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Abstract
Fluidization of non-spherical particles is very common in petroleum engineering. Understanding the complex phenomenon 
of non-spherical particle flow is of great significance. In this paper, coupled with two-fluid model, the drag coefficient cor-
relation based on artificial neural network was applied in the simulations of a bubbling fluidized bed filled with non-spherical 
particles. The simulation results were compared with the experimental data from the literature. Good agreement between 
the experimental data and the simulation results reveals that the modified drag model can accurately capture the interaction 
between the gas phase and solid phase. Then, several cases of different particles, including tetrahedron, cube, and sphere, 
together with the nylon beads used in the model validation, were employed in the simulations to study the effect of particle 
shape on the flow behaviors in the bubbling fluidized bed. Particle shape affects the hydrodynamics of non-spherical particles 
mainly on microscale. This work can be a basis and reference for the utilization of artificial neural network in the investigation 
of drag coefficient correlation in the dense gas–solid two-phase flow. Moreover, the proposed drag coefficient correlation 
provides one more option when investigating the hydrodynamics of non-spherical particles in the gas–solid fluidized bed.

Keywords Fluidized bed · Two-fluid model · Drag coefficient correlation · Non-spherical particle · Artificial neural 
network

List of symbols
CD  Drag coefficient (dimensionless)
Cx  Fluctuating instantaneous velocity in the lateral 

direction, m/s
Cy  Fluctuating instantaneous velocity in the verti-

cal direction, m/s
Cz  Fluctuating instantaneous velocity in the depth 

direction, m/s
D  Rate of strain tensor of the solid phase,  s−1

db  Bubble diameter, m
dp  Particle diameter, m

ep  Particle–particle restitution coefficient 
(dimensionless)

ew  Particle-wall restitution coefficient 
(dimensionless)

Fr  Constant in equation for pf
s
 , N/m2

g  Gravitational constant, m/s2

g0  Radial distribution function (dimensionless)
I  Unit tensor (dimensionless)
I2D  Second invariant of the deviator of the strain 

rate tensor of solid phase,  s−2

ps  Solid phase pressure, Pa
pf
s
  Solid frictional pressure, Pa

Re  Reynolds number (dimensionless)
ug  Gas velocity, m/s
us  Solid velocity, m/s
us,x  Horizontal particle velocity, m/s
us,y  Vertical particle velocity, m/s
usp  Superficial velocity, m/s
ur  Relative velocity correlation (dimensionless)
us, x, RMS  Root mean square of horizontal particle veloc-

ity, m/s
us, y, RMS  Root mean square of vertical particle velocity, 

m/s
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u′
x
  Fluctuating hydrodynamic velocity in the lateral 

directions, m/s
u′
y
  Fluctuating hydrodynamic velocity in the verti-

cal directions, m/s
u′
z
  Fluctuating hydrodynamic velocity in the depth 

directions, m/s

Greek letters
βgs  Inter-phase drag coefficient, kg/m3s
βErgun  Drag coefficient calculated by Ergun correla-

tion, kg/m3s
βWen–Yu  Drag coefficient calculated by Wen-Yu correla-

tion, kg/m3s
γθs  Collisional dissipation rate of the granular fluc-

tuating energy, kg/ms3

εg  Gas volume fraction (dimensionless)
εs  Solid volume fraction (dimensionless)
εsmax  Solid volume fraction at the maximum packing 

state (dimensionless)
εsmin  Solid volume fraction beyond which frictional 

force occurs (dimensionless)
θs  Granular temperature,  m2/s2

θbubble  Bubble granular temperature,  m2/s2

θparticle  Particle granular temperature,  m2/s2

κθs  Diffusion coefficient, kg/m3s
λs  Solid bulk viscosity, Pa s
μg  Gas viscosity, Pa s
μs  Solid shear viscosity, Pa s
ρg  Gas density, kg/m3

ρs  Solid density, kg/m3

τg  Stress tensor for the gas phase, Pa
τs  Stress tensor for the solid phase, Pa
ϕ  Sphericity (dimensionless)
ϕgs  Energy exchange between gas phase and solid 

phase, kg/ms3

φf  Internal friction angle of particles, degree
φgs  Blending function (dimensionless)

1 Introduction

In the petroleum industry, multiphase flow (Li et al., 2019; 
Shi et al. 2019; Yang et al. 2019), heat transfer (Yin et al. 
2018), and mass transfer (Zhu et al. 2018) are widely existed. 
As a typical multiphase flow system, fluidized bed reactor 
plays a significant role in the development of the petroleum 
industry (Zhang 2009; Pei et al. 2009), such as fluid cata-
lytic cracking (Wang et al. 2011), coking (Wang et al. 2016), 

combustion of petroleum coke (Zhang et al. 2012), pyrolysis 
process (Gao et al. 2013), etc. There are various complex 
processes in a fluidized bed reactor, involving complicated 
multiphase flow, heat transfer, and chemical reactions. A 
deep understanding of the flow behavior and particle trans-
port phenomenon is of pragmatic importance in the opti-
mization and operation of fluidized bed reactor (Yao et al. 
2012; Zhao et al. 2018). The particles in fluidization engi-
neering are normally non-spherical and of irregular shapes. 
Specifically, for the simplicity of research and fast computa-
tion, some kinds of non-spherical particles are regarded as 
the perfectly spherical particles. However, for some occa-
sions, this kind of treatment is not that rigorous and accurate 
(Das et al. 2018). Non-spherical particles normally suffer 
more complicated fluid forces, including the shape-induced 
lift force, the orientation-dependent lift force and drag force 
(Zhu et al. 2007). Besides, the packing, contacts, and drag 
force of non-spherical particles are quite different from that 
of spherical particles (Boyce et al. 2017). He et al. (2018) 
found that particle shape affects the compaction behavior 
and compact properties. Compacts of spheroidal particles 
with larger aspect ratios have larger compressive strength. 
Consequently, it is necessary to take the influence of particle 
shape into account in the investigation of fluidization process 
of non-spherical particles.

Recently, for the simulation work, increasing papers have 
been published on the numerical simulation of hydrodynam-
ics of non-spherical particles in the gas–solid fluidized beds. 
Comparatively speaking, more attention has been paid to dis-
crete element method (DEM) (Gan et al. 2017; Breuninger 
et al. 2019; Han et al. 2015; Chung et al. 2013; Marchelli 
et al. 2019; Khawaja 2018). Fewer TFM (two-fluid model) 
works on fluidization behavior of non-spherical particles in 
gas–solid fluidized bed have been reported. Cardoso et al. 
(2018) employed TFM to study the hydrodynamics and heat 
transfer of a biomass gasification process in a pilot-scale 
bubbling fluidized bed reactor. Biomass particles are mostly 
located in the middle and upper regions of the bed, while 
sand particles accumulate at the middle and bottom of the 
bed. Sharma et al. (2014) modeled the hydrodynamic behav-
ior of biomass particles and biochar particles in a bubbling 
fluidized bed by TFM. Superficial gas velocity and biomass 
particle density had significant influence on the mixing/seg-
regation of biomass particles and biochar particles, while 
the effect of biomass particle diameter was negligible. Hua 
et al. (2015) conducted a TFM simulation of flow behavior 
of calcium carbonate in a lab-scale three-dimensional rec-
tangular fluidized bed. It reveals that the drag model with 
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an assumption of perfectly spherical particles give poor 
prediction of hydrodynamics of non-spherical particles in 
a gas–solid fluidized bed. Taking particle sphericity into 
consideration is necessary when investigating the fluidiza-
tion of non-spherical particles. Lu et al. (2015) proposed a 
drag model for non-spherical particles, integrated it into the 
two-fluid model, and employed it in the simulation of hydro-
dynamics of non-spherical particles in a supercritical water 
fluidized bed. The drag model was verified by a comparison 
between simulation results and experimental data.

For TFM simulations of hydrodynamic behavior of non-
spherical particles in gas–solid fluidized beds, a proper and 
effective drag model is still lacking. Drag model is the key 
point when simulating the hydrodynamics of non-spherical 
particulate system. There are two kinds of fluid-particle drag 
models, which are homogeneous and heterogeneous drag 
models (Gao et al. 2018). For homogeneous drag models, 
the particles are assumed to be uniformly distributed in a 
fluid. Homogenous drag models can be derived from parti-
cle-resolved direct numerical simulation (PR-DNS). Hetero-
geneous drag models can be derived from four approaches: 
mesoscale-structure-based method, fine grid two-fluid simu-
lation, fine grid CFD–DEM simulation, and particle-resolved 
DNS simulation. Gao et al. (2018) summarizes eight repre-
sentative drag models, including three homogeneous drag 
models: the Gidaspow drag model (Gidaspow 1994), the 
Beetstra–van der Hoef–Kuipers (BVK) drag model (Beetstra 
et al. 2007), the (Tenneti–Garg–Subramaniam) TGS drag 
model (Tenneti et al. 2011), and five heterogeneous drag 
models: the Sarkar drag model (Sarkar et al. 2016), the Igci 
drag model (Igci et al. 2011), the Radl drag model (Radl 
and Sundaresan 2014), the Mehrabadi–Murphy–Subrama-
niam (MMS) drag model (Mehrabadi et al. 2016), and the 
energy-minimization multi-scale (EMMS) drag model (Li 
1994). Gidaspow drag model consists of the Wen–Yu (Wen 
1966) and Ergun equations (Ergun, 1952). Most drag mod-
els were derived from simulations and existed drag equa-
tions. Moreover, they are validated in one or two fluidization 
regimes (Gao et al. 2018). Consequently, we want to propose 
a generalized drag correlation that can be widely applied in 
different flow regimes. Besides the accuracy, the efficiency 
is another aspect that should be taken into consideration. As 
frequently reported, the settling experiments and the wind 
tunnel experiments are suitable for the conditions of low 
Reynolds number (Re ≤ 1000) and high Reynolds number 
(Re > 1000), respectively. In other words, to avoid repeating 

redundant measurements of drag coefficient is the core point. 
Time, cost, lab space, and human resource should be used 
as less as possible. Based on the above-mentioned points, 
the method of artificial neural network (ANN) comes to 
our mind. ANN has several outstanding advantages, one 
of which is the learning ability. In the previous paper (Yan 
et al. 2019), it has been proved that ANN can well learn and 
master the complicated rule between the Reynolds number, 
particle sphericity, and drag coefficient. It is an efficient 
tool in predicting the drag coefficients of different kinds of 
shaped particles.

In the approach of TFM, both the fluid phase and solid 
phase are treated as continuous media and described by 
Navier–Stokes equations (Miao et al. 2017). TFM can over-
come the fatal disadvantage of DEM, which is that the num-
ber of calculated particles is substantially restricted when the 
simulation needs to be finished within practical time using 
a single personal computer (Sakai et al. 2014). Moreover, 
TFM can better solve the problem of model scale, compu-
tation demand and cost, and efficiency (Rangarajan et al. 
2013; Langston et al. 2009). In our previous paper (Yan et al. 
2019), a modified Gidaspow-Blend model was established 
based on the drag coefficient prediction by radial basis neu-
ral network (RBFNN). And it was validated in modeling 
hydrodynamics of non-spherical particles in a gas–solid 
fluidized bed. In this paper, the modified drag model was 
further applied in investigating flow behavior of dense 
gas–solid flow, which is our primary objective. Furthermore, 
the flow behaviors of the particles with different sphericities 
were compared. The influence of particle shape on the flow 
behaviors in the fluidized bed was discussed.

2  Model and numerical settings

2.1  Radial basis neural network

RBFNN is adopted in the prediction of drag coefficient. 
There are two unique steps for the training process of 
RBFNN. Generally speaking, the first step adjusts the neu-
ron weights in the hidden layer with a self-organized learn-
ing method, which is aiming at allocating the radial basis 
functions. The second step adjusts the neuron weights in the 
output layer by the generalized delta rule. Adequate experi-
mental data of drag coefficient for various sphericities with 
different Reynolds number were collected from the former 
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researchers’ literature. Then, RBFNN was employed to learn 
the rule between drag coefficient, sphericity, and Reynolds 
number and predict the drag coefficient for the untested cases 
with various sphericities and Reynolds number. Then, the 
authors used the experimental data from the literature and the 
predicted drag coefficient data to make curve fitting of drag 
coefficient, sphericity, and Reynolds number. More details 
can be found in the authors’ previous work (Yan et al. 2019).

2.2  CFD model

Two-fluid model is adopted for the simulations of the gas 
and solid flow in the fluidized bed. This approach considers 
the solid and gas phases to be continuous and fully penetrat-
ing. The two-fluid solver of the open-source code developed 
by the National Energy Technology Laboratory (NETL), 
Multiphase Flow with Interphase eXchanges (MFiX) 19.1 
release was employed to obtain the solutions of the mass 
and transport formulas with closure relations by a finite 
volume method. Governing equations and constitutive rela-
tions in Eulerian–Eulerian simulation are shown as follows 
(Gidaspow 1994).

Conservation of the mass for gas phase and solid phase:

(1)
�

�t

(
�g�g

)
+ ∇ ⋅

(
�g�gug

)
= 0

Conservation of the momentum for gas phase and solid 
phase:
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Stress tensor for gas phase and solid phase:

Gidaspow-Blend drag model (Huilin and Gidaspow 2003)

Drag coefficient correlation based on artificial neural net-
work (Yan et al. 2019):

Solid phase pressure:

Solid shear viscosity (Syamlal and Rogers 1993):
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Frictional stress model (Johnson et al. 1990):

The constants used in the frictional stress model are set as 
follows, Fr = 0.05 N/m2, m = 2, n = 5, εsmin = εsmf.

Solid bulk viscosity:

Radial distribution function:
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Table 1  Numerical simulation parameters (Nylon beads)

Parameters Units Value

Minimum fluidization velocity, umf m/s 1.05
Bed height at minimum fluidization, hmf m 0.173
Void fraction (fluffed) – 0.42
Particle density ρp kg/m3 1131
Particle diameter dp μm 3256
Sphericity ϕ – 0.94
Terminal velocity ut m/s 9.94
Gas density ρg kg/m3 1.225
Gas viscosity μg Pa·s 1.8 × 10−5

Superficial gas velocity usp m/s 2.19, 3.28, 4.38
Bed width m 0.23
Bed height m 1.22
Bed depth m 0.075
Grid number – 15 × 80 × 5
Particle–wall coefficient of restitution ew – 0.92
Particle–particle coefficient of restitution ep – 0.84

Gas flow

1.22 m

0.23 m

0.173 m

Fig. 1  A 2D schematic diagram of the NETL bubbling fluidized bed 
(Lungu et al. 2016)

Conservation of the granular fluctuating energy:

Collisional dissipation rate of the granular fluctuating 
energy:

2.3  Numerical settings

The bubbling bed is the one that was used in the experi-
ments of NETL, which was mentioned in the work of Lungu 
et al. (2016). It is a rectangular bed, whose width, depth, 
and height are 0.23 m, 0.075 m, and 1.22 m, respectively. 
Figure 2 displays the schematic diagram of the bubbling 
bed. The relevant parameters and settings employed in the 
simulation of the fluidized bed are summarized in Table 1. 
All simulations were run for 40  s. Time-averaged data 
were obtained with time ranging from 20 to 40 s. A two-
dimensional schematic diagram of the setup is shown in 
Fig. 1. Particles used in this work were nylon beads with a 
Sauter mean diameter of 3256 μm and density of 1131 kg/
m3. Superficial gas velocities of 2.19 m/s, 3.28 m/s, and 
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4.38 m/s approximately correspond to 2, 3, and 4 times 
of the minimum fluidization velocity, respectively. In the 
order of above-mentioned superficial gas velocities, the runs 
fall into case 1, case 2, and case 3, respectively. Particle 
velocity data were obtained at the bed height of 0.0762 m 
above the gas distributor. Lateral positions of 0.02356 and 
0.20644 m, 0.06928 m, and 0.16072 m, and 0.115 m rep-
resent the wall region, annulus region, and center region of 

the bed, respectively. Such details are exactly the same as 
the work of Lungu et al. (2016).

For a better prediction and comparison, we performed 
a 3D simulation. The grid resolution of width (x), depth 
(y), and height (z) is 15, 5, and 80, respectively. Velocity 
inlet boundary condition was used at the bed inlet, while 
a pressure outlet boundary condition was employed at the 
outlet. Johnson and Jackson boundary conditions were 
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1.0
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x, m x, m

0 0.05 0.10 0.15 0.20 0.25
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-1.0

-0.5

0

0.5

1.0

u
y,s

s/
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u
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Current simulation
Lungu et al. simulation (Gidaspow)
Lungu et al. simulation (Syamlal-O'Brien)
NETL experiment

Current simulation
Lungu et al. simulation (Gidaspow)
Lungu et al. simulation (Syamlal-O'Brien)
NETL experiment

Current simulation
Lungu et al. simulation (Gidaspow)
Lungu et al. simulation (Syamlal-O'Brien)
NETL experiment

(a) usp = 2.19 m/s

(b) usp = 3.28 m/s (c) usp = 4.38 m/s

Fig. 2  Vertical particle velocity profiles for various superficial gas velocities at the bed height of 0.0762 m
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chosen for the solid phase at the wall, and the gas phase was 
simulated as no slip. According to work of Altantzis et al. 
(2015), the suitable specularity coefficient value depends 
on the superficial gas velocity. Therefore, specularity coef-
ficient of 0.5 was adopted for case 1, and 0.005 for case 2 
and case 3. The discretization scheme, superbee, which is 
recommended by MFiX, was selected to solve the conserva-
tion equations. The interphase momentum exchange coef-
ficient between the gas and solid phases is modeled by the 
correlations of Gidaspow-blend model. The drag coefficient 
correlation obtained in our previous work is integrated into 
the model. The numerical parameters are set the same as 
the experiment.

3  Results and discussions

3.1  Model verification

3.1.1  Particle velocity

The simulation results of particle velocity, flatness factor, 
and granular temperature were compared with experimental 
data of NETL. Figure 2 shows the vertical particle velocity 
profile at the bed height of 0.0762 m above the gas distribu-
tor. The proposed drag coefficient correlation describes the 
interaction between gas phase and solid phase well. Parti-
cles move upward in the center and downward near the side 
walls. With respect to the vertical particle velocity, our simu-
lations perform well for the case with lower superficial gas 
velocities. For the cases of higher superficial gas velocities, 
the agreement between the experiments and simulations is 
not that well. Overall, the variation trend of the experiment 
is accurately reproduced by our simulations.

3.1.2  Flatness factor (FF)

Wavelet decomposition has been proved to be a useful tool 
of extracting different frequency ranges while retaining the 
timestamp of signals. It can be used to classify the fluidized-
bed measurement data into noise (microscale), flow struc-
tures like clusters or bubbles (mesoscale), and equipment 
(macroscale) (Chew et al. 2012). Wavelet analysis, which 
is an important time–frequency domain analysis tool for 
multi-resolution analysis, can be employed to decompose 
the time series into sub-signals of different levels (i.e., fre-
quency bands) and keep the dynamic characteristics (Wu 
et al. 2018). At the first scale of decomposition (Scale 1), 

N Hz signal is divided into the first scale of approximation 
(A1) and the first scale of detail (D1), whereby A1 contains 
the lower half of the frequency range and D1 contains the 
higher half. The signals of A1 and D1 reconstruct the original 
signal. This is a reversed wavelet decomposition.

From scale j to scale j + 1, each approximation Aj is 
further decomposed into low-frequency Aj+1 and high-fre-
quency Dj+1 signals.

Flatness factor (FF) is the normalized fourth-order statis-
tical moment, which is calculated by the detail coefficients 
of axial fluctuating velocity signal. It characterizes the inter-
mittent nature of the flow. The expression is shown below, 
in which < ·> indicates the arithmetic average over N. Based 
on fluctuation velocity, flatness factor of 3 means that there 
is no intermittence and particle fluctuation velocity is in 
Gaussian distribution. Flatness factor smaller than 3 repre-
sents the strong periodicity of particle fluctuation velocity. 
Flatness factor larger than 3 shows the strong intermittence 
caused by coherent structures (Sun et al. 2011). Flatness 
factor is a parameter that characterizes the turbulence of 
the flow. The formula of flatness factor is shown as follows 
(Sun et al. 2011).

Figure 3 shows the comparisons of predicted FF and 
experimental FF at regions of the wall, annulus, and bed 
center. FF decreases in the direction of walls to the center. 
At the walls, our simulation fails to reproduce the FF infor-
mation at scale D1 to D2. Overall, our simulations capture 
the FF variation trend of the non-spherical particles in the 
bubbling fluidized bed reasonably.

3.1.3  Bubble granular temperature

Granular temperature is of great significance in the flow, 
mixing, segregation, and attrition phenomena of the par-
ticulate systems and associated theories (Biggs et al. 2008). 

(24)x = D1 + D2 + D3 +⋯ + Dj + Aj

(25)Dj ∶ [2−(j+1)fs, 2
−(j)fs]

(26)Aj ∶ [0, 2−(j+1)fs]

(27)FFj =

⟨[
Dj(i)

]4⟩
N⟨[

Dj(i)
]2⟩2

N
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There are two kinds of granular temperature in fluidized 
beds, namely particle granular temperature and bubble gran-
ular temperature. Particle granular temperature, known as 
the classical granular temperature, can be directly obtained 
via solving the granular temperature equations in the CFD 
codes. The particle granular temperature is 2/3 of the random 
particle kinetic energy. It originates from the oscillation of 
particles in small regions for a small time period and varies 
with time and position. The particle granular temperature, 
which is associated with the particle velocity fluctuation, is 

proportional to the mean square of the random motion of 
particles. The intensity of the particle velocity fluctuations 
defines the stresses, viscosity, and pressure of the solid phase 
(Gidaspow 1994). It can be calculated as follows.

Bubble granular temperature (Jung et al. 2005) can be 
calculated from the normal Reynolds stresses per unit bulk 
density (Gidaspow and Bacelos 2018):
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Figure 4 shows the profiles of bubble granular tempera-
ture. Normally the bubble granular temperature is almost 
an order of magnitude larger than the particle granular 
temperature. This is due to the motion of bubbles in the 
fluidized bed. For the simulation results, the superficial 
gas velocity has a strong influence on the bubble granular 
temperature. For case 1, the authors’ simulation results are 
closer to the experimental data. With respect to case 2 and 

(29)�bubble =
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] case 3, simulation results have a relatively large deviation 
from the experimental data, but similar with the results of 
Lungu et al. (Lungu et al. 2016). In the simulation, the veloc-
ity fluctuation increases with the increasing superficial gas 
velocity. Thus, the bubble granular temperature is larger 
at higher superficial gas velocity. In the experiments, the 
bubble granular temperature values change only a little at 
various superficial gas velocities. This is the reason that the 
simulation fails to reproduce the bubble granular tempera-
ture profile at higher superficial gas velocities.
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3.2  Particle shape effect

In this section, a series of simulations for different shaped 
particles were conducted. Besides, the nylon beads in the 
work of Lungu et al. (2016), three kinds of particles, includ-
ing tetrahedron, cube, and sphere, are employed in the simu-
lation. Particles’ shape effect on the flow behaviors in the 
fluidized bed was further studied and discussed. The particle 
velocity, granular temperature, and flatness factor distribu-
tion were mainly investigated and analyzed.

3.2.1  Drag coefficient comparison

To compare the difference between the four kinds of parti-
cles, the curves for drag coefficient and Reynolds number 

are drawn in Fig. 5. In the current simulation, the particle 
Reynolds number ranges from 100 to 400. It can be clearly 
seen that the drag coefficient has a big difference when the 
particle Reynolds number is beyond 100. In the following 
sections, it will be shown that the difference of drag coef-
ficient has an influence on some parameters.

3.2.2  Bubble properties

Figure 6 shows the instantaneous bubble snapshot. To better 
illustrate the bubble growth process for fluidized bed filled 
with non-spherical particles, the bubble snapshot at different 
instants is only presented for the case of sphericity 0.670, 
which deviates from spherical particles most. The bubble 
forms at the bottom of the bed. With the upward gas, the 
bubble size gradually increases. When the bubble reaches to 
the top of the bed, the bubble begins to break up. It denotes 
that the bubble growth process in non-spherical particulate 
system is similar with the well-known bubble growth pro-
cess in bubbling fluidized beds.

3.2.3  Particle velocity

Figure 7a shows the horizontal particle velocity variation 
with different particle sphericities. Particle velocity data 
were chosen from those at the bed height of 0.0762 m. Parti-
cle sphericity has a weak influence on the horizontal particle 
velocity. The profiles of the horizontal particle velocity for 
four cases are almost the same. In the left part of the bed, 
particles move toward the right. In the right part of the bed, 
the trend is just the opposite. Figure 7b shows the vertical 
particle velocity profiles under different particle sphericities. 
The trend for four cases is similar. Particles move upward in 
the core and annulus region and downward near the walls. 
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Obviously, particle sphericity influences the vertical particle 
velocity. The lower the particle sphericity, the higher the 
vertical particle velocity. If the other conditions are the same 
and only the particle sphericities are different, the particles 
with a lower sphericity have a larger drag force that acts on 
them. Hence, the vertical particle velocity of particles with 
lower sphericities is higher.

Figure 8 presents the time-averaged particle velocity vec-
tor distribution. It can be found that the particle movement 
trend for the four cases is very similar. The particles move 
upward through the central region of the bubbling fluidized 
bed. After the particles reach the top of the bed, they begin 
to move downward the side walls. The magnitude of the 
particle velocity for the cases of sphericity of 0.670 and 
0.806 is larger than the cases with higher sphericities of 
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0.940 and 1.000. It is demonstrated that the particles with 
smaller sphericity have larger particle velocity. The maxi-
mum bed height can be determined from the particle vector 
plots. It is also found that the particle sphericity slightly 
affects the maximum bed height. The maximum bed height 
nearly decreases with the increase in the particle sphericity.

3.2.4  Granular temperature

Figure 9 shows the profiles of time-averaged particle granu-
lar temperature. It is shown that the particles move more 

violently on the top of the bed. With regards to the central 
region and bottom region of the bed, the particles movement 
is a little weaker. It can be clearly seen that the bed expan-
sion decreases with increasing sphericity. Particles with 
smaller sphericities have larger drag force. Thus, the interac-
tion between gas phase and solid phase is more strengthened 
for particles with smaller sphericities, which leads to a larger 
bed expansion.

Figure 10 shows the time-averaged bubble granular 
temperature distribution. For all cases, the bubble granu-
lar temperature in the central region is higher than other 
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regions. Compared with Fig. 9, it is found that the bubble 
granular temperature is higher than the particle granular 
temperature in the central region and at the bottom of the 
bed, while at the top of the bed, the particle granular tem-
perature is higher than the bubble granular temperature. 
On the top of the bed, the random oscillations of individual 
particles play a major role. In the central region and at the 
bottom of the bed, the motion of bubbles is more predomi-
nant. The essence of the different distributions of two kinds 
of granular temperature is the different types of particles 
movement.

Figure 11 shows the particle granular temperature dis-
tribution at three different bed heights, which correspond 
to the bottom region, central region, and top region. The 
particle granular temperature increases with the increase in 
the bed height. Particles move more violently at the top of 
the bed. For the case with the particle sphericity of 0.670, 
the particle granular temperature at the top of the bed is the 
smallest, compared with three other cases at the same bed 
height. With respect to all the four cases, the particle granu-
lar temperature at the bottom region and central region are 
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similar, respectively. However, particles with larger sphe-
ricities have larger particle granular temperature on the top 
of the bed.

Figure 12 displays the bubble granular temperature pro-
files at three different bed heights. For all the four cases, the 
variation trend is similar. At the top region of the bed, the 
bubble granular temperature is lower in the center than that 
of the annulus region and wall region. The bubble granular 

temperature is approximately larger for the central region 
than that of the bottom region. The bubble granular tem-
perature profiles for the four cases are quite similar. It can be 
concluded that particle shape hardly changes the magnitude 
of bubble granular temperature at different bed heights. The 
bubble granular temperature, which is a parameter on the 
mesoscale level, is less influenced by the particle shape. This 
can be well illustrated in Sect. 3.2.6.
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3.2.5  RMS distribution

The root mean square (RMS) distribution characterizes the 
random and fluctuating behavior of the particle velocities. 
The isotropy of the system is quantified by the ratios of the 
vertical and horizontal RMS, us, y, RMS/us, x, RMS. The ratio of 
1 indicates the system behaves the most isotropic. The RMS 
velocity is the RMS difference between the instantaneous 
velocity and mean velocity. It is shown as follows.(Lungu 
et al. 2016)

Figure 13 presents the RMS distribution for the four 
kinds of particles at three different bed heights. Because 
of the appearance of the bubbles, the isotropy of the flow 
is strengthened in the central region at the bottom region 
and the central region. On the top region of the bed, the 
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anisotropy of the flow is weakened at the walls. For each bed 
height, the difference of the RMS distribution for four kinds 
of particles is small. It denotes that particle sphericity has a 
minor effect on the particle fluctuation.

3.2.6  Flatness factor distribution

In essence, a fluidization process is multi-scale. It is con-
sisted of microscale characterized by individual particle size, 
mesoscale corresponding to bubbling size of cluster size, 
and macroscale linked with the size of reactor or unit (Yang 
and Leu 2009). Figure 14 shows the flatness factor distri-
bution in different regions of the bubbling fluidized bed. 
From the wall to the center, the fluctuation velocity gradu-
ally increases. It is because that bubbles mainly appear in the 
center and annulus region. The mean free path of particles is 
longer in the center and annulus region. The flatness factor 
decreases from wall region to center region, which shows 
an opposite trend compared with the fluctuation velocity. 
According to the work of Lungu et al. (2016), D1–D3 repre-
sents the microscale, D4–D8 represents the mesoscale, and 
D9 represents the macroscale, which can be validated by the 
flatness factor profiles at different detail signals. For all the 
three regions, flatness factor is close to Gaussian distribu-
tion in the range of D4–D9, which denotes the large-scale 
and low-frequency structures are stable and in order. From 
D1–D3, the flatness factor is much greater than 3, demon-
strating the strong intermittency of the flow. In each region, 
the four flatness factor curves differ from each other in the 
range of D1–D3 and get closer from D4 to D9. The gas–solid 
two-phase flow is more intermittent close to the wall, which 

reveals the anisotropy of the flow. In the wall region, the par-
ticle concentration is denser, and particle–particle collision 
and particle–wall collision coexist, leading to more energy 
dissipation via momentum transfer. In the annulus region 
and center region, the bubbles, which are of mesoscale, are 
the major movement form of particles. Compared with the 
wall region, the flow in this region is more isotropic.

Figure 15 displays the flatness factor profiles for the annu-
lus region at various bed heights. The flatness factor for four 
cases deviates from each other ranging from D1–D3. From 
D4–D9, the distribution for three bed heights is similar and 
close to Gaussian distribution. The flatness factor decreases 
in the range of D1–D3. The flatness factor gets much closer 
from D4–D9 and closer to the Gaussian distribution. The 
difference of particle shape largely changes the flatness fac-
tor for the microscale structure and hardly alters that for the 
mesoscale structure and macroscale structure. It is found 
that particle shape influences the microscale structure a lot 
and has a minor effect on the mesoscale structure and mac-
roscale structure.

4  Conclusions

In this paper, a couple of simulations were conducted using 
Eulerian–Eulerian approach with closures from the KTGF. 
Simulation results were compared with the corresponding 
NETL experimental data and Lungu et al. (2016)’s simu-
lation results. The modified Gidaspow-blend drag model, 
which is based on the drag coefficient correlation obtained 
from artificial neural network in our previous paper, was 
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employed in the simulations; simulation results agree well 
with the experimental data. Moreover, the effect of particle 
shape on the flow behavior of particles in bubbling fluidized 
bed was investigated.

The main conclusions can be drawn as follows:

(1) Two-fluid model, which is coupled with the modified 
drag model based on the drag coefficient obtained from 
the RBFNN method, can reasonably predict the flow 
behavior of non-spherical particles.

(2) Particles with lower sphericities have larger vertical 
particle velocity. The particle shape has a weak influ-
ence on the random and fluctuating behavior of the par-

ticle velocities. In the fluidized bed, the particles move 
more violently on the top of the bed, but move weakly 
at the center and the bottom of the bed. The lower the 
particle sphericity is, the larger the bed expansion is.

(3) Particle shape can change the velocity distribution 
and particle granular temperature distribution, which 
is on the particle-scale level. Particle shape has a 
strong influence on the flatness factor distribution in 
the microscale structure and a minor influence in the 
mesoscale structure and macroscale structure.
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This work can be a reference for the application of the 
drag coefficient correlation in the fluidization process of 
non-spherical particles. The modified drag model can facili-
tate the simulation of complex process of multiphase flow in 
the process of petroleum engineering. Theoretically, the pro-
posed drag coefficient correlation can be applied to the entire 
range of Reynolds number. However, it needs to be further 
validated under different Reynolds number and sphericities, 
which will be conducted in our future work.
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