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Abstract
Shale reservoirs are characterized by low porosity and strong anisotropy. Conventional geophysical methods are far from

perfect when it comes to the prediction of shale sweet spot locations, and even less reliable when attempting to delineate

unconventional features of shale oil and gas. Based on some mathematical algorithms such as fuzzy mathematics, machine

learning and multiple regression analysis, an effective workflow is proposed to allow intelligent prediction of sweet spots

and comprehensive quantitative characterization of shale oil and gas reservoirs. This workflow can effectively combine

multi-scale and multi-disciplinary data such as geology, well drilling, logging and seismic data. Following the maximum

subordination and attribute optimization principle, we establish a machine learning model by adopting the support vector

machine method to arrive at multi-attribute prediction of reservoir sweet spot location. Additionally, multiple regression

analysis technology is applied to quantitatively predict a number of sweet spot attributes. The practical application of these

methods to areas of interest shows high accuracy of sweet spot prediction, indicating that it is a good approach for

describing the distribution of high-quality regions within shale reservoirs. Based on these sweet spot attributes, quantitative

characterization of unconventional reservoirs can provide a reliable evaluation of shale reservoir potential.
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1 Introduction

Shale oil and gas reservoirs are increasingly valued

worldwide due to their unique characteristics (Sayers 2005;

Vanorio et al. 2008). In recent years, various countries have

increased investment in developing their shale reservoirs.

A typical shale reservoir is known with the following

features: high TOC (total organic content), complex pore

space, strong anisotropy, complicated distribution of

hydrocarbon, micro-fractures developed and extremely low

matrix permeability (Dong et al. 2014; Sayers 2013). Great

variations in the spatial distribution of the features listed

above results in a complex distribution of hydrocarbon

accumulation in shales as well as a huge variance between

individual sweet spots. In addition, the complex

microstructure and anisotropy make it difficult to charac-

terize shale reservoirs in a geophysical way (Sondergeld

and Rai 2011; Deng et al. 2015). Moreover, the large

variation in styles of shale sweet spot attributes makes it

difficult to identify the key factors required to integrate

information from different data types with different scales

(Chapman et al. 2003). In particular, the prediction of the

intensity of multi-scale and multi-angle fractures in hori-

zontally laminated shale reservoirs is a critical challenge

(Doveton and Merriam 2004; Ding et al. 2017).

The comprehensive evaluation of shale oil and gas

reservoir sweet spots requires consideration of both geo-

logical and engineering factors, in order to analyze the

storage capacity and development potential. Geological

elements include depth, thickness, lithology, porosity,

hydrocarbon saturation, TOC content and TOC maturity

and, ultimately, the oil and/or gas in place. Engineering
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sweet spots consider stress, pressure, fracture distribution,

brittleness and anisotropy (Ouenes 2012; Chopra et al.

2013).

Many geophysical methods have been established in

order to predict sweet spots of shale plays. Doveton and

Merriam (2004) used NMR logging information to study

the mineral composition and geology of shale reservoirs by

analyzing their geochemical characteristics. Singh et al.

(2008) generated a lithofacies classification based on core

samples. They defined the depositional sequences and

reservoir stratigraphy by analyzing gamma logs and seis-

mic data. Zhang (2012) and Zhang and Sun (2012) started

to study the shale oil and gas accumulation process, to

allow isolation of the crucial factors controlling shale oil

reservoir quality and abundance; they also studied core and

log data to establish a sweet spot evaluation method based

on five indexes, which are the mineral components, geo-

chemistry, reservoir properties, hydrocarbon saturation and

fracturing potential. The practical application of this

method proved that log data play an important role in

evaluating shale reservoirs. Lu et al. (2012) divided shale

reservoirs into dispersed (invalid) resources, neutral

resources and rich resources by using the threefold rela-

tionship between hydrocarbon saturation and source rock

TOC, which leads to an equation to quantify the production

potential of shale reservoirs. Chen (2014) determined the

inversion-sensitive parameters through a joint analysis of

TOC measurements and geophysical inputs, which estab-

lished the most suitable equation to allow inversion for

TOC distribution based on the prestack seismic inversion

density cube, in the Jiaoshiba area of the Sichuan Basin.

Gading et al. (2013) pointed out that the description (scope,

thickness and abundance) of shale reservoirs may be

obtained through the analysis of seismic data, based on the

relationship between TOC and rock properties established

in petrophysical analysis. Nieto et al. (2013) came up with

a workflow to predict lithology, which starts from a litho-

facies classification based on rock physics, and then set up

an a priori distribution of each facies, and the posterior

distribution of each facies was inverted based on a Baye-

sian scheme using seismic data. Chopra et al. (2013) used a

joint approach to cross plot the well logs and seismic data

to identify abnormal areas, which represent oil and gas

accumulations and highly brittle zones, respectively.

Bachrach and Sayers (2014) argued that the conventional

inversion method is not applicable to anisotropic shale

reservoirs and proposed an AVAZ (amplitude versus

incident and azimuthal angle) inversion approach that

works with orthogonal anisotropy reservoirs such as frac-

tured shale. The application of this inversion to wide-az-

imuth seismic data helped to understand rock properties in

complex shale reservoirs and their development (hydro-

fracturing) potential. More generally, however, the current

approach to sweet spot predictions is mostly based on

geochemical analysis of core data and the petrophysical

analysis of well logs. The deliverables from these studies

are one of the key reservoir attributes, either TOC or

brittleness, which only describes either the geological or

engineering aspect of the shale reservoir sweet spots.

The majority of shale sweet spot parameter prediction

methods (e.g., TOC content, maturity and mineral con-

stituents) are reliant on laboratory measurement and well-

logging data, which are difficult to obtain directly from

seismic data. Limited by the 3D distribution of core sam-

ples and well logs, the spatial delineation of shale sweet

spots from seismic is a key challenge. Furthermore, there is

no standardized quantitative criterion for directly describ-

ing shale oil and gas reservoir sweet spots using seismic

attributes, let alone a good consideration of the geological

implications. Nevertheless, large amount of work is

required to benchmark the results from traditional single-

attribute evaluations and this is likely to be biased by

subjective interpretation. Therefore, it is critical to develop

a new integrated sweet spot prediction method to allow for

the accounting of multiple shale reservoir attributes con-

currently. Machine learning and artificial intelligence (AI)

are new ways to analyze the integral different types of

sweet spot. AI was firstly proposed by Turing in 1950.

With decades of development, AI is performed in all walks

of life. In terms of the oil industry, many techniques, like

neural networks, genetic algorithms, are used to explore for

hydrocarbon. Zhang et al. (1997) used an interactive

intelligent technology to interpret fine structure. Yuan et al.

(2009) performed swarm intelligence optimization to geo-

physical data inversion, and the results came up with

higher convergence speed and accuracy compared with

conventional genetic algorithm and simulated annealing.

Zhang et al. (2011) introduced a support vector machine in

volcanic reservoir prediction. Mou et al. (2015) also per-

formed SVM to identify the lithofacies of volcanic rocks in

the eastern depression of the Liaohe Basin. Chen et al.

(2014) predicted shale TOC content and free hydrocarbon

content by means of an RBF (radical basis function) neural

network approach, which resulted in accurate prediction

results. Xiao et al. (2014) set up an evaluation method for

shale mineral constituents based on conventional logging

data by introducing a genetic algorithm into the inversion.

Zhang et al. (2015) predicted the spatial distribution of

organic carbon using a seismic inversion approach cali-

brated by wells. Ji et al. (2016) introduced a frequency-

domain prestack sparse Bayesian learning inversion

method to retrieve P and S wave impedance reflectivity.

Yuan et al. (2017) derived a time-variant deconvolution

method based on sparse Bayesian learning in order to

obtain a high-quality reflectivity image. And they used a

machine learning technique to classify seismic waveforms
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and introduced conventional neural networks into first-

break picking (Yuan et al. 2018). Fu et al. (2018) used deep

learning method to predict reservoirs using multi-compo-

nent seismic data.

This paper introduced a new approach for the intelligent

prediction of shale sweet spots by utilizing AI machine

learning technology in conjunction with multi-scale infor-

mation such as geology, well drilling, logging and seismic

data. This method is then applied to a shale reservoir field

example to identify production sweet spots.

2 Method and principle

We use fuzzy logic theory constrained by petrophysical

studies, to jointly assess the contribution of multiple seis-

mic attributes, based on information such as geology,

drilling data, logging and seismic data. This study leads to

a training model which can be improved by AI machine

learning technology. This AI model can be then used to

predict shale reservoir properties, such as porosity, fracture

density, TOC content, brittleness, pressure, stress and other

geological and engineering sweet spot-related attributes.

Furthermore, this model is controlled by production his-

tories, which give a comprehensive index to allow char-

acterization of shale sweet spot development.

The workflow we propose is shown (Fig. 1).

2.1 Evaluation of attributes

Geological analysis, structural interpretation, logging

evaluation and attribute calculation constitute the prereq-

uisites for the successful prediction of multiple shale oil

and gas sweet spots. Seismic attributes include amplitude,

frequency, phase and attenuation. During the reservoir

evaluation, hundreds of attributes are generated, which

make the selection of the ones sensitive to sweet spots very

challenging.

We use fuzzy mathematics theory to evaluate the con-

tribution degree of various attributes for sweet spot pre-

diction to select the sensitive ones. Assume A is a fuzzy

mode in the given domain U, and x1, x2, x3, …, xn are

n objects lining up for identification in U. According to the

maximum subordination principle, if

AðxiÞ ¼ maxfAðx1Þ;Aðx2Þ; . . .;AðxnÞg; ð1Þ

then xi is preferentially regarded as the sensitive one and it

has been selected by the fuzzy mode A.

In Eq. (1), xi represents the seismic attributes used in the

evaluation, while A(xi) stands for the contribution degree of

the ith attribute. This can be obtained by correlation

coefficient evaluation or mean square error calculation.

When carefully applied within thresholds, a list of highly

sensitive sweet spot attributes can be generated. A fuzzy

mathematics set is different from a classical set. A fuzzy

set has no specific boundary, which has the benefit that it

can build the mathematic model flexibly. A fuzzy set

indicates the degree of subordination for each element.

Hence, the eigenfunction of a fuzzy set can only range

from 0 to 1, which shows the degree of subordination. The

typical workflow to select a single attribute by using fuzzy

mathematical model can be summarized as follows:

1. Calculate the correlation degree between training

samples and target of prediction, which can be used

to judge the contribution value of each attribute.

2. Two boundaries of a fuzzy set can be decided by

choosing the maximum value (cmax) and minimum

value (cmin) of all the correlation coefficients among

different attributes.

3. The contribution of each attribute can be calculated

based on the maximum subordination principle of

fuzzy theory. The relative equations are shown below:

Geological data

Coring data

Logging data

Seismic attributes

Evaluation based on 
Fuzzy mathematics

Simulation training of
machine learning

Prediction of sweet
spot by integral 

multi-scale attributes

Porosity

TOC

Fracture
density

Brittleness

Pore
pressure

In-site
stress

Hydrocarbon
reserve of well

Multiple
regression
analysis

Indicator of
sweet spot

Fig. 1 Workflow for intelligent shale reservoir sweet spot prediction and quantitative characterization
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AðxÞ ¼
0; x� cmin
x� cmin

cmax � cmin

; cmin\x\cmax

1; x� cmin

8
><

>:
ð2Þ

where x is the correlation coefficient.

4. Sorting the calculated contributions and selecting the

optimum attribute with high contribution, which can be

used to guide the following artificial intelligent learn-

ing process and comprehensive prediction of reservoir

characteristics.

Multi-attribute analysis is also necessary after single-

attribute selection. The selected attributes should first have

relatively high contribution. Meanwhile, the selected

attributes should be relatively independent in order to avoid

redundancy between them.

2.2 Model training

Constrained by well logs, the seismic attributes selected

from the attributes fed into the fuzzy mathematics work-

flow can be used as inputs for the training of an intelligent

prediction model that uses machine learning methods. The

training model can be described mathematically as:

fðX1; y1Þ; ðX2; y2Þ; . . .; ðXi; yiÞg; Xi 2 Rd; yi 2 R ð3Þ

where X is a multi-dimensional vector. d shows the number

of dimensions which indicates the number of seismic

attributes. y is the dependent variable which represents the

well log curves. X and y have the same subscript i which is

the number of samples involved in AI training. i is decided

by the intersection between logging data and seismic data

after well-seismic calibration.

The purpose of machine learning is to establish a

complex mathematical model expressing the relationship

between y and X, namely the construction of a model that

can describe the relationship between target sweet spots

and selected attributes. The equation is listed below:

y ¼ f ðXÞ ¼ hw;Xi þ b; with w 2 Rd; b 2 R ð4Þ

where w is weight vector, b is the constant deviation, and

hw;Xi indicates a generated function which shows the

linear or nonlinear relationship between them. R means real

number set, and Rd indicates a d-dimensional set. Machine

learning is a process of multivariate nonlinear regression.

A support vector machine (SVM) is used for the model

training process in our machine learning algorithm, and it

has several strengths: (1) It is based on a statistical learning

theory to obtain the support vector applicable to limited

samples. (2) Kernel functions are used to map the high-

dimensional space without increasing computational com-

plexity to address the curse of dimensionality. (3) Optimum

solutions can be obtained for this L2 convex optimization

problem. (4) Regarding the target optimization, empirical

risk and confidence range may be taken into account

simultaneously to ensure the generalization ability of the

models, on the basis of structural risk minimization. (5)

Regarding application and implementation, rigorous theo-

retical and mathematical backgrounds are available to

mitigate the impact of experiential elements and make it

easy to control.

To ensure the generalization of our machine learning

model, regularization constraints are added to construct

target functions of the convex quadratic optimization

problem of SVM in this paper, as shown below:

min
1

2
wk k2þC

Xl

i¼1

ðni þ n�i Þ ð5Þ

Among them, C is a regularization operator which controls

the weight of regularization. Generally, a higher C value

indicates stronger generalization ability and lower accu-

racy, and vice versa. l is the number of support vectors, and

ni and n�i stand for slack variables.

To solve above the convex quadratic optimization

problem, the constraint condition is given below:

Subject to

yi � hw;Xii � b� eþ ni
hw;Xiiþb�yi � eþ n�i

ni; n
�
i � 0

8
<

:
ð6Þ

The variables have the same meaning as those in Eq. (5).

Then, dual decomposition and KKT optimization con-

ditions are applied, together with the gradient algorithm, to

solve the SVM quadratic planning problem.

The principle analysis and target prediction can be

achieved based on known sampling points by applying

support vector theory to the regression problem. For the

intelligent prediction of shale sweet spots, there are many

characteristic dimensions involved in the calculation.

Normally, the relationship between target function and

input parameter is nonlinear, which requires nonlinear

regression analysis. To solve this problem, the original

characteristic space is mapped to the high-dimensional

characteristic space through a nonlinear transform, which

constructs a linear decision function in the high-dimen-

sional space to represent the nonlinear decision function of

the original space.

y ¼ f ðXÞ ¼ hw;/ðXÞi þ b ð7Þ

In Eq. (7), / represents a mapping function from original

space to high-dimensional space.

Linearization of the problem by mapping to higher

dimensions will result in a significant increase in compu-

tation cost, namely the so-called curse of dimensionality. In

this case, we introduce a support vector mechanism into the
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idea of a kernel function, to minimize computation costs.

The generalized kernel function is expressed as:

KðXi;XjÞ ¼ /ðXiÞT/ðXjÞ ð8Þ

The kernel function that we choose is the radial basis

function (RBF) which is shown below. This function can

effectively fit the nonlinear relationship between different

sweet spot attributes.

KðXi;XjÞ ¼ expð� cjX � X0j2Þ ð9Þ

2.3 Comprehensive characterization

To provide a comprehensive quantification of the reservoir

sweet spot without biased assessment, multivariate

regression analysis techniques can be used. In addition, the

regression can be constrained by production indexes esti-

mated from well logs or production data.

Given that there are limited samples in practice, the

multivariate model is constructed as below:

y ¼
Xn

i¼1

aimi þ B ð10Þ

where ai is the weight factor of the ith attribute, mi is a

specific attribute, and B is a constant.

The least squares solution of the target function in such

a multivariate regression is listed below:

min
Xm

j¼1

yj �
Xn

i¼1

aimi;j � B

 !2
0

@

1

A ð11Þ

Among them, i is the number of the multivariate function

and j represents the number of samples.

By solving the least square problem, a multivariate

function is established to describe the relationship between

oil and gas production and the sweet spot parameters,

making a comprehensive quantitative characterization of

reservoir sweet spots possible.

3 Application example

Porosity and fracture density are linked to the storage

capacity, transmissibility and production of oil and gas in

shale reservoirs. In addition, brittleness is linked to the

mineral contents of reservoirs and affects the stimulation

potential of reservoirs. Moreover, TOC, HI (hydrogen

index) and kerogen type are related to the mass and type of

hydrocarbons generated and retained within the pore net-

work; pore pressure could be used to describe the accu-

mulation of hydrocarbons; fracture pressure is related to

the production potential of reservoirs. To describe overall

development potential of shale oil and gas reservoirs,

porosity, fracture density, brittleness, TOC, pore pressure

and fracture pressure are all considered for sweet spot

prediction.

The above-proposed method is applied to a typical shale

reservoir in China, to prove the potential of the method in a

real case. Our target area is located in Southwest China.

The exposed formations are mainly Jurassic and Triassic.

The Jurassic Formation is located in the North and West.

Among these exposed formations, the earliest formation is

the middle Jurassic Shajiemiao group, and the oldest for-

mation is Silurian. A typical anticline and syncline struc-

ture was developed in target area, the anticline shows high-

steep characteristics, while the syncline is relatively gentle.

A typical phenomenon of this area is faulting. These faults

are developed in a northeast direction which may result

from a compressive tectonic stress in the NW–SE direction.

Based on the interpretation results from 3D seismic data,

these faults are typically reverse faults in a compressive

structure system.

3.1 Example I, brittleness prediction

We demonstrate the proposed method by firstly predicting

the brittleness of a shale reservoir, where the relationship

between brittleness, well logs and seismic attributes is

constructed by machine learning. Brittleness is a critical

reservoir parameter, which is controlled by depositional

environment, mineral composition and the natural fractur-

ing of the shale. It is often regarded as a key production

factor of shale reservoirs.

The fuzzy mathematics technique has been applied to

assess the contribution degree of various seismic attributes.

There are two steps to define the sensitive attributes. The

first step is called single-attribute definition, and many

types of attributes are detailed in this step. The cross-cor-

relation between each attribute and brittleness (goal pre-

diction) is calculated, and we will call it contribution. High

contribution means high relationship between that attribute

and brittleness. The second step is called multi-attribute

analysis. In this step, we intend to decrease the redundancy

of the selected attributes defined in step 1. The cross-cor-

relation is calculated between them, and the attribute with

highest value of cross-correlation is deleted. The remaining

attributes are listed in Table 1, which have high relation-

ships with brittleness and strong orthogonality with each

other.

Based on attribute optimization results, the support

vector machine algorithm was applied to the machine

learning process to train our model. The trained model

represents the relationship between target reservoir brit-

tleness and the above five seismic attributes. A comparison

between the predicted brittleness and well log measured
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brittleness is shown in Fig. 2. The close match between the

prediction and the observation suggests a successful

training model has been generated by our proposed

approach.

In addition to predictive accuracy, the other important

feature of the intelligent models is their generalization

ability. It means their predictive accuracy for unknown

data. During the training of the model, we reserved part of

W0 W3
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m

MD,
m
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m
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m
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5030

BI_predict
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5030 %
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2790

2770

Measured curve Predicted curve

Fig. 2 Observed brittleness curves and predicted brittleness curves at well location

Table 1 List of sensitive seismic attributes of brittleness prediction

Attribute name Frequency decomposition energy Formation density TOC Vp/Vs ratio Shear wave impedance

Contribution 82% 76% 75% 68% 50%
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the data as blind testing samples to assess the generaliza-

tion ability of established AI models. The convergence

displayed below shows the relationship between actual

values and testing values of blind test samples, with hori-

zontal coordinates expressed as actual values and vertical

coordinates expressed as predicted values computed by the

trained intelligent model. It can be seen from Fig. 3 that the

data have converged reasonably well, with an L2 correla-

tion coefficient greater than 80%.

To sum up, we obtained a brittleness predicted intelli-

gence model with high accuracy and generalization ability

by applying fuzzy mathematics and a machine learning

technique. Subsequently, the model was used for brittleness

prediction within a seismic subvolume. Prediction results

are shown below.

The contrast in the diagram above showed the brittleness

prediction results from our proposed approach (Fig. 4b)

and those from the conventional single-parameter regres-

sion approach. It can be easily seen that the intelligent

prediction method can comprehensively apply many

selected seismic attributes, establish the internal relation-

ships between target sweet spots and input attributes

through a machine learning method and obtain prediction

results with much higher accuracy with a better match to

the well logs.

Besides, in order to testify the accuracy of our attribute

cube, we compare borehole logging curves, traditional

method prediction and our prediction which are subtracted

from previous results (Fig. 5). The red curve, blue curve

and pink curves represent brittleness logging data,

traditional prediction and our prediction. Our results show

higher accuracy with more details.

3.2 Example II prediction of multiple shale
reservoir properties

We used the same approach to predict six shale reservoir

properties to characterize sweet spots. The properties were:

reservoir porosity, fracture density, brittleness, TOC con-

tent, pore pressure gradient and fracture pressure gradient.

These were predicated based on the intelligent method of

integrating multiple attributes and the results. The proce-

dure of prediction is similar to that of brittleness. Firstly,

calculate the logging prediction of sweet spots in the

boreholes. Then, combine well-logging prediction and

seismic attributes based on SVM. Finally, output sweet

spot cube by using AI model. The predictions are shown

below (Fig. 6).

Analyzing the above six attributes, the southwest–

northeast trending anticline is associated with higher

porosity and pore pressures, with lower fracturing pres-

sures, and is regarded as a better shale reservoir. Where

affected by the structural setting system, the greatest

fracture density develops around the faults. Rock brittle-

ness and TOC were largely impacted by extension on the

crest of the anticline, while compression was created in the

synclines, and for this reason, they are distributed evenly

across the whole target reservoir, with relatively smaller

values proximal to the fault area.

The above six sweet spot attributes comply with the

evaluation criterion of shale reservoir geological sweet

spots or engineering sweet spots. A comprehensive evalu-

ation based on these six would be beneficial to the analysis

of the oil and gas reservoir and the development potential

of target reservoirs. However, while conventional approa-

ches used for the comprehensive evaluation of multiple

attributes require human interpretation and are highly

subjective, the multivariable regression method discussed

in this paper could comprehensively analyze all the sweet

spot attributes concurrently, to deliver an objective and

systematic evaluation result for shale reservoir production

potential.

Based on the five available production wells, and the

predicted sweet spot attributes, we can correlate them in

the same multivariable regression process. After training,

the prediction and historic production data are plotted in

Fig. 7, which shows very good correlation and conver-

gence. The squared correlation coefficient is up to 0.96,

which means the trained model is reliable for production

prediction in unknown areas.

The prediction of shale reservoir production potential is

plotted by applying this AI model to the seismic attribute

cubes. After selection among these attribute cubes (shown

Original

P
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ed
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26
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53

62

71

26 35 44 53 62 71

44

Fig. 3 Convergence test based on the blind test data. X-axis

represents the true value, and on the Y-axis are the predictions of

brittleness. Most of the predictions converge along the diagonal line
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in Fig. 6), TOC and fracture pressure are deleted since

these two attributes have relatively high correlation. And

the final fitting equation is obtained as below:

y ¼ �2:75 � BIþ 8:11 � FDENþ 7:73 � POR� 0:53
� PPGþ 11:6

ð12Þ

where y represents production. BI, FDEN, POR and PPG

indicate brittleness, fracture density, porosity and pore

pressure gradient, respectively.

We have extracted the attribute along the surface of the

target reservoir and show it in Fig. 8.

From Fig. 8, southwest–northeast anticlinal uplifting

was predicted to result in stronger production, consistent

with the analytical result of a single sweet spot attribute.

By contrast, comprehensive quantitative characterization

evaluation was more visual, more accessible and more

credible.

4 Conclusions

In this paper, an intelligent shale reservoir sweet spot

prediction and comprehensive quantitative characterization

techniques are developed. The method uses multi-scale and

multi-resource data. Characteristics of unconventional

shale reservoirs such as complex structure and lithology

distribution, hydrocarbon (HC) in place, strong anisotropy

and intensive shale heterogeneity are all considered to

inhibit high prediction accuracy and even inapplicability of

conventional geophysical techniques. Theoretically, fuzzy

mathematics and machine learning techniques were used

for geophysics shale sweet point prediction, with support

from a vector machine algorithm which established the

internal mathematical relationship between prediction

objects and multiple attributes in an effective and fast way.

In terms of application, the method introduced in this

paper predicts sweet spot attributes with high accuracy and

high resolution while comprehensively quantifying the

target production potential. This overcomes the shortcom-

ings of conventional evaluation methods. To sum up, the

method described in this paper is creative and effective in

achieving shale reservoir sweet spot prediction and com-

prehensive quantitative characterization, providing an

bFig. 4 Shale target reservoir brittleness quantitative prediction:

a conventional method; b enlarged picture of conventional method;

c method adopted in this paper; d enlarged picture of our method
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m
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2925

2898

2871

2844

2952
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Fig. 5 Comparison of brittleness prediction between well-logging

data and attribute cube
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effective and accurate quantitative evaluation approach to

shale reservoir evaluation.
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