
Vol.:(0123456789)1 3

Petroleum Science 
https://doi.org/10.1007/s12182-019-00382-4

ORIGINAL PAPER

Empirical mode decomposition of multiphase flows in porous media: 
characteristic scales and speed of convergence

Nicolás Echebarrena1,2 · Pablo D. Mininni3 · Gustavo A. Moreno1

Received: 8 December 2018 
© The Author(s) 2019

Abstract
We apply a proper orthogonal decomposition (POD) to data stemming from numerical simulations of a fingering instability 
in a multiphase flow passing through obstacles in a porous medium, to study water injection processes in the production of 
hydrocarbon reservoirs. We show that the time evolution of a properly defined flow correlation length can be used to identify 
the onset of the fingering instability. Computation of characteristic lengths for each of the modes resulting from the POD 
provides further information on the dynamics of the system. Finally, using numerical simulations with different viscosity 
ratios, we show that the convergence of the POD depends non-trivially on whether the fingering instability develops or 
not. This result has implications on proposed methods to decrease the dimensionality of the problem by deriving reduced 
dynamical systems after truncating the system’s governing equations to a few POD modes.

Keywords Two-phase flow · Empirical mode decomposition · Viscous fingering · Porous media

1 Introduction

Water flooding is a major oil production method in the petro-
leum industry. The idea behind this process, that is, generally 
applied as a secondary phase when the original energy of the 
reservoir has been exhausted, is to use water injection wells 
to generate an immiscible piston-like oil bank and push it 
toward the producers. However, the flow of two immiscible 
fluids with different viscosities in a porous medium gives 
rise to the so-called viscous fingering instability. The early 
work by Buckley and Leverett (1942) was pioneer in ana-
lyzing fluid displacements in this case. Viscous fingering 
is an intrinsically nonlinear phenomenon that substantially 
affects the performance of the recovery. A direct measure 
of its performance, under the effect of nonlinear instabili-
ties, is the arriving time of the fluid injected to the well, 

which is known as the water breakthrough. An early break-
through time indicates the presence of instabilities and thus 
also a reduction in the estimated ultimate recovery. These 
nonlinear instabilities are affected by the reservoir perme-
ability distribution, fluid viscosities, capillary effects, disper-
sion and gravity. Thus, even when the reservoir is perfectly 
homogeneous (which is never encountered in practical situ-
ations), instabilities can still develop.

After the work of Buckley and Leverett, many researchers 
advocated the need to study the problem of fluid displace-
ment in porous media combining theoretical, numerical and 
experimental approaches. Historically, studies have been 
focused on the recovery efficiency and on the estimation of 
the breakthrough time. Several studies considered the con-
ditions under which viscous fingering appears, using tools 
of linear instability analysis, such as those of Koval (1963), 
Heller (1966), Peters et al.(1984), Chikhliwala and Yortsos 
(1985) and Guzman and Fayers (1997). Another approach 
is to numerically simulate the system of equations that gov-
erns the dynamics of the system. In this way, solutions to 
the problem can be obtained for a given permeability field 
and geometry, thus extending theoretical studies to the full 
nonlinear case as well as to more realistic scenarios (Jha 
et al. 2011; Nicolaides et al. 2015; Riaz and Tchelepi 2016). 
With the growth of computing power, problems tackled 
using this approach have become larger both in space and 
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time resolution. A pioneer work in this area was done by 
Peaceman and Rachford (1962), where the authors solved 
the system of equations using a finite differences scheme. 
More recent works (Juanes 2005) tackle the problem using 
multiscale methods. Also, experimental studies were able to 
obtain data of the fluid in the porous medium using tomo-
graphic techniques [see, e.g., the work by Siddiqui et al. 
(1996)]. As these experimental studies are hard to perform, 
direct numeric simulations are still important to study fluid 
displacement, as it gives access to datasets and information 
that may be hard to obtain otherwise.

Using data from the numerical simulations, it is possi-
ble to apply different reduction techniques to decrease the 
dimensionality of the problem. The main goals of these tech-
niques are: (1) to identify dominant modes in the dynamics, 
and to extract relevant information from those modes, (2) to 
compress the datasets and (3) to build a basis of solutions 
that can be used to derive a reduced system of equations for 
the evolution of the most energetic modes, neglecting con-
tributions from modes with lower energy. In general, these 
techniques have a wide spectrum of applications, that in the 
oil industry go from seismic data reconstruction (Zhao and 
Song 2012), prediction of instabilities in oil well perfora-
tions (Lin et al. 2018), to more recently, the extraction of 
principal components from measured data using machine 
learning techniques. A pioneer work in the application of 
these so-called empirical mode decompositions upon a flow 
in a porous medium was that of Gharbi et al. (1997). In this 
work, the authors used a Karhunen–Loeve decomposition 
with the goal of characterizing the fluid displacement in the 
medium. The study showed that using such a decomposition 
can be useful to identify coherent spatial structures in the 
flow and that their behavior can be correctly captured by a 
finite set of modes which define a reduced basis. The same 
decomposition, used in conjunction with machine learn-
ing techniques, was used to study the fingering process in 
porous media (Smaoui and Gharbi 2000). Other works, such 
as those of Walton et al. (2013), considered the applicability 
of radial basis functions. Another (directly related) empirical 
decomposition is given by the proper orthogonal decomposi-
tion (POD), introduced by Berkooz et al. (1993) to identify 
coherent structures in turbulent flow. After this work, many 
authors used this technique for a large variety of problems 
from the study of solar magnetic fields (Mininni et al. 2004) 
to the analysis of multiphase displacements in porous media 
(Ghasemi and Gildin 2015).

In this work, we solve numerically the equations for mul-
tiphase flow in a porous medium using the finite volume 
method, and we study viscous fingering as the flow passes 
through a fixed number of obstacles in a channel-like geom-
etry. The obstacles were randomly placed in order to gener-
ate the onset of viscous instabilities. We consider two phases 
(oil and water, to mimic the conditions of water flooding in 

oil reservoirs), and we vary the ratio of viscosities of the 
two fluids as well as the number of obstacles. Using these 
data, we define several characteristic lengths based on the 
probability density function (PDF) of the flow correlation 
length. We then perform a POD of the data to obtain an 
expansion of the datasets into a basis of empirical modes. In 
practice, PODs are often used to construct a surrogate model 
to improve the efficiency in intensive computation cases, 
such as in uncertainty quantification and optimization. In 
this light, the results presented in this work focus on the first 
step toward the construction of such reduced-order models, 
showing conditions for the convergence and useful metrics 
for its characterization. The main objective of this work is 
thus to characterize the behavior of the empirical modes 
and its geometrical properties, and in particular, to study the 
convergence of a truncated series of modes to the actual data 
as the parameters in the simulations are varied. Our main 
findings are that: (1) Properly defined correlation lengths, 
over the entire data as well as over individual modes of the 
POD, can be used to characterize viscous fingering and to 
identify the time of its onset. (2) The convergence of the 
truncated series of POD modes varies non-trivially with the 
ratio of viscosities, with the case with smaller viscosity ratio 
(and thus with less viscous fingering) requiring more modes 
to capture the flow profiles at fixed error, while cases with 
larger viscosity ratios (and thus with small-scale structures 
arising from the fingering) require less modes. The results 
have implications on proposed methods to decrease the 
dimensionality of the problem by deriving reduced dynami-
cal models using truncated series of empirical modes, as the 
determination of the number of modes required to approxi-
mate the solutions with fixed error depends on the speed of 
convergence of the decomposition.

2  Theory and governing equations

In this work, we solve the saturation and pressure field equa-
tions in the absence of gravity (Peaceman 2000), given by

where ∅ is the porosity field; K is the absolute permeability 
field; S is the saturation field; kr is the relative permeability 
field; � is the viscosity; p is the pressure; q is the mass injec-
tion rate; � is the density; and subscripts w and o represent 
the water and oil phases, respectively. Note there is no term 
associated to compressibility, as there is no gaseous phase in 
the system. The two saturation fields are related by

(1)�
�So

�t
= ∇.

[(
Kkro

�n

)
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]
+
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,
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�Sw

�t
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]
+

qw

�w
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It is useful to introduce the phase mobility for oil and 
water as

We can also define the total mobility �t and the difference 
mobility �d , respectively, as

In order to rearrange Eqs. (1) and (2), we define the aver-
age pressure pavg and the capillary pressure pc as

We can also define the velocity of each phase as

And the total velocity as

Finally, we can define the volumetric rates of injection 
per unit of volume Qw and Qo as

Equation (3) allows us to reduce the variables to a single 
saturation profile S , which in our case will correspond to 
the water saturation field, i.e., S = Sw . Using these new vari-
ables, Eqs. (1) and (2) can be written as

where fw is the so-called ratio of the wetting phase to total 
mobility, or fractional flow, and is given by

Defining the mobility ratio M as

(3)So + Sw = 1.

(4)�o =
Kkro

�o

,

(5)�w =
Kkrw

�w

.

(6)�t = �o + �w,

(7)�d = �o − �w.

(8)pavg =
(
po + pw

)
∕2,

(9)pc = po − pw.

(10)vo = −∇po�o,

(11)vw = −∇pw�w.

(12)vt = vo + vw

(13)Qw =
qw

�w
, Qo =

qo

�o
.

(14)0 = ∇.
(
�t∇pavg

)
+

1

2
∇.
(
�d∇pc

)
+ Qw + Qo,

(15)−�
�S

�t
= ∇.

(
fw�o∇pc

)
+ ∇.

(
fwvt

)
+ Qw,

(16)fw(S) =
�w

�w + �o
.

(17)M =
krw�w

kro�o

,

the fractional flow becomes

To solve these equations, we need to specify functions for the 
relative permeabilities kro and krw . It is known that inhomogeneities 
reduce de-performance of oil recovery (Khataniar and Peters 1992) 
and that fingering instabilities depend on the permeability distribu-
tion (Giordano et al. 1995). Based on these studies, in the present 
study we consider the following dependencies for each of them

Although this is an arbitrary parameterization, it is fre-
quently used. From these permeabilities, we can rewrite fw as

where m is the viscosity ratio

In Moissis et al. (1993), it was shown that the viscosity 
ratio plays an important role in controlling viscous fingering. 
To solve numerically these equations, we use dimensionless 
quantities based on a characteristic length L0 , a characteris-
tic volumetric injection rate Q0 and a characteristic density 
�0 . Dimensionless quantities are defined from dimensional 
quantities (denoted with a tilde) as

(18)fw(S) =
1

1 +M
.

(19)kro = (1 − S)2,

(20)krw = S2.

(21)fw(S) =
S2

S2 + (1 − S)2∕m
,

(22)m =
�o

�w

.

(23)Lx =
L̃x

L0
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L̃y

L0
,

(24)Qw =
Q̃w

Q0

, Qo =
Q̃o

Q0

,

(25)𝜌 =
�̃�

𝜌0
,

(26)t = t̃Q0,

(27)pavg =
p̃avg

𝜌0L
2
0
Q2

0

, pc =
p̃c

𝜌0L
2
0
Q2

0

,

(28)vx =
ṽx

L0Q0

, vy =
ṽy

L0Q0

,

(29)𝜆t = �̃�t𝜌0Q0, 𝜆d = �̃�d𝜌0Q0.
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with these choices, dimensional quantities can be obtained 
by fixing values for L0 , Q0 and �0 , and by multiplying all 
dimensionless quantities in the next sections by their cor-
responding factor.

3  Methods

3.1  Simulations and domain geometry

We solved Eqs.  (14) and (15) numerically. To this end, 
we implemented a code using an implicit–explicit scheme 
(IMPES). The effectiveness of these methods can be seen 
(Chen et al. 2004). Spatial discretization was done using a 
first-order finite volume method (FVM), while time inte-
gration was done using a first-order Euler method. The 
code was written in C and parallelized using OpenMP. To 
properly capture fine structures associated with the finger-
ing instability, a spatial resolution of Nx × Ny = 1000 × 500 
grid points was used (in a two-dimensional channel with 
2:1 aspect ratio), and the time step was determined by the 
CFL condition.

As mentioned in the previous section, the geometry 
considered is that of a channel with no flux in the Y direc-
tion over the horizontal boundaries. In the vertical bounda-
ries, we set the left border as the injection well, and the 
right border as the production well. In the left border, we 
set a constant rate of injected water. Thus, the water and 
oil that flows on the right border adjust to satisfy mass 
conservation. In all simulations, we used a homogeneous 
permeability field, except in a region near the injection 
area where obstacles are present, with the purpose of per-
turbing the flow and triggering the fingering process. At 
t = 0 , the value of Sw is zero for the entire reservoir except 
on the left side boundary and its vicinity, where the satura-
tion profile Sw has a value Sw = 1 in x = 0 for all values of 
y, and decays smoothly reaching Sw = 0 in x = 0.05L0 . The 
oil saturation field is thus So = 1 − Sw , and as a result, at 
the beginning of the simulation is close to 1 in most of the 

domain. It is worth noting that as we are using a homoge-
neous permeability field in the whole reservoir (with the 
exception of the obstacles close to the left boundary), our 
fingering will not be too strong, and we will not observe 
stronger permeability patterns that can typically appear 
in the inhomogeneous case [as an example, for studies of 
the dependence of the fingering pattern on lateral perme-
ability, see Waggoner et al. (1992)].

As already mentioned, in order to characterize the scale 
of the fingering (and later, to compare POD decompositions 
with varying number of obstacles) we set a group of obsta-
cles near the injection well. These obstacles have a circular 
section, with permeability field inside them equal to zero. 
The configuration gives a simplified conceptualization of 
heterogeneity in oil recovery problems, representing low-
permeable zones. For practical purposes, this method is sim-
ilar to introducing a small perturbation in the saturation field. 
In previous works (Christie and Bond 1987; Araktingi and 
Orr 1993), it was shown that under certain conditions, such 
as in the presence of an uncorrelated permeability field, the 
final behavior of the flow is independent of the method used 
to excite the instabilities. Thus, we choose the position of 
the center of the obstacles in the X direction to be the same 
for all the obstacles, and we do not vary it between simula-
tions. The distances between the centers of the obstacles in 
the Y  direction are given by L0∕(1 + obs) + �i,i+1 , where obs 
is the number of obstacles, and �i,i+1 is a random displace-
ment between the obstacle i and the obstacle i + 1 . The ran-
dom displacement �i,i+1 has a normal distribution centered 
around zero, and thus has small values that can be positive or 
negative. The radius of these obstacles also follows a normal 
distribution with mean rmean = 0.05L0 . In Fig. 1, we show 
the detail of the permeability maps used in all simulations. 
Figure 1a shows the whole computational domain for the 
simulations with five obstacles, while Fig. 1b–e only shows 
the permeability maps in the subregions with obstacles, 
respectively, for the simulations with 1, 2, 3 and 4 obstacles. 
Instabilities start soon after the injected phase goes through 
the region with the obstacles.
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Fig. 1  a Permeability map in the whole computational domain X–Y for a simulation with five obstacles. On the left side, the obstacles with cir-
cular shape and permeability can be seen. In the rest of the domain, the permeability is uniform and equal to one. b–e show only the subregion 
containing the obstacles, respectively, for simulations with 1, 2, 3 and 4 obstacles



Petroleum Science 

1 3

In different simulations below, the parameters that we 
vary are the number of obstacles ( obs ) and the viscosity 
ratio m . For the viscosity ratio, we use either m = 5 , m = 10 
or m = 15 . For each of these values of m , we then perform 
five simulations with 1, 2, 3, 4 or 5 obstacles. The incom-
ing flow has a fixed value Qw = Q0 , and the capillary pres-
sure pc is zero. As mentioned above, the permeability K is 
equal to unity in the entire reservoir except in the obstacles. 
The porosity ∅ is also equal to unity in the entire reservoir. 
Finally, the viscosity of the water is set to �w = 1 (in dimen-
sionless units as discussed above). The data from the simula-
tion are saved at regular intervals of Δt = 0.2∕Q0 . A full list 
of the simulations and of the parameters we vary is shown 
in Table 1, where ‘Name’ indicates the label used for each 
simulation, m is the viscosity ratio, and ‘obs’ indicates the 
number of obstacles distributed randomly in each run. Note 
the simulations are separated in three groups, each with the 
same value of m and varying number of obstacles.

3.2  Proper orthogonal decomposition

The POD (Berkooz et al. 1993) has the main goal of pro-
jecting a high-dimensional dataset (usually obtained from 
numerical simulations, field observations or from experi-
ments) into an optimal basis of orthogonal modes. The 
expansion is optimal in the sense that the modes are ordered 
in decreasing energy (where the energy is associated to the 
power contained in that mode), and with the fastest pos-
sible convergence. As the basis obtained from the POD is 
empirical and specific for a given dataset, the POD is useful 
to identify coherent structures and to find bifurcations in 
the dynamics of the problem. In particular, the POD has 

often been used as a first step to construct reduced systems 
of ordinary differential equations from a set of partial differ-
ential equations (PDEs), by doing a Galerking projection of 
the PDEs into the empirical basis truncated to a few modes.

Given a scalar field u(x, t) , we can decompose it into 
orthonormal modes using the POD. As a result, we obtain a 
basis of spatial modes u�

i
(x) , and a set of orthogonal temporal 

coefficients ai(t) , such that

As already mentioned, the scalar field u(x, t) is usually 
obtained from experiments or simulations. In our case, 
the dataset will be the result of the numerical simulations 
described in Sect. 3.1. For the moment, we can think of the 
scalar field as a discrete set of arrays

where ui(i = 1, 2, 3,… ,N) are snapshots of the scalar field 
at fixed times, and N  in the total number of time steps in 
the simulation. Given u(x, t) , we can build a linear operator 
u ∶ H(X) → H(T) (with H the Hilbert space) as

The adjoint u ∶ H(T) → H(X) operator becomes

where the overline denotes the complex conjugate. Assum-
ing u is a compact operator, we can rewrite these relations 
as an eigenvalue problem for eigenfunctions �k and �k , both 
with eigenvalue a2

k
 , given by

The scalar field u(x, t) can then be expanded in terms of 
the solutions to Eq. (34) as

Here, �k are the amplitudes of each mode (with a2
k
 associ-

ated to their energies), and �k(x) and �k(t) are the empirical 
orthogonal modes which spectrally decompose u(x, t) . The 
spatial modes �k(x) are usually called the ‘topos,’ while the 
temporal eigenfunctions �k(t) are known as ‘cronos.’

To apply this decomposition to experimental or numerical 
data (which are discrete in space and in time) of saturation, 

(30)u(x, t) =

N∑

i=1

ai(t)u
�
i
(x).

(31)u(x, t) = {u1, u2, u3, ..., uN}, with ui ∈ ℝ
NxxNy ,

(32)∀� ∈ H(X)(u�)(t) = ∫
X

u(x, t)�(x)dx.

(33)∀� ∈ H(T)(u�)(x) = ∫
T

u(x, t)�(t)dt,

(34)

(
u ∗ u�k

)
(x) = a2

k
�k(x),(

uu ∗ �k

)
(t) = a2

k
�k(t).

(35)u(x, t) =

N∑

k=1

�k�k(x)�k(t).

Table 1  List of the parameters used for different runs considered in 
this study

Name m obs

I 5 1
II 5 2
III 5 3
IV 5 4
V 5 5
VI 10 1
VII 10 2
VIII 10 3
IX 10 4
X 10 5
XI 15 1
XII 15 2
XIII 15 3
XIV 15 4
XV 15 5
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we can use the so-called snapshot method as described by 
Sirovich (1987), which in practice is a decomposition in 
the time domain. In this work, the saturation field S corre-
sponds to the results of the numerical simulations described 
in Sect. 3.1, saved to N snapshots Si every dt intervals in time. 
Thus, Eq. (31) can be rewritten as

where Si = Si(x, y) (i.e., it is the saturation at fixed time and 
as a function of the two spatial coordinates). The base satu-
ration is then defined as the average of the ensemble,

We can use the base saturation to rewrite each of the snap-
shots Si as a mean field plus fluctuations, as

We then define the correlation matrix between any two 
snapshots p and q as

where the brackets denote the average over space. Using this 
matrix, the equations above are equivalent to solving the 
eigenvalue problem given by

The eigenvectors of this equation are the temporal coeffi-
cients of the expansion bi =

(
bi
1
,… , bi

N

)
 , which are equivalent 

to the coefficients ai(t) defined above. The spatial modes can 
then be obtained as

(36)S(x, y, t) =
{
S1, S2, S3, ..., SN

}
,

(37)S0(x, y) =
1

N

N∑

i=1

Si(x, y).

(38)Si(x, y) = S0(x, y) + Si
�
(x, y).

(39)Cpq =
1

N

⟨
Sp� (x, y) Sq� (x, y)

⟩
,

(40)Cb
i = �ib

i.

(41)�i(x, y) =
1

N�i

N∑

k=1

bi
k

(
Sk(x, y) − S0

)
.

The equivalent of Eq. (30), giving the reconstruction 
of the saturation field at any point and at any time, finally 
becomes

where for brevity we replaced the index k (corresponding 
to the discrete time snapshot) by the time label t. The larger 
the number of modes we use in the reconstruction, the more 
accurate it will be.

Once the decomposition is obtained in this way, it can 
also be used to project the governing equations into a few 
modes (the modes that dominate the dynamics), allowing for 
a reduction in the dimensionality of the problem. In other 
words, the set of PDEs in Sect. 2 can be truncated to a finite 
number of ordinary differential equations. In the Appendix, 
we describe the procedure used for that purpose.

4  Analysis

4.1  Global evolution

Figure 2a shows a typical saturation profile for m = 5 and 
one obstacle at time t = 53∕Q0 (run I). Water is injected 
from the left, pushing the oil phase to the right. As the water 
phase passes through the obstacles, it can develop a viscous 
fingering instability which, in all runs, appears for times 
larger than t ≈ 17∕Q0 . A vertical cut across any fixed value 
of Lx to the right of the obstacle then results in a saturation 
profile which is inhomogeneous and displays alternating 
maxima and minima.

With the aim of characterizing the development of vis-
cous fingering along the flow direction, we can look at char-
acteristic scales in the flow and at their time evolution. A 
usual definition for the characteristic scale of a flow is given 

(42)S(x, y, t) =

N∑

i=1

bi(t)�i(x, y),
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Fig. 2  a Water saturation profile for m = 5 and one obstacle at time t = 53∕Q
0
 (run I). Light colors indicate maximum value of saturation while 

dark colors indicate a minimum value. As an illustration, white and gray arrows along a vertical cut of Sw (water cut) show regions with satura-
tion above and below the average. b A vertical profile of the saturation along the vertical line indicated in a. Gray and black arrows correspond 
to the same regions as, respectively, gray and white arrows in a 
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by correlation length LS
corr

 , which here we compute in the 
Y  direction. Simply put, the length LS

corr
 is obtained from 

the correlation function of the saturation field S = Sw , as 
a function of y and averaged over all values of x . Figure 3 
shows this length for simulations with m = 10 and varying 
number of obstacles. As expected, the correlation length 
is dominated by the large-scale structures. While at early 
times the behavior of LS

corr
 is the same for all runs (before the 

water phase passes through the obstacles), at later times LS
corr

 
depends on the number of obstacles, reaching a value that 
decreases with increasing number of obstacles. To have a 
better understanding of how the correlation length varies as 
a function of the number of obstacles, we average LS

corr
 over 

time using a temporal range over which it remains approxi-
mately constant (see the squared region in Fig. 3). Figure 4 
shows the values obtained from the average, ⟨LS

corr
⟩ , as a 

function of the mean distance between obstacles, for m = 5 , 
m = 10 and m = 15 . For large distances between obstacles 
(i.e., for a few obstacles in the domain), ⟨LS

corr
⟩ converges to 

the same value independently of m , confirming that ⟨LS
corr

⟩ 
is dominated by the contribution of the large-scale structure 
in the flow associated to the distribution of the obstacles. 
However, for larger numbers of obstacles (or, equivalently, 
for smaller distances between obstacles) ⟨LS

corr
⟩ also depends 

on the value of m (taking smaller values for larger values of 
m ) and thus appears to become sensitive to the contribution 
of the small-scale structures associated with the fingering 
instability.

This correlation length will be useful to identify the 
characteristic scale of each POD mode in Sect. 4.2. How-
ever, to study the fingering instability from global data, we 
need a different definition for a characteristic scale that is 
more sensitive to the small-scale correlations associated 

with the viscous fingers. We thus introduce now a ‘cross-
length’ LS

cross
 also in the Y  direction and over the satura-

tion field S . We will see this magnitude is more useful to 
quantify the size of small-scale structures, and therefore, 
to identify the onset of the instability. The length LS

cross
 is 

defined as a cross-length, i.e., as the length we have to 
displace in the Y  direction to cross a given value of the con-
centration. The detailed procedure is as follows: (1) At each 
time, we compute the mean concentration S̄ . (2) For each 
value of x , we move across the Y  direction and compute 
the distance between all points with S = S̄ , as shown in 
Fig. 2b (i.e., we compute the distance between ‘crossings’ 
of S with its mean value). (3) The process is repeated for 
different times in the simulation. (4) Finally, we compute 
the PDF of all these distances. From the PDF, we can com-
pute different moments (as, e.g., the mean cross-length, its  
median or its deviation).

The PDF of LS
cross

 for different simulations with three 
obstacles and viscosity ratios m = 5 , m = 10 and m = 15 
are shown in Fig. 5. The arrows in each figure indicate the 
separation distance between obstacles, as well as between 
the obstacles and the wall of the computational domain 
(note obstacles are distributed randomly, so the separation 
is not the same for all obstacles). The peaks in the squared 
region remain approximately the same as m is varied; they 
correspond to large values of LS

cross
 , and they lay close to 

the distance between obstacles. Thus, we can conclude that 
this part of the PDF of LS

cross
 is associated with large-scale 

geometrical features in our domain. However, for smaller 
values of Ls

cross
 (see the white region on the left of Fig. 5) the 

shape of the PDF changes as m is increased. In particular, for 
larger values of m , the PDFs display a broader peak around 
LS
cross

≈ 0.05∕obs (where obs is the number of obstacles). As 

0 6 12 18 24 30 36 42 48 54 60

0.015

0.020

0.025

0.030

0.035

0.040

0.045

0.050

0.055 obs = 1
obs = 2
obs = 3
obs = 4
obs = 5

Time, 1/Q0

C
or

re
la

tio
n 

le
ng

th
, L

0

Fig. 3  Correlation length LS
corr

 for different numbers of obstacles for 
m = 10 (for runs VI, VII, VIII, IX and X) and as a function of time. 
The squared region indicates the area where we average each curve

0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50
0.016

0.018

0.020

0.022

0.024

0.026

0.028

0.030

0.032

m = 10
m = 15

Mean distance between obstacles, L0

Av
er

ag
e 

co
rr

el
at

io
n 

le
ng

th
, L

0

m = 5

Fig. 4  Average correlation length ⟨LS
corr

⟩ as a function of the mean 
distance between obstacles L0/obs 



 Petroleum Science

1 3

in the runs with larger values of m , we have more viscous 
fingering, we will see that these changes in the peak of the 
PDF are associated with the growth of small-scale structures 
in the flow, resulting from the fingering instability.

From the observation in Fig. 5 that a part of the PDF of 
LS
cross

 is sensitive to the value of m , we can build a charac-
teristic length associated with the instability as the median 
of LS

cross
 , denoted as LS

cross
 . Figure 6 shows this quantity as a 

function of time, first for simulations with fixed m = 10 and 
with different numbers of obstacles in Fig. 6a. The median of 
the cross-length decreases with the number of obstacles, just 
as the correlation length also does. However, a sudden drop 
can be also seen at intermediate times in all cases. Figure 6b 
shows a detail of the median for simulations with just one 
obstacle, with m = 5 , m = 10 and m = 15 . In the simulation 
with m = 5 , LS

cross
 remains constant in time, once the flow of 

water passes through the obstacles. However, for all other 
values of m , LS

cross
 shows again a sudden drop in its value at 

later times. Visual exploration of the simulations indicates 
that the time of the drop corresponds to the onset of the vis-
cous fingering instability. This can be understood, as small-
scale correlations appear in the data once the fingering starts 
to grow (see Fig. 7).

To further illustrate this effect, the squared regions in 
Fig. 6b define two times for each simulation: The left bound-
ary of the squared region, corresponding to the beginning 
of the drop in LS

cross
 , defines a time t0 . The right boundary 

defines another time t1 . At these two times, Fig. 7 shows 
the saturation field in the simulation with one obstacle and 
m = 10 at t0 . It can be seen in this figure that structures asso-
ciated to fingering appear at time t0.

4.2  POD analysis

Applying the POD method to the simulations, we can 
decompose them into orthogonal modes, study each 
mode separately and reconstruct the saturation field using 
a reduced number of modes (both topos and chronos) as 
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discussed in the Introduction and in Sect. 3.2. The elements 
of the basis, the spatial functions �i and the temporal coef-
ficients bi, were obtained using the snapshot method from 
the correlation matrix Cpq . Figure 8 shows a simulation 
with m = 10 for one obstacle, together with a reconstruc-
tion using 10, 20 and 30 modes, respectively. As expected, 
if we increase the number of modes, the reconstruction is 
more accurate.

We need to set a criterion to estimate how accurate the 
reconstruction is for a certain number of modes. As an 
attempt to accomplish this, we calculate the energy spectrum 
as a function of the mode number (i.e., the energy contained 
per POD mode). Figure 8 shows this spectrum normalized 
for runs with m = 5 , m = 10 and m = 15 as a function of k 

(the mode number), and for simulations with three obstacles. 
We found that for different numbers of obstacles used, the 
results practically did not change. To make an estimation of 
the error made in the reconstruction as a function of k , we 
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then calculated the cumulative energy up to the k th mode. 
This energy quantifies the amount of total energy gathered 
in a reconstruction with k modes, while the residual is the 
energy lost, and is a usual measure to quantify the quality of 
the reconstruction in PODs. The result is shown in Fig. 9b. 
The green line indicates, as a reference, a fixed value of 
energy of 0.98E0 (where E0 is the total energy in the original 
field). This means that, in this case, we need five modes to 
reconstruct (up to an error in the energy of 2%) the simula-
tion with m = 15 . Note that the larger the viscosity ratio 
m , the larger is the number of modes we need to attain the 
same accuracy. The results shown in Fig. 9 were obtained 
for simulations with three obstacles; however, the results are 
similar regardless of the number of obstacles.

To explicitly show the dependence with m of the number 
of modes needed to reach 98% of E0 , we plotted this number 
in Fig. 10 as a function of m . The decaying behavior as m 
grows is counter-intuitive. We know that when m increases, 
the structures associated to viscous fingering also grow, and 
that more small-scale features are present in the flow. Thus, a 
larger number of POD modes can be expected to be required 
to reconstruct the field with a prescribed error when m is 
increased, unlike what is observed in the figure.

The reason for this behavior is as follows: As m increases, 
the number and amplitude of the structures associated to 
the fingering indeed increase. However, when m increases, 
the gradient separating the water phase and the oil phase 
also becomes smoother. This permits a better reconstruction 
using less modes. Figure 11 shows a profile of the advanc-
ing front for simulations with one obstacle and with m = 5 , 
m = 10 and m = 15 , respectively. Each one of them shows 
the advancing front in the simulation, and the reconstruction 

of the same front performed with 8, 16 32 and 64 modes. We 
can see how as the number of modes increases, the recon-
struction becomes a better approximation to the advancing 
front in the simulation. However, for the sharper front in the 
simulation with m = 5 , more modes are required to get a 
reasonable approximation: While 64 modes in the simulation 
with m = 15 are very close to the actual profile, the same 
number of modes displays strong fluctuations near the front 
in the m = 5 case.

In the same way as we calculated the correlation length 
over the saturation field LS

corr
 , we can now calculate the 
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correlation length over each topo of a given decomposition, 
Lt
corr

 . Figure 12 shows the correlation length over the Y direc-
tion as a function of the mode number k (i.e., for the kth topo 
mode), for different numbers of obstacles and for m = 15 . 
We can see that this correlation length is also ordered as a 
function of the number of obstacles in a descending way. 
Between k = 50 and k = 80 , and specially for low number 
of obstacles, the function is compatible with a power law, 
which suggests that for a range of scales the viscous finger-
ing process may become independent of the scale and self-
similar. A certain scale independence of the process can be 
expected from the dynamic equations in Sect. 2, which when 
we made dimensionless using the length L0 and all other 
units in Eqs. (23) to (29) are not explicitly dependent on the 
length L0 nor on any dimensionless number based on L0.

Figure 13 further shows Lt
corr

 as a function of k for a fixed 
number of obstacles, and for different values of m . Fig-
ure 13a corresponds to obs = 1 , while Fig. 13b to obs = 5 . 
Note that as m increases, the maximum of the correspond-
ing curve (i.e., the maximum correlation length per mode) 
becomes smaller, in both cases (i.e., for both obs = 1 and 5). 
This behavior indicates that the spatial representation of the 
viscous fingering seen in the simulations also emerges in the 
individual topos associated to these runs, and in particular, in 
their correlation lengths. In Fig. 13, it can also be seen that 
the maximum correlation takes place in topos with smaller 
k as m increases. This effect is illustrated in better detail in 
Fig. 14, which shows the mode number k corresponding to 
the maximum of Lt

corr
 as a function of m in Fig. 14a, as well 

as the average value of Lt
corr

 as a function of the distance 
between obstacles in Fig. 14b.

In Sect. 4.1, we also introduced the cross-length over 
the saturation field S, as a way to quantify the onset of the 
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fingering process. We can now do the same analysis over 
each spatial mode, by computing a cross-length Lt

cross
(k) for 

each topo (each labeled by the index k). The length Lt
cross

(k) 
is calculated following the same procedure as before for the 
LS
cross

 length, only for each topo instead of for the total con-
centration S . This will allow us to identify which individual 
spatial modes capture the fingering process, and which ones 
are associated to the large-scale (and smoother) flow. Fig-
ure 15 shows this length as a function of the kth mode for the 
different simulations. In Fig. 15a, we present the value of the 
cross-length for multiple simulations with m = 10 and with 
different numbers of obstacles. The dashed lines demark the 
values for LS

cross
 obtained in Sect. 4.1 for the entire saturation 

field S before the fingering process is started (and for each 

simulation). In other words, it indicates the characteristic 
cross-length of the bulk (large-scale) flow. Note the first 
three modes in all cases have cross-lengths similar to those 
obtained for the entire saturation field. This indicates the first 
spatial modes of the POD are associated with the large-scale 
flow. For k = 4 and larger, Lt

cross
(k) quickly drops to values 

that are comparable to those seen in Fig. 6 (for LS
cross

 ) after 
the fingering starts. Thus, these modes have cross-lengths 
comparable to those of the viscous fingers and are the modes 
that capture the dynamics of this process. Figure 15b shows 
how this changes as we change m from 5 to 15, for only one 
obstacle. The behavior of Lt

cross
(k) is much alike to the one 

already described, but the number of modes associated with 
the large-scale flow decreases as m increases.
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5  Conclusions

We presented numerical simulations of the fingering insta-
bility in multiphase flow in porous media, varying the ratio 
of viscosities between the oil and water phases, as well as 
the number of obstacles used to trigger the instability. Our 
main goal was to characterize the process of viscous finger-
ing using global correlation lengths, as well as an empirical 
mode decomposition. To this end, we studied the evolution 
of the saturation correlation length LS

corr
 and introduced a new 

definition for a characteristic length based on the distance 
between crossings of the saturation with its mean value and 
the cross-length LS

cross
 . We also performed a POD decomposi-

tion of the simulations and studied its convergence as well as 
the correlation length Lt

corr
 and cross-length Lt

cross
 of each topo.

We showed that, when computed on the entire (non-
decomposed) saturation field, the correlation length LS

corr
 is 

dominated by the number of obstacles in the flow, while the 
median of the cross-length, LS

cross
 is a better indicator of the 

onset of the fingering instability. However, when applied to 
each individual mode of the POD, the correlation length Lt

corr
 

also becomes sensitive to the growth of small-scale features 
associated to the instability. Moreover, the cross-length of 
each topo Lt

cross
 can also be used to distinguish modes associ-

ated with large- and small-scale features in the flow.
We showed that when attempting a reconstruction of the 

saturation field using a finite number of POD modes, the 
convergence is non-trivially dependent of the value of the 
viscosity ratio m . While in all cases a small number of modes 
suffice to obtain the saturation to a good approximation (with 
errors smaller than 2% or 5%), more modes are required 

for small values of m (which do not display strong viscous 
fingering) than in the cases with larger values of m (which 
display fingering, and thus, small-scale features). This result 
is associated with the sharpness of the boundary between 
water and oil in the former case, which requires more modes 
to capture the stronger gradients in the saturation field. Also, 
this result is important when reduced dynamical systems for 
multiphase flow are derived from empirical modes, e.g., by 
truncating the governing equations to a few POD modes, as 
the number of modes required to properly approximate the 
solutions depends on the speed of convergence of the series, 
and thus on the viscosity ratio.
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Appendix

We briefly show how the POD basis can be used to truncate 
the system of PDEs and systematically derive a reduced sys-
tem of ordinary differential equations (ODEs). The main aim 
is to use these ODEs to simulate (at a lower computational 
cost) a new configuration of the system, which maintains the 
same geometry as the one used to obtain the POD basis, but 
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whose parameters can be different from the former one. To 
this end, we must do a Galerkin projection of the full set of 
differential equations in Sect. 2.

To illustrate the procedure, we consider Eq. (14) (other 
equations can be projected following the same steps), and in 
particular we provide details for the projection of one term in 
this equation. The projection for this term (as well as for any 
other term in the PDEs) can be done using the orthogonality 
of the basis obtained from the POD. Starting from Eq. (14), 
we multiply this equation by the mode �k to obtain

and we integrate over space

Looking only at the first term, given by

we can expand S using the POD modes as

Here M < N is the number of modes used in the truncation, 
�i are the spatial modes obtained from the POD, and �i are 
new coefficients which are unknown, and for which we want 
to derive a set of ODEs which will prescribe their evolution. 
From this evolution, the concentration can be reobtained at any 
moment by using Eq. (46). We can also expand pavg as

using the same spatial modes �i obtained for S. As before, 
the coefficients �i are unknown. Now we can rewrite Eq. (45) 
using Eqs. (46) and (47) as

where a, b and c are given by

(43)0 = �k

(
∇.
(
�t∇pavg

)
+

1

2
∇.
(
�d∇pc

)
+ Qw + Qo

)
,

(44)

0 = ∫ �k

(
∇.
(
�t∇pavg

)
+

1

2
∇.
(
�d∇pc

)
+ Qw + Qo

)
dxdy.

(45)∫ �k∇.
(
�t∇pavg

)
dxdy,

(46)S(x, y, t) =

M∑

i=1

�i(x, y)�i(t).

(47)pavg(x, y, t) =

M∑

i=1

�i(x, y)�i(t),

(48)
∫ �∗

k

(
∇.

(
a

M∑

i=1

�i∇�i + b

M∑

i,j=1

�i�j�j∇�i + c

M∑

i,j,l=1

�i�j�l�j�l∇�i+

))
dxdy,

(49)a =
K

�o

(50)b =
−2K

�o

,

(51)c = K

(
1

�o

+
1

�w

)
.

By rearranging the terms in Eq. (48), we get

where Ak
i
 , Bk

ij
 and Ck

ijl
 are given by the following integrals

The Ak
i
 , Bk

ij
 and Ck

ijl
 coefficients can be calculated numer-

ically from the POD spatial modes and stored. Repeating 
this procedure to the other terms in Eq. (44), a set of alge-
braic equations for the coefficients �i and �i is finally 
obtained. Further repeating this procedure for Eq. (15) 
results in another equation for �i and �i , but with a term 
dependent on �̇�i (i.e., its time derivative), which follows 
from the time derivative of S. The resulting new system of 
ODEs is a truncation of the full system of PDEs that can 
be solved for a finite number of modes M.
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