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Abstract
Owing to the increasingly serious environmental issues caused by the sulfur burnt in fuel, desulfurization has become an

important topic. In this work, an amphiphilic oxygen-defective tungsten oxide was synthesized by a colloidal chemistry

method. The amphiphilic property and oxygen defects were well characterized, and the structure of the oxygen-defective

tungsten oxide catalyst was investigated. In addition, the catalyst was employed in oxidative desulfurization system of fuel,

and deep desulfurization was achieved. It was found that the very high oxidative desulfurization performance of oxygen-

defective tungsten oxide catalyst resulted from both the amphiphilic property and oxygen defects. This work can provide a

strategy for preparation of highly active metal oxide catalysts with oxygen defects in oxidative desulfurization reaction of

fuel.
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1 Introduction

Emission of SOx, originating from the combustion of sulfur

compounds in fuel, has become an increasingly serious

issue (Wu et al. 2016b; Zhao et al. 2017; Xiao et al. 2016;

Lu et al. 2017; Gu et al. 2017; He et al. 2017). Thus,

increasingly stringent regulations have been proposed

(Xiao et al. 2014; Jiang et al. 2016; Zhu et al. 2015; Zhang

et al. 2014a; Xu et al. 2012; Zhu et al. 2013c; Wu et al.

2016a). Generally, the sulfur contents in fuel are limited to

\10 ppm in many countries. To realize such a goal, higher

requirements are needed in industrial hydrodesulfurization

(HDS), such as higher operating temperature and reaction

pressure. However, the conventional HDS process is less

efficient for aromatic sulfur compounds, making it a choke

point for production of ultra-low sulfur fuel oil. Therefore,

numerous substitute technologies have been developed,

including extractive desulfurization (EDS) (Gao et al.

2013; Li et al. 2012; Chen et al. 2012; Zhao et al. 2016),

adsorptive desulfurization (ADS) (Xiao et al. 2015; Khan

et al. 2014; Xiong et al. 2016; Xiao et al. 2013),

biodesulfurization (BDS) (Ferreira et al. 2017; Aksoy et al.

2014; Zhang et al. 2017a), oxidative desulfurization (ODS)

(Wu et al. 2016a, 2017a, b, 2018; Jiang et al. 2017; Xun

et al. 2016), etc. Among all the developed substitutes, ODS

is a potential one because of its mild reaction conditions

and high activity to aromatic sulfur compounds. The above

advantages make ODS a promising complementary method

to the HDS process (McNamara et al. 2013; Jiang et al.

2016, 2017; Li et al. 2016; Miao et al. 2016).

To achieve a high ODS efficiency, an important issue is

finding a highly active catalyst. Currently, task-specific

ionic liquids (TSILs) (Zhu et al. 2013d; Kulkarni and

Afonso 2010; Zhang et al. 2013; Wishart 2009; Zhu et al.

2013c; Jiang et al. 2015b), metal oxides (Xiao et al. 2016;

He et al. 2015; Gonzalez et al. 2017; Rodriguez-Gattorno

et al. 2009), polyoxometalates (Zhang et al. 2017b; Yang
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et al. 2017), titanium silicalites (Kong et al. 2006; Feng

et al. 2017; Du et al. 2017; Shen et al. 2015), and so on

have been widely employed in ODS. Among all the

reported catalysts, a metal oxide is an eye-catching one,

which is especially true when it comes to tungsten oxide.

However, based on a previous report, stoichiometric

tungsten oxide rarely shows excellent catalytic perfor-

mance (He et al. 2017). For non-stoichiometric tungsten

oxide, because of the variable valences of W, the tungsten

oxide can be readily reacted with an oxidant to form a

reactive intermediate for the further oxidation process.

Nevertheless, for tungsten oxide catalysts, bulk tungsten

oxide rarely has satisfying catalytic performance because

of the poor exposure of catalytically active sites. Thus,

numerous strategies have been adopted to improve this

situation. For example, our group employed graphene-like

hexagonal boron nitride as a support for dispersion of

tungsten oxide to prepare the WOx in nanoparticle form

(Wu et al. 2015b). However, such strategy is less univer-

sally applicable and involves high-temperature treatment.

On the other hand, the poor catalytic activity of the bulk

tungsten oxide in ODS has mainly originated from the

strong hydrophilic property of tungsten oxide, making the

catalyst difficult to contact with the fuel oil.

Recently, preparation of metal/metal oxides by colloidal

preparation methods has attracted increasing attention

because of the successful synthesis of nano-sized materials

and a controllable process (Guo et al. 2013; Jiang et al.

2015a; Wu et al. 2015a; Zhang et al. 2014b; Zhu et al.

2013a, b). Moreover, such a process is usually realized in

an oil phase, making organic ligands abundant on the

surfaces of metal/metal oxide. This property allows the

catalyst to be easily dispersed in fuel oil. Thus, when a

colloidal chemistry method in an oil phase is employed for

the preparation of tungsten oxide materials, there will be

not only a catalyst with nanosize, but also it will drive the

catalyst to be easily dispersed in fuel oil, which gives rise

to an excellent desulfurization performance.

In this work, a method for colloidal preparation of non-

stoichiometric tungsten oxide (W18O49) nanorods was

employed. The obtained catalyst was characterized as

having abundant organic ligands on its surface. Because of

the existence of organic ligands on the surface, the

obtained W18O49 nanorods show excellent lipophilicity,

making the catalyst easy to contact with fuel oil and lead to

a high desulfurization performance. Additionally, effects of

oxidant amount and reaction temperature were investigated

in detail. The current work may provide a strategy for

preparation of highly active and amphipathic catalyst for

deep oxidative desulfurization.

2 Experimental

2.1 Material

Oleylamine (OAM, 90%), oleic acid (OAC, AR), tungsten

hexachloride (WCl6, AR), dibenzothiophene (DBT, 99%),

and tetradecane (AR) were purchased from Sigma-Aldrich

and used without further purification. Ethanol (C2H5OH,

AR), n-hexane (AR), and hydrogen peroxide (H2O2, 30

wt%) were obtained from Sinopharm Chemical Reagent

Co., Ltd. China.

2.2 Preparation of catalyst

2.2.1 Preparation of W18O49-MC

OAM- and OAC-modified W18O49 was prepared as fol-

lows: typically, 0.2 g of WCl6 was dissolved in 10 mL of

ethanol and stirred for 10 min under N2. Afterward, a

mixture of 0.5 mL of OAM and 0.5 mL of OAC was added

to the solution drop by drop and stirred for another 10 min.

Then, the mixed solution was transferred to a 20-mL

autoclave. Subsequently, the autoclave was placed in an

oven at 180 �C for 24 h followed by natural cooling to

room temperature. The obtained product was separated by

centrifugation at a speed of 10,000 rpm for 10 min. Then,

the product was washed with ethanol and re-dispersed in

cyclohexane for three times. Finally, the product was

placed in a vacuum oven at 50 �C for 10 h to obtain the

product. The obtained black-blue catalyst was denoted as

W18O49-MC.

2.2.2 Preparation of W18O49-E

The preparation process for W18O49-E is similar to that of

W18O49-MC, except without adding OAM and OAC during

the preparation process.

2.3 Characterization

A Nicolet Nexus 470 Fourier transform infrared spec-

trometer was used to collect the Fourier transform infrared

spectra (FT-IR). They were recorded at room temperature

with KBr pellets. X-ray diffraction (XRD) patterns were

from a D8 Advance with Cu Ka radiation and ranged from

10� to 80� with a scanning rate of 7�/min. A Hitachi H-700

was used for transmission electron microscopy (TEM).

Scanning electron microscopy (SEM) images were recor-

ded with a JSM-7001F thermal field emission scanning

electron microscope at 2–15 keV accelerating voltage.

Ultraviolet–visible diffuse reflectance spectra (UV–vis

DRS) were recorded by a Shimadzu UV-2450
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spectrophotometer with a spherical diffuse reflectance

accessory. The scanning range was 200–800 nm and

BaSO4 was employed as background. The XPS results

were collected on a PHI 3056 spectrometer with an Al

anode source.

2.4 Oxidative desulfurization experiments

2.4.1 Preparation of model oil

The DBT-containing model oil was prepared by the fol-

lowing process: DBT was dissolved in n-octane to make

the sulfur concentration of 500 ppm. Afterward, additional

tetradecane was added to a concentration of 4000 ppm as

the internal standard.

2.4.2 Catalysis experiments

The catalytic oxidative desulfurization was carried out as

follows: firstly, a certain amount of catalyst was added to a

40-mL homemade two-neck flask. Afterward, 5 mL of

DBT-containing model oil was added, followed by a cer-

tain amount of H2O2. Then, the flask was placed in an oil

bath at the required reaction temperature and magnetically

stirred. After required reaction times, the oil was allowed to

stand for 1 min to allow the separation of the oil and cat-

alyst phases, and 1 lL of the upper oil phase was taken for

further analysis.

2.4.3 Analysis of sulfur content

The sulfur content in fuel oil was analyzed with an Agilent

7890 gas chromatograph equipped with an HP-5 column.

The HP-5 column is 30 m long 9 0.32 mm inner diameter,

0.25 lm of film thickness. The sulfur removal was calcu-

lated by Eq. (1).

Sulfur removal ð%Þ ¼ ð1� CA=C0Þ � 100% ð1Þ

where CA stands for the sulfur concentration of model oil

and C0 is the initial sulfur concentration.

3 Results and discussion

3.1 Raman characterization

To determine the structure of the W18O49-MC catalyst, the

Raman spectrum was obtained and is shown in Fig. 1. The

results show that the peaks around 810 cm-1 and

700 cm-1 are the characteristic peaks of O–W–O, and the

very small peak at 950 cm-1 is due to the stretching modes

of O–W–O. A strong peak around 230 cm-1 is from the

bending vibration mode of O–W–O (He et al. 2017). The

Raman spectrum is a solid evidence of achievement of the

W18O49 structure by the current method.

3.2 N2 adsorption–desorption isotherm analysis
and SEM

The physical structure of the W18O49-MC was character-

ized by its N2 adsorption–desorption isotherm at - 196 �C.
The specific surface area of the sample is low, only 3.8 m2/

g, indicating that the current preparation method does not

give rise to a high specific surface area due to the existence

of organic ligands on the surface. The corresponding SEM

image (Fig. 2) verified the conclusion that the nanorods

were seriously agglomerated. The result indicates that the

prepared W18O49-MC has an organic ligand-covered

structure.

1000 800 600 400 200

.u.a ,ytisnetnI

Raman shift, cm-1

Fig. 1 Raman spectrum of W18O49-MC

Fig. 2 SEM image of W18O49-MC
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3.3 XRD characterization of W18O49-MC catalyst

More information about the catalyst is gained from its

XRD pattern in Fig. 3. After a careful comparison with the

standard powder diffraction file card (PDF#84-1516), the

prepared W18O49-MC was found to be a monoclinic phase.

It is noteworthy that the intensities of the peaks are rela-

tively weak, and all peaks are wide. The result illustrates

that the prepared catalyst has an ultra-small particle size,

which is beneficial to the exposure of the catalytically

active sites.

3.4 UV–vis DRS characterization of W18O49-MC
catalyst

To verify the oxygen-defective structure of the W18O49-

MC catalyst, the UV–visible diffuse reflectance spectrum

was obtained and is shown in Fig. 4. In addition to the

characteristic peak around 230 nm, a widened adsorption

in the visible light range is clearly detected. The result

demonstrates that the prepared tungsten oxide has a non-

stoichiometric structure and contains abundant oxygen

defects, which is inline with the XRD characterization

result.

3.5 FT-IR characterization of the catalyst

To analyze the structure of the prepared catalysts, espe-

cially the surface organic ligands, we tested the FT-IR

spectra of the both prepared catalysts (Fig. 5). As can be

seen from the spectra, both samples showed characteristic

peaks around 950, 853, and 755–600 cm-1, respectively,

being assigned to W=O, W–Ob–W, and O–W–O bonds,

verifying the structure of tungsten oxide. The very obvious

differences between the samples are the adsorption peaks

around 1450–1650 cm-1 and 2750–2900 cm-1. As we can

see from the Fig. 5, compared with W18O49-E, the W18O49-

MC sample showed a group of strong peaks around

2750–2900 cm-1, attributing to –CH2– and –CH3 groups,

while the peak 1465 cm-1 is assigned to the bending

vibration mode of –CH2–. Additionally, the peak around

1630 cm-1 in W18O49-MC is ascribed to –NH2 groups of

the organic ligands. The characterization verifies that the

surface of W18O49-MC is covered by organic ligands,

while the surface of W18O49-E is covered by –OH groups

(the strong peak around 3400 cm-1). As known, in

oxidative desulfurization with H2O2 as the oxidant, the

contact of catalyst, oil, and H2O2 is essential to a high

desulfurization performance. From the structures of the

catalysts, we can draw a conclusion that the W18O49-E is a

hydrophilic catalyst and W18O49-MC is an amphipathic

one.
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PDF#84-1516

Fig. 3 XRD characterization of the W18O49-MC catalyst
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Fig. 4 UV–vis DRS spectrum of W18O49-MC catalyst
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Fig. 5 FT-IR spectra of prepared samples
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3.6 TEM image of the W18O49-MC catalyst

To further confirm the conclusion, TEM characterization

was performed, and the results are shown in Fig. 6. The

results showed that the W18O49-E catalyst held an undis-

persed status with a size[ 500 nm. From the TEM image

of W18O49-MC, the tungsten oxide was well dispersed and

it is in the form of nanorods. It is known that in liquid–solid

heterogeneous catalytic system, contact between catalyst

and substrates is vital to the catalytic performance because

of the exposure of catalytically active sites. The ligand-

abundant W18O49-MC catalyst was well dispersed and in

the form of nanorods exposing numerous catalytically

active sites for oxidative desulfurization.

3.7 Catalytic oxidative desulfurization
performance

The prepared catalyst was employed in oxidative desulfu-

rization and used H2O2 as an oxidant. As seen from Fig. 7

compared with ligand-free W18O49-E, W18O49-MC shows

a remarkable boosted oxidative desulfurization that the

sulfur removal is enhanced from 52% to [ 98%. Addi-

tionally, the dispersion of both catalysts in fuel oil is shown

in the inset of Fig. 7. The W18O49-MC is well dispersed in

the model oil, while the W18O49-E catalyst aggregated in

the model oil. The phenomenon is in accordance with the

TEM characterization that W18O49-MC is well contacted

with substrates for an enhanced oxidative desulfurization

performance.

3.8 Effect of n(O)/n(S) on sulfur removal

The effect of the amount of H2O2 used was studied to

optimize the reaction conditions, and the results are shown

in Fig. 8. From the result, it can be seen that when molar

ratio of H2O2 to sulfur (denoted as n(O)/n(S)) was 2, which

is the stoichiometric requirement for oxidation of DBT to

DBTO2, the sulfur removal was 90% at a reaction time of

60 min and deep desulfurization was not achieved. This

may be attributed to the self-decomposition of H2O2 under

high reaction temperatures. When the n(O)/n(S) increased

from 2 to 3, a deep desulfurization performance will gain

after only 40 min of reaction time. A further increase in the

amount of H2O2 did not result in a significant increment in

desulfurization performance. As such, we choose n(O)/

(a) (b)

(c) (d)

0.5 μm 200 nm

50 nm100 nm

Fig. 6 TEM characterizations of the catalyst. a, b TEM images of

W18O49-E; c, d TEM images of W18O49-MC
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Fig. 7 Catalytic oxidative desulfurization performance of the cata-

lysts. The inset is the dispersion of the catalysts in model oil. Reaction

conditions: m(Catal.) = 0.01 g; V(oil) = 5 mL; T = 60 �C;
t = 40 min; molar ratio n(O)/n(S) = 3
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Fig. 8 Effect of n(O)/n(S) on sulfur removal. Reaction conditions:

m(Catal.) = 0.01 g; V(oil) = 5 mL; T = 60 �C
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n(S) was 3 as the optimized H2O2 amount and 40 min as

the proper reaction time.

3.9 Effect of reaction temperature on sulfur
removal

The influence of reaction temperature on sulfur removal is

shown in Fig. 9. It can be seen that the sulfur removal

increased with an increase in reaction temperature.

Although when the reaction temperature was 50 �C, a

* 100% of sulfur removal was obtained after a reaction of

60 min, the longer reaction time is less favored. Hence, we

chose 60 �C as the most optimized reaction temperature.

3.10 Recycling performance of the catalyst

In catalysis, recycling performance is an important

parameter for evaluating a catalyst. Thus, the recycling

performance of the W16O49-MC catalyst was investigated

and is shown in Fig. 10. Typically, the recycling process of

the catalyst was realized by the following steps: after each

run, the catalyst phase was separated by pouring out the oil

phase after centrifugation. Then, the catalyst was dried in

an oven at 120 �C overnight. Afterward, fresh oil and

oxidant were added for the next run. The catalyst can be

cycled five times without significant decrease in the cat-

alytic activity. The result illustrates that the catalyst is a

promisingly stable one.

4 Conclusion

A ligand-covered tungsten oxide with oxygen defects was

successfully obtained by a colloidal chemistry method. The

amphipathic property and oxygen defects were well char-

acterized, and the structure of the catalyst was determined

by a series of characterization methods. It was found that

with the presence of oleylamine and oleic acid, the

obtained tungsten oxide was in the form of nanorods,

which is beneficial to the contact between catalyst and

substrates. Furthermore, the obtained catalyst was

employed as an efficient catalyst in oxidative desulfuriza-

tion. With optimized reaction conditions, a deep desulfur-

ization performance was obtained, making the S content

lower than 10 ppm. The very excellent oxidative desulfu-

rization performance mainly originates from the amphi-

pathic property and oxygen defects of the catalyst. This

work may provide a strategy for the preparation of highly

active oxidative desulfurization metal oxide catalysts.
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