the content of clay minerals,

thus the deep shelf–deep basin environment favored the

enrichment of organic matter.

4.2 Relationship between TOC and primary
productivity

Primary productivity is the velocity of energy fixation by

paleo-marine organisms during the energy cycle, i.e., the

amount of organic matter generation per unit area and per

unit time. Previous research shows that molybdenum (Mo)

deposits in the form of stable sulfide through combination

of Mo(Ox, S4-x)
2-(x = 0–3) and sulfur-rich organic

molecules (Tribovillard et al. 2004) or/and pyrites (Vor-

licek et al. 2004) under anoxic conditions with participa-

tion of organic matter. This kind of combination is

irreversible (Bostick et al. 2003), which would lead to more

Mo deposited with more organic carbon availability. In

bathyal–abyssal regions where primary productivity is

high, both the barium (Ba) flux in sea water and the content

of barite in deposition are high, with a 30% preserving rate

of biologic Ba (Dymond et al. 1992; Paytan et al. 1996),

thus the relationship between Ba and primary productivity

in surface water could be established (Francois et al. 1995).

The calculating formula of Mobio and Babio is discussed in

Sect. 3. As a crucial nutrient element (Howarth 1988),

phosphorus (P) in deposits is contained in dead plankton

falling on the water–sediment interface; for this reason, the

content of P can reflect primary productivity largely in

geological epochs (Tyrrell 1999). In general, low molecu-

lar weight n-alkanes were sourced from plankton, algae or

bacteria, while high molecular weight n-alkanes were

source from advanced plants (Clark and Blumer 1967).

It shows an obvious positive relationship between TOC

and Mobio, Babio and P in the samples from Taozichong and

Longbizui (Fig. 6). Likewise, it shows an obvious positive

relationship between TOC and Mobio and P in the samples

from Yanbei (Fig. 6g, i); however, the relationship

between TOC and Babio in this location shows a weaker

relationship than the other two locations (Fig. 6h). It is

because the Yanbei area was located in a deep basin

environment during the early Cambrian which was deeper

than the other two areas with sulfide bottom water con-

taining free H2S. In this case, sulfate could be reduced by

sulfur-reducing bacteria resulting in the BaSO4 crystals

dissolving (Dymond et al. 1992), which could weaken the

relativity between TOC and Babio in Yanbei. As it shows

an obvious positive relationship between TOC and primary

productivity in the LCBS from these three locations, pri-

mary productivity could provide the basis for organic

accumulations in black shale (Pedersen and Calvert 1990),

and organic carbon formed by primary productivity could

still remain after a series of complex processes, e.g.,

deposition and burial. Alkane distribution in studied sam-

ples are nC18–nC25, and odd–even priority (OEP) values

are close to 1 (0.73–1.13) (Table 2), which suggest organic

matter was from marine plankton, e.g., algae and bacteria.

4.3 Relationship between TOC and redox
conditions

Pristane (Pr) and phytane (Ph) can be used as paleo-redox

indicator: Ph has obvious advantage in a (strong) anoxic

depositional environment, while Pr abundance is advan-

taged in a weak anoxic or oxic environment (Peters and

Moldowan 1991). The ratios of trace metals, such as U/Th

and Ni/Co, can be used to evaluate redox conditions.

Uranium (U) usually dissolves in oxic seawater as U6?,

while it could be absorbed easily by organic particles as

U4? in anoxic seawater (Algeo and Maynard 2004). In

contrast to the U, thorium (Th) is concentrated in weath-

ering-resistant minerals as a constituent of heavy minerals

and clay minerals. Th does not migrate easily in a low-

temperature environment. Therefore, ratios of U/Th can

represent redox conditions in seawater, as Jones and

Manning (1994) suggested that U/Th\ 0.75 indicates oxic

conditions, 0.75\U/Th\ 1.25 indicates dysoxic condi-

tions, U/Th[ 1.25 indicates anoxic conditions. Nickel (Ni)

and cobalt (Co) usually exist in pyrite, and a higher ratio of

Ni/Co indicates stronger reducing conditions. Jones and

Manning (1994) suggested that Ni/Co\ 5 indicates oxic
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conditions, 5\Ni/Co\ 7 indicates dysoxic conditions,

Ni/Co[ 7 indicates anoxic conditions.

In this study, Pr/Ph values change from 0.18 to 0.63

(Table 2), indicating strong-normal anoxic environment in

LCBS. The average values of U/Th and Ni/Co are 1.66 and

9.80 (Taozichong), 3.54 and 11.84 (Longbizui), 3.97 and

13.32 (Yanbei), respectively, which shows the reducing

conditions are Taozichong\Longbizui\Yanbei

(Table 4). Almost all of the geochemical parameters show

dysoxic and anoxic bottom water covered the sedimentary
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Table 4 Statistical table of

average TOC and redox level in

three locations

Location Sedimentary environment U/Th average Ni/Co average TOC average, %

Taozichong Deep shelf 1.66 9.80 2.73

Longbizui Slope 3.54 11.84 3.40

Yanbei Deep basin 3.97 13.32 7.26
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interface of black shale in SMUY (Fig. 7a). Moreover, a

weak positive relationship existing between TOC and ratio

of U/Th and of Ni/Co can be observed (Fig. 7b, c). In

consequence, LCBS deposited under dysoxic–anoxic bot-

tom water, which was beneficial for organic preservation,

while the effect of reducing intensity on organic accumu-

lation is quite weak.

4.4 Main factors affecting organic accumulation

The development of marine black shale is caused by

multiple factors of sedimentary conditions. In addition,

marine black shale would deposit only when each of the

factors reaches a favorable condition, rather than empha-

sizing the influence from just one of them. Normally,

organic accumulation needs two main conditions: (1)

favorable preservation, which means bottom water should

be dysoxic anoxic (Jenkyns 2010; Sun et al. 2016); (2) high

primary productivity, which means abundant plankton

living in surface water (Pedersen and Calvert 1990).

During the early Cambrian, the Yangtze Platform was

located between 30� and 60� north latitude in the sub-

tropical dry zone controlled by subtropical highs, where

broad equatorial current divergence developed in the

oceanic bottom, transformed into eutrophic upwelling at

the continental margin like SMUY (Xia et al. 2015; Tang

et al. 2017; Yeasmin et al. 2017). In consequence, the

species and number of organisms in the early Cambrian

increased rapidly in quartz-rich and clay-mineral-poor deep

shelf–slope–basin environments, resulting in massive

quantities of organic matter settling down and being buried,

which is represented by high values from geochemical

parameters of primary productivity (Mobio, Babio and P)

and the obvious positive relationship between these

parameters and TOC. On the other hand, the LCBS

deposited in dysoxic–anoxic bottom water, which was

beneficial for preservation of organic matter generated by

productivity in surface water. However, an extremely weak

positive relativity between the geochemical parameters of

redox (Ni/Co and U/Th) and TOC could be found, which

might mean an adequate source of organic matter dimin-

ished the importance of organic preservation, especially

under dysoxic–anoxic bottom water.

In total, three main points can be drawn to explain the

relationship between data and the factors affecting organic

accumulation: (1) quartz-rich and clay-mineral-poor deep

shelf–slope–basin environments provided a favorable

environment for living organisms; (2) high primary pro-

ductivity provided the foundation for organic matter gen-

eration; (3) redox levels impact slightly on the content of

organic matter under high productivity and dysoxic–anoxic

condition.

5 Conclusions

In conclusion, content of organic matter in the lower

Cambrian black shale in SMUY is controlled by the fol-

lowing factors:

(1) Quartz in samples of the Niutitang Formation in

Longbizui and Yanbei was of biogenic origin

indicated by excess Si content, and there is a

positive correlation between the content of quartz

and TOC and a negative correlation between the

content of clay minerals and TOC. A deep shelf–

deep basin environment with abundant marine

organisms and featuring quartz-rich and clay-poor

lithofacies provided a favorable environment for the

living organisms.

(2) Primary productivity in these three locations, repre-

sented by contents of Mobio, Babio and P, was

positively correlated to TOC in the lower Cambrian
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black shale. Organic geochemical data suggest

organic matter was sourced from plankton. High

primary productivity provided a basis for organic

matter generation, and organic carbon formed by

primary productivity could survive after a series of

complex processes.

(3) Geochemical parameters of redox (Pr/Ph, Ni/Co and

U/Th) suggest the lower Cambrian black shale

deposited in dysoxic–anoxic bottom water, which

was beneficial for preservation of organic matter

generated by productivity in surface water. However,

the weak positive relativity between the TOC and

ratios of Ni/Co and U/Th means redox conditions

impact only slightly on the content of organic matter

under high productivity and dysoxic–anoxic

condition.
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Lehmann B, Nägler TF, Holland HD, et al. Highly metalliferous

carbonaceous shale and early Cambrian seawater. Geology.

2007;35(5):403–6. https://doi.org/10.1130/G23543A.1.

Li ZX, Zhang LH, Powell CW. South China in Rodinia: part of the

missing link between Australia–East Antarctica and Laurentia?

Geology. 1995;23(5):407–10. https://doi.org/10.1130/0091-

7613(1995)023\0407:SCIRPO[2.3.CO;2.

Li ZX, Li XH, Zhou H, et al. Grenvillian continental collision in

South China: new SHRIMP U–Pb zircon results and implications

for the configuration of Rodinia. Geology. 2002;30(2):163–6.

https://doi.org/10.1130/0091-7613(2002)030\0163:GCCISC[2.

0.CO;2.

Li YF, Fan TL, Zhang JP, et al. Geochemical changes in the early

Cambrian interval of the Yangtze Platform, South China:

implications for hydrothermal influences and paleocean redox

conditions. J Asian Earth Sci. 2015;109:100–23. https://doi.org/

10.1016/j.jseaes.2015.05.003.

Liu SG, Zeng XL, Huang WM, et al. Basic characteristics of shale

and continuous-discontinuous transition gas reservoirs in

Sichuan Basin, China. J Chengdu Univ Technol Sci Technol

Ed. 2009;36(6):578–92 (in Chinese).
Liu SG, Sun W, Luo ZL, et al. Xingkai taphrogenesis and petroleum

exploration from Upper Sinian to Cambrian Strata in Sichuan

Basin, China. J Chengdu Univ Technol Sci Technol Ed.

2013;40(5):511–20. https://doi.org/10.3969/j.issn.1671-9727.

2013.05.03.

Liu J, Yao YB, Elsworth D, et al. Sedimentary characteristics of the

lower Cambrian Niutitang shale in the southeast margin of

Sichuan Basin, China. J Nat Gas Sci Eng. 2016a;36:1140–50.

https://doi.org/10.1016/j.jngse.2016.03.085.

Liu SG, Wang YG, Wei S, et al. Control of intracratonic sags on the

hydrocarbon accumulations in the marine strata across the

Sichuan Basin, China. J Chengdu Univ Technol Sci Technol Ed.

2016b;43(1):1–23. https://doi.org/10.3969/j.issn.1671-9727.

2016.01.01.

Liu XP, Jin ZJ, Bai GP, et al. Formation and distribution character-

istics of Proterozoic–Lower Paleozoic marine giant oil and gas

fields worldwide. Pet Sci. 2017a;14(2):237–60. https://doi.org/

10.1007/s12182-017-0154-5.

Liu ZB, Gao B, Zhang YY, et al. Types and distribution of the shale

sedimentary facies of the lower Cambrian in Upper Yangtze

area, South China. Pet Explor Dev. 2017b;44(1):20–31. https://

doi.org/10.1016/S1876-3804(17)30004-6.

Loucks RG, Ruppel SC. Mississippian Barnett Shale: lithofacies and

depositional setting of a deep-water shale-gas succession in the

Fort Worth Basin, Texas. AAPG Bull. 2007;91(4):579–601.

https://doi.org/10.1306/11020606059.

Lott DA, Coveney RMJ, Murowchick JB, et al. Sedimentary

exhalative nickel–molybdenum ores in South China. Econ Geol.

1999;94(7):1051–66. https://doi.org/10.2113/gsecongeo.94.7.

1051.

Luo C. Geological characteristics of gas shale in the lower Cambrian

Niutitang Formation of the Upper Yangtze Platform. Chengdu:

Chengdu University of Technology; 2014. p. 115–32 (in
Chinese).

Marshall CR. Explaining the Cambrian ‘‘explosion’’ of animals. Annu

Rev Earth Planet Sci. 2006;34(34):355–84.

Och LM, Shields-Zhou GA, Poulton SW, et al. Redox changes in

early Cambrian black shales at Xiaotan section, Yunnan

Province, South China. Precambrian Res. 2013;225(1):166–89.

https://doi.org/10.1016/j.precamres.2011.10.005.
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