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Abstract
We developed a predictive model for the pipeline friction in the 520–730 m3/h transmission range using the multi-layer-
perceptron–back-propagation (MLP–BP) method and analyzing the unit friction data after the pigging of a hot oil pipeline. 
In view of the shortcomings of the MLP–BP model, two optimization methods, the genetic algorithm (GA) and mind evo-
lutionary algorithm (MEA), were used to optimize the MLP–BP model. The research results were applied to the standard 
friction prediction of three sections of a hot oil pipeline. After the GA and MEA optimizations, the average errors of the 
three sections were 0.0041 MPa for the GA and 0.0012 MPa for the MEA, and the mean-square errors were 0.083 and 0.067, 
respectively. The MEA-BP model prediction results were characterized by high precision and small dispersion. The MEA-
BP prediction model was applied to the analysis of the wax formation 60 and 90 days after pigging. The analysis results 
showed that the model can effectively guide pipe pigging and optimization. There was little sample data for the individual 
transmission and oil temperature steps because the model was based on actual production data modeling and analysis, which 
may have affected the accuracy and adaptability of the model.
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1 Introduction

During the operation of long-distance crude oil pipelines, 
the friction along the pipeline is affected by factors such as 
the pipe diameter, oil viscosity, and pipe flow. The change 
in the pipe diameter is mainly due to the waxing of the pipe 
wall, which leads to the reduction in the effective diam-
eter of the pipe and the loss of a greater amount of kinetic 
energy under the same flow rate (Yao et al. 2016). The vis-
cosity of the oil is related to the temperature and flow rate 
(shearing force) of the oil in the pipe, and it is difficult 
to calculate due to the nonlinearity of the oil temperature 

along the pipeline. In the actual production process, the vis-
cosity of the oil is unknown due to the nonlinear change of 
the oil temperature along the line, and the flow state inside 
the pipe varies. It is difficult to effectively evaluate the wax 
layer of the pipeline, and impossible to effectively guide 
the pipeline cleaning and internal inspection (Obanijesu 
and Omidiora 2008). We studied the relationship between 
the parameters, such as the oil temperature and flow rate 
in the pipeline and the frictional resistance along the line. 
We then developed an effective evaluation of the wax layer 
of the pipeline, which acts an important guarantee for the 
safe and optimized operation of a long-distance high-wax 
crude oil pipeline.

Researchers have mainly evaluated two aspects of the wax 
layer of pipelines. For example, researchers have studied 
the oil properties of pipeline transportation and predicted 
the friction between the thickness of the wax layer of the 
pipeline and the physical properties of the oil and its influ-
encing factors. Huang et al. (2008), Zhang et al. (2013) and 
Huang et al. (2011) used the F-test method to screen the 
main influencing factors of crude oil waxing. The universal 
waxing model of waxy crude oil was obtained using the 
experimental data from indoor loop waxing and the step-
wise linear regression method. The model was applied to the 
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actual production of pipelines, and the friction distribution 
along the line was predicted. The average error was 6.32%, 
and the maximum error was 20%. The prediction results 
provided a basis for on-site pigging operations. Others 
have studied the change of the pipeline flow state, divided 
the pipeline into different sections, applied different fric-
tion characteristic formulas based on the oil temperature, 
calculated the friction loss, and evaluated the wax layer of 
the pipeline. Dosunmu and Shah (2013), Chen and Zhang 
(2003) and Li et al. (2014) comprehensively considered the 
changes of the parameters like the density, specific heat 
capacity, viscosity, and total heat transfer coefficient based 
on the change of the flow regime of the pipeline. They used 
the average method to determine the trend of the wax thick-
ness variation and analyzed the influence of the wax layer 
on different operating conditions. In recent years, scholars 
have created pipeline wax prediction models based on data 
mining. Gholami et al. (2018) and Xie and Xing (2017) used 
support vector regression (SVR) to estimate wax deposition, 
developed a human ANN, and constructed a mixed model 
of SVR and ANN. The analysis and acquisition of a hybrid 
model optimized using the genetic algorithm (GA) can 
effectively improve the prediction accuracy of the model. 
However, the above theoretically based prediction models 
were studied using specific oils or pipelines, which affects 
the applicability of those prediction models. In addition, the 
prediction models established using data mining algorithms 
included input parameters, such as the crude oil viscosity, 
temperature gradient, and wax crystal solubility at the wall 
of the tube, which are difficult to obtain accurately in the 
actual production process, and thus affect the practical appli-
cation of the models. Long-distance pipelines are remotely 
regulated by the SCADA system, and the existing prediction 
models are difficult to integrate into a big data platform to 
achieve the long-term and effective monitoring of the wax 
layer of the pipe wall.

Artificial neural networks (ANNs) are widely used to 
solve engineering problems. Unlike the approaches used 
in traditional experimental research, ANNs can learn, con-
struct nonlinear and complex relational models, and explore 
the implicit relationship between data (Sotirov et al. 2010). 
The MLP neural network combined with a BP algorithm is 
one of the most successful applications of neural networks 
(Guo et al. 2016). The MLP–BP neural network algorithm 
is composed of two processes: the forward propagation of 
the learning process signal and the back-propagation of the 
error. The MLP–BP network therefore has a strong nonlinear 
mapping capability and flexible network structure, and it is 
widely used in pattern recognition (Wang et al. 2016; Yao 
et al. 2018).

Scholars have used MLP–BP and its corresponding deep-
learning methods to evaluate long-distance pipelines (Zhao 
and Jia 2019; Nguyen et al. 2006). Xie and Xing (2017) 

used the gray correlation method to analyze the 7 influenc-
ing factors affecting the wax deposition rate of pipelines and 
established a 7–100 back-propagation (BP) neural network 
prediction model. The accuracy of the tested model can be 
controlled at approximately 0.5%. However, in this method, 
the accuracy of the MLP–BP prediction model is related to 
the input dimensions. Different initial weights and thresh-
olds have a great influence on the prediction accuracy and 
generalization ability, and so its engineering application is 
greatly limited. Moreover, both the genetic (GA) and thought 
evolution (MEA) optimizations (Ding and Yu 2011; Yu and 
Xu 2014) have global optimization capabilities and can be 
applied to the optimization of algorithms, such as neural 
networks.

The GA is a global optimization probability search algo-
rithm that draws on the natural selection and evolution 
mechanism of the biological world (Yan et al. 2018). The 
object of GA processing is not the data, but the individual 
genes obtained by coding and solving complex problems, 
such as in nonlinear and multi-objective optimizations. GA 
processing can incorporate multiple data in parallel, which 
gives it a high processing efficiency and makes it easy to 
combine with other algorithm technologies.

The MEA was proposed by Sun (1998). The algorithm 
targeted the shortcomings of the GA, such as its slow con-
vergence rate and poor local search ability (Liu et al. 2013). 
The MEA follows the basic concepts of the “group” and 
“evolution” of the GA. The generation is divided into a 
few winning and temporary sub-groups, and the individual 
information and the competition process are recorded sepa-
rately. At the same time, the algorithm innovatively proposes 
“convergence” and “alienation.” The competition process 
in which individuals within a group become superior indi-
viduals, which is called a convergence operation through the 
information exchange in the local bulletin board, achieves 
rapid optimization (Cheng 2000; Sun et al. 2000). Compared 
with the GA, the crossover and mutation operators may pro-
duce different genes, and the convergence and dissimilation 
in the MEA can avoid this problem (Du 2018; Xu 2014).

We used actual production data from the SCADA sys-
tem in this study. We combined the friction data of a HY 
high waxy hot oil pipeline after pigging. The friction in 
this period was friction of the pipeline without a waxing, 
i.e., a standard pipeline. By analyzing the pipeline flow 
and oil temperature range in the standard pipeline period, 
the obtained sample data had the characteristics of a large 
sample size and full coverage of the working conditions. 
This information was then used as the dataset of the pipeline 
standard friction prediction model. The correlation between 
the standard friction of the pipeline and the oil temperature, 
ground temperature, and flow rate collected by the SCADA 
system was studied to determine the factors affecting the 
friction of the standard pipeline. The MLP–BP neural 



Petroleum Science 

1 3

network algorithm was used to establish the pipeline stand-
ard friction prediction model, and the GA and MEA opti-
mization algorithms were used to improve the convergence 
speed and prediction accuracy of the prediction model. The 
MEA was more effective than the GA optimization algo-
rithm. The prediction model accurately predicted the stand-
ard friction of the pipelines under different oil temperature 
and flow conditions. The prediction results were compared 
with the pressure drop data of the SCADA system to real-
ize the long-term monitoring and evaluation of the pipeline 
wax layer. This model can help guide pipeline pigging and 
optimize operation.

2  Modeling and methods

2.1  Modeling and optimization

The relationships between the flow parameters, pressure, 
ground temperature, and oil temperature of the hot oil pipe-
line are complex. A BP neural network can realize arbitrarily 
complex nonlinear mapping and is suitable for solving such 
complex problems. However, a BP neural network has some 
problems. For example, it can easily fall to a local minimum 
value, suffers from slow network convergence, and lacks a 
unified standard for network structure and parameter selec-
tion. Thus, we used the GA and MEA optimization algo-
rithms to improve the accuracy and efficiency of the model.

2.1.1  GA optimization

The hybrid (Hu 2016; Andrab et al. 2017; Hossain and 
Capi 2018) model used a GA to optimize the initial weight 
and threshold of the BP neural network to optimize the BP 
network elements, including the population initialization, 
fitness function, selection operation, cross-operation, and 
mutation operation. The GA also optimized the block dia-
gram, as shown in Fig. 1.

Through calculation and analysis, the training error accu-
racy and training time were comprehensively evaluated. The 
population size was 20; the evolutionary algebra 30 is the 
best combination. The fitness value F was set to be the sum 
of the predicted value obtained by the BP algorithm training 
and the absolute value of the expected value error as follows:

where m is the number of network output nodes, yk is the 
predicted output of the kth node, dk is the corresponding 
expected value, and a is the coefficient. Using the fitness 
proportional method, we set the size of the group to N and 
calculated the probability that the individual i was selected 

(1)F = a

(

m
∑

k=1

abs(yk − dk)

)

as pi. This value reflects the proportion of individuals in the 
whole, and the greater the value, the greater the probability 
of being selected, as shown in Eqs. (2) and (3), where the 
crossover probability was 0.9 and the mutation probability 
was 0.05:

2.1.2  MEA optimization

The MEA was used to optimize the initial weight and thresh-
old of the BP neural network (Irani and Nasimi 2011; Yu and 
Xu 2014). First, according to the topology of the BP neural 
network, the space was mapped to the coding space. One 
solution to each coding problem was solved. The reciprocal 
of the mean-square error of the training set was selected as 
the score function of each individual and the population. 
Using the MEA, after continuous iteration, the optimal indi-
vidual was output, and this output was used as the initial 
weight and threshold to train the BP neural network. The 
logic block diagram is shown in Fig. 2. After testing the 
different population sizes and evolutionary algebras of the 
MEA, the population size was determined to be 300 and the 
number of evolutions was 10.

2.1.3  Predictive model structure

We established the standard model of the thermal oil pipe-
line standard friction prediction through the optimization of 
the weights and thresholds of the MLP–BP neural network 
by the GA and MEA, combined with the characteristics of 
the MLP–BP neural network algorithm (Fig. 3). The data 
were downloaded from the SCADA system data every 5 min. 
The steps for this approach are as follows: preprocess the 
data, unify and improve the data format, eliminate the outli-
ers, improve the data quality, and use the data for screening 
and preprocessing for model training and verification. 

2.2  Pipe friction analysis

Table 1 provides the sample properties of the pipeline oil 
based on the samples taken from a HY hot oil pipeline in 
Changqing Oilfield, China, which mainly exports high-wax 
crude oil. Figure 4 and Table 2 show the HY crude oil pipe-
line oil viscosity curve and pipeline elevation mileage data, 
respectively. The pipeline length is 132.4 km, the diameter 
is 457 mm, the design pressure is 6.3 MPa (partial 10 MPa), 
and the designed transmission volume is 500 × 104 t/yr. The 
first station (#1), heat station (#2), heat station (#3), and 

(2)fi = k∕Fi

(3)pi =
fi

∑N

i=1
fi
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terminal station (#4) comprise the entire line. Because of 
the characteristics of mild oil and the oil properties along 
the pipeline, 4 different processes—a comprehensive heat 
treatment, a heat treatment, heating, and normal temperature 
transportation—were adopted. The oil temperature of the 
entire line is guaranteed to be higher than the pour point 
by 3 °C.

Figure 5 and Table 3 provide data on the trends in the unit 
friction (MPa/100 km) after the hot oil pipeline pigging. The 

data show that the frictional change of the #1 pipe section 
before and after pigging is small, and therefore it can be 
reasonably assumed that the frictional resistance of the pipe 
before and after pigging is constant. The maximum devia-
tions of the #2 and #3 pipe sections before pigging are 86% 
and 27%, respectively, and the average deviation and range 
of the two sections after the pigging are 8.6% (8.3%–8.9%) 
and 4.4% (4.3%–4.6%), respectively. The rate of change of 
the frictional resistance fluctuates little with the increasing 
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BP neural network
training error as fitness

value

Select operation

Cross operation

Whether the
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Weight and threshold
correction
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condition is met

Output predicted value

Yes
No

No Yes Mutation operation

Fig. 1  GA optimization logic diagram
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flow rate. The pigging operation removed the wax layer of 
the pipe wall, so the unit friction data of the time period can 
be used as the sample data of the standard friction predic-
tion model.

2.3  Influencing factor selection

Five sets of pigging data of a hot oil pipeline, gathered 
from 2016 to 2017, were analyzed. Table 4 summarizes the 

pipeline’s oil temperature data for 7 days after pigging by 
the SCADA system. In addition, the three pipe sections of 
the hot oil pipeline were analyzed for the oil temperature 
and flow sample data after five separate piggings, and the 
output steps are shown in Fig. 6. According to this data, 
the distribution of the pipeline flow after pigging is wide, 
but it is concentrated in the daily operational range of 
520–730 m3/h. The flow-rate range is in line with the actual 
operation of a hot oil pipeline. In this paper, the flow range 
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Fig. 2  MEA optimization logic diagram
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of 520–730 m3/h was taken as the research object, and the 
flow difference was 10 m3/h as a flow step. The sample size 
and oil temperature data box corresponding to each flow step 
are shown in Figs. 7 and 8.

Figure 7 shows that the flow rate of each flow step is large 
in the flow range 525–725 m3/h. The maximum sample size 
of the range 575–585 m3/h is 7748 sets, and the minimum 
sample size of the range 695–705 m3/h is 47. Except for the 
sample size with seven flow steps, the sample size of the 
other flow steps is large. Figure 8 shows that the oil tempera-
ture range corresponds to different flow steps. The sample 
interval at a low flow rate is 24.2–40.3 °C, and the high-
flow oil temperature range is small. Taking 715 m3/h as an 
example, we see that the temperature range is 24.8–32.8 °C. 
When the actual production runs at low flow, the heat loss 
of the entire line is large, and as a result, the oil-delivery 
system demands more heat. The high-flow oil is frictionally 
generated in the pipeline, the heat exchange time between 
the hot oil and the pipeline is short, and the oil temperature 
control of the entire line is low. Similarly, the corresponding 
range of the flow rate and upstream outbound oil temperature 
and downstream inbound oil temperature includes the oil 
temperature control range during its daily operation, so the 
selected sample dataset was taken from the flow step and the 
corresponding oil temperature data. The sample data set con-
forms to the oil temperature control of the actual production 
and operation, and it has the characteristics of a large sample 
size and full coverage of working conditions.

The actual operation of the pipeline is mostly in the turbu-
lent hydraulic smooth zone. The Binbinzong formula (Ding 

Influencing
factor

Flow

Outbound oil
temperature

Inlet oil temperature

Evaluation and
display of friction
prediction results

Model
generalization

application
evaluation

Model buildingData download and
processing

SCADA system data
(data density 5 min)

Data cleanup

Model data input set

Model evaluation

MLP-BP

GA optimized BP-
MLP neural

network

MEA optimizes MLP-
BP neural network

Fig. 3  Structural diagram of the standard friction prediction model of a hot oil pipeline

Table 1  HY hot oil pipeline oil properties

Solidifying point, °C Density, kg/m3 Wax content, % Colloidal asphaltene content, % Wax point, °C Abnormal point, °C

18 847.8 16.4 8.1 36.4 25
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101
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s·a
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M,ytisocsiV

Temperatures, °C

5 s-1

12 s-1

16 s-1

20 s-1

8 s-1

Fig. 4  Changqing crude oil viscosity-temperature curve

Table 2  HY crude oil pipeline elevation and mileage data

Station Elevation, m Mileage, km Station 
spacing, 
km

#1 First station 1373 0 –
#2 Hot station 1152 56.6 56.6
#3 Hot station 1115 96.05 39.45
#4 Terminal station 1118 132.1 36.05
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and Yu 2011) and the viscosity temperature formula of crude 
oil (Yu and Xu 2014) indicate that the viscosity of the oil is 
related to the pipeline flow and oil temperature; thus, it is not 
linear: where Q is the pipe flow, in  m3/s, υ is the crude oil vis-

cosity, in  m2/s, d is the inner diameter, in m, and L is the 
pipe length, in m. Based on the actual production data, we 

(4)hf = 0.0246
Q1.75

⋅ v0.25

d4.75
⋅ L
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Fig. 5  Contrasting trend diagram of the unit friction before and after pipe pigging

Table 3  Data comparison before and after pipe pigging

Date Working conditions #2 and #1 pipe segment devia-
tion, %

#3 and #1 pipe segment devia-
tion, %

Flow,  m3/h

3/25 Data before pigging 84 26 558
3/26 86 27 552
3/27 85 25 558
4/3 Data after pigging 8.9 − 4.3 492
4/4 8.3 − 4.6 485
4/5 8.6 − 4.3 586
4/6 8.5 − 4.4 587

Table 4  Datasets after pigging

Frequency Piping time, d Flow range,  m3/h Temperature range,  °C Amount of data

1 3 415–685 26.4–36.7 3231
2 4 602–705 24.8–29.5 1853
3 5 460–715 23.1–45.77 3446
4 4 514–666 24.53–49.84 2594
5 3 342–604 24.95–43.04 3166
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selected the pipeline flow, upstream outbound oil tempera-
ture, downstream-inlet oil temperature, and ground tempera-
ture along the line as the modeling parameters, and used 
the gray correlation method (Gholami et al. 2018) and cor-
relation formula analysis to determine the influence of the 
pipeline’s friction factors. The predicted results are shown 
in Table 5 and indicate that the flow rate of the SCADA 
system data, the upstream-outlet oil temperature, and the 
downstream-inlet oil temperature are the main influencing 
factors of the pipeline friction, whereas the ground temper-
ature correlation is small. These factors were used as the 
training dimensions for the BP neural network prediction.

2.4  Data preprocessing

We selected the production data of the SCADA system after 
the HY hot oil pipeline pigging and calculated the friction 
data of the pipeline to eliminate the abnormal value of the 
data jump caused by equipment failure to improve the data 
quality. We used the Z-score standardization method to pre-
process the sample data, that is, we normalized the original 
data set into a data set of a mean of 0 and variance of 1, 
thereby reducing the impact of outliers on the data, as shown 
in the following formula:

where μ and σ are the mean and variance of the original data 
set, respectively. The filtered and preprocessed data were 
used as the model sample and test data.

3  Results and discussion

3.1  Model comparison analysis

In the previous stage, a total of more than 40,000 pieces of 
production data of the SCADA system were completed; 70% 
was selected as the training set and 30% as the test set. The 
dataset was trained and tested using the MLP–BP, GA-BP, 
and MEA-BP predictive models. Each of the three models 
has five hidden layers and 200 iterations. The number of 
iterations and training time when each model reached the 
minimum training error are shown in Table 6.

(5)X = (x − �)∕�
0
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Table 6 and Fig. 9 show that the three friction predic-
tion models can predict the friction. The average error of 
the MLP–BP prediction model is 0.041 MPa, and the error 
fluctuation is large. The BP neural network itself has poor 
stability and leads to the prediction error which is large. 
Moreover, the average number of iterations of the MLP–BP 

model is 69.1 times, resulting in a training time of up to 
70.5 s. The average error of the GA-BP prediction model is 
better than that of the MLP–BP model. The average error, 
iteration number, and training time are 0.0336 MPa, 53.4 
times, and 54.5 s, respectively, and the stability is also supe-
rior to that of the MLP–BP model. Although the GA has the 
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Fig. 8  Corresponding oil temperature box type for different flow steps

Table 5  Correlation between influencing factors and pipe friction

Method Flow,  m3/h Outlet oil tempera-
ture, °C

Upstream ground tem-
perature, °C

Inlet oil temperature, 
°C

Downstream 
ground tempera-
ture, °C

Gray correlation 0.35 0.45 0.05 0.67 0.03
Correlation formula 0.43 0.54 0.06 0.76 0.03

Table 6  Comparison of test results of three models (MLP–BP, GA-BP, and MEA-BP)

Frequency BP GA-BP optimization MEA-BP optimization

Training 
error, 
MPa

Iteration 
(fre-
quency)

Training time, s Training 
error, 
MPa

Iteration 
(fre-
quency)

Training time, s Training 
error, 
MPa

Iteration 
(fre-
quency)

Training time, s

1 0.0105 46 53 0.0266 52 53 0.0132 45 41
2 0.0273 72 74 0.0351 57 57 0.0601 50 45
3 0.1047 56 63 0.0186 62 62 0.0191 57 50
4 0.0256 32 42 0.0106 61 60 0.0200 55 48
5 0.0011 82 85 0.0188 35 40 0.0176 31 28
6 0.0726 83 84 0.0072 47 47 0.0174 43 35
7 0.0413 69 73 0.0610 66 65 0.0153 59 53
8 0.0241 113 95 0.0245 62 63 0.0179 57 51
9 0.0601 93 84 0.0847 40 45 0.0279 36 33
10 0.0470 45 52 0.0440 52 53 0.0166 43 41
Average value 0.0413 69.1 70.5 0.0336 53.4 54.5 0.0225 47.6 42.5
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advantages of the global search and parallelism in practi-
cal applications, some shortcomings still exist, such as the 
coding mode, parameter uncertainty, and poor local search 
ability. In the process of adjusting the model parameters, we 
found that, upon increasing the population size and num-
ber of search iterations, the optimal initial weight threshold 
time is significantly longer, generally 5–20 min. The aver-
age error, iteration number, and training time of the MEA-
BP prediction model prediction results are 0.0225 MPa, 
47.6 times, and 42.5 s, respectively; these results are better 
than those of the other two models. The MEA uses the con-
vergence and dissimilation operations on the basis of the 
GA, which can ensure a highly efficient global search and 
improve the shortcomings of the local search ability of the 
GA. Moreover, the number of parameters to be adjusted in 
the MEA is small, and it is simpler and faster to use than the 

GA algorithm. The optimized network prediction accuracy 
and training speed were improved to some extent.

3.2  Model application and evaluation

Three kinds of algorithm models—MLP-BP, GA-BP, and 
MEA-MLP–BP—were used to predict the friction of three 
sections of a hot oil pipeline. We used 70% of the sample 
data as the training set and 30% of the sample data as the 
prediction set. The errors between the predicted and actual 
value are shown in Table 7. The trend of the two methods 
after optimization is compared with the BP neural network 
error (Fig. 10).

Table 7 shows that the prediction accuracy improved after 
the optimization with the MEA and GA. The average error 
of the three sections of the BP algorithm is 0.0076 MPa, the 
mean-square error is 0.137, the relative error is 2.56%, and 
the coefficient of determination is 0.9493. The model was 
optimized by the GA and MEA, and the three sections were 
optimized. The average error is 0.0041 and 0.0012 MPa, 
respectively, and the mean-square errors are 0.083 and 
0.067, respectively. The relative errors are 1.84% and 1.34%, 
respectively, and the correlation coefficient is 0.9769 and 
0.9914, respectively. The prediction accuracy of the model 
using the MEA optimization is better than that after the GA 
optimization; that is, the accurate prediction of the pipeline 
friction can be achieved using the MEA-optimized MLP–BP 
standard friction prediction model.

The MEA-BP model was employed to predict the stand-
ard friction of pipelines under different flow rates and oil 
temperatures in each pipe section. The actual frictional 
resistance after a period of pigging was compared with the 
standard frictional resistance under the same working con-
ditions to obtain the data of the frictional increase caused 
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Fig. 9  Comparison trend of different model prediction errors

Table 7  Error comparison of friction prediction values

Algorithm model Evaluation method Pipe section Average value

1 2 3

BP Average error, MPa 0.0071 0.0081 0.0076 0.0076
Mean variance of error 0.13 0.15 0.13 0.137
Relative error, % 2.32 2.85 2.52 2.56
Correlation coefficient 0.9532 0.9483 0.9465 0.9493

GA-BP optimization Average error, MPa 0.0043 0.0045 0.0036 0.0041
Mean variance of error 0.09 0.08 0.08 0.083
Relative error, % 1.86 1.91 1.75 1.84
Correlation coefficient 0.9738 0.9722 0.9846 0.9769

MEA-BP optimization Average error, MPa 0.0013 0.0014 0.001 0.0012
Mean variance of error 0.07 0.07 0.06 0.067
Relative error, % 1.36 1.38 1.28 1.34
Correlation coefficient 0.9938 0.9898 0.9906 0.9914
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by waxing on the pipe wall. Suppose the actual operating 
parameters of the HY hot oil pipeline’s #2 heat station to the 
#3 heat station after the 60th and 90th days after the pigging 
operations were completed. The standard friction predic-
tion and actual friction resistance data were compared. The 
results, shown in Table 8, predict that the standard friction 
should be 1.12 MPa on the 60th day after pigging, and the 
frictional resistance increased by 0.43 MPa and 38.4% com-
pared with the actual value of 1.55 MPa. On the 90th day 
after pigging, the frictional resistance increased by 0.87 MPa 
and 43.9%. These data, combined with the pigging cycle pre-
diction model (Irani and Nasimi 2011), can effectively guide 
the pipeline’s daily cleaning and hot-washing operations.

4  Conclusions

In this article, we analyzed the unit friction data after the 
pigging of a hot oil pipeline and developed a predictive 
model for the pipeline friction using the MLP–BP method; 

the model was optimized using the GA and MEA meth-
ods. The research results were subsequently applied to the 
standard friction prediction of three sections of a hot oil 
pipeline. The following conclusions were drawn:

1. We analyzed the friction data of a HY hot oil pipeline 
after pigging, and obtained the model of the training 
friction sample of a tube flow of 520–730 m3/h. In addi-
tion, we created the MLP–BP standard friction predic-
tion model. Due to the shortcomings of the BP neural 
network, the GA and MEA optimization algorithms 
were used to optimize the MLP–BP model.

2. The established prediction model was applied to the 
standard friction model training and testing of three 
sections of a hot oil pipeline. The prediction results had 
high precision and good stability. The prediction results 
were applied to the pigging model, which showed that 
they could effectively guide the pigging cycle determi-
nation.

3. Due to the limitations of the friction sample set, 
the research results were mainly in the flow range of 
520–730 m3/h, and the sample size of individual flow 
steps was small. In follow-up work, we will increase 
the flow step range and increase the flow according to 
the increase in the pigging conditions. The sample size 
within the steps further enhances the prediction accu-
racy of the model.

4. Because the prediction model is based on actual produc-
tion data modeling and analysis, there was little avail-
able sample data about the individual transmission and 
oil temperature steps. The accuracy and adaptability of 
the model will improve with larger amounts of data.

Acknowledgements This research was supported by National Natural 
Science Foundation of China (51904327, 51774311), Natural Science 
Foundation of Shandong Province of China (ZR2017MEE022), China 
Postdoctoral Science Foundation (2019TQ0354, 2019M662468), and 
Qingdao postdoctoral researchers applied research project.

1 2 3 4 5 6 7 8 9 10

0

0.02

0.04

0.06

0.08

0.10

0.12

 Frequency

a
P

M ,rorre gniniarT
MLP-BP
GA-BP
MEA-BP

Fig. 10  Comparison of the error between the MLP-BP, GA-BP, and 
MEA-BP friction prediction models

Table 8  Actual parameters and calculation results of the 2# pipe section of HY pipeline

Days Friction, MPa Flow,  m3/h Outbound oil 
temperature, °C

Inlet oil tem-
perature, °C

Outbound ground 
temperature, °C

Inlet ground 
temperature, 
°C

Actual value t = 60 1.55 485 28.6 25.2 21.6 19.11
Standard value t = 1 1.12
Friction increase value – 0.43 – – – – –
Actual value t = 90 2.85 740 29.75 27.5 19.59 19.07
standard value t = 1 1.98
Friction increase value – 0.87 – – – – –
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need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http://creat iveco mmons .org/licen ses/by/4.0/.

References

Andrab SG, Heekmat A, Yusop ZB. A review: evolutionary computa-
tions (GA and PSO) in geotechnical engineering. Comput Water 
Energy Environ Eng. 2017;2:154–79. https ://doi.org/10.4236/
cweee .2017.62012 .

Chen J, Zhang JJ. A method of calculating the pressure-drop of power-
law fluid by apparent viscosity and its application. J Xi’an Pet Inst. 
2003;18(6):58–62 (in Chinese).

Cheng MQ. Gray image segmentation on MEBML frame. Intell 
Control Autom. 2000;1:135–7. https ://doi.org/10.1109/wcica 
.2000.85993 3.

Ding S, Yu J. An optimizing BP neural network algorithm based on 
genetic algorithm. Artif Intell Rev. 2011;36(2):153–62. https ://
doi.org/10.1007/s1046 2-011-9208-z.

Dosunmu IT, Shah SN. Evaluation of friction factor correlations and 
equivalent diameter definitions for pipe and annular flow of non-
Newtonian fluids. J Pet Sci Eng. 2013;109:80–6. https ://doi.
org/10.1016/j.petro l.2013.02.007.

Du YL. Application and analysis of forecasting stock price index based 
on combination of ARIMA model and BP neural network. In: 
2018 Chinese control and decision conference (CCDC). https ://
doi.org/10.1109/ccdc.2018.84076 11.

Gholami A, Ansari HR, Ahmadi S. Combining of intelligent models 
through committee machine for estimation of wax deposition. 
J Chin Chem Soc. 2018;65(8):925–31. https ://doi.org/10.1002/
jccs.20170 0329.

Guo Y, Liu Y, Oerlemans A, Lao S, Wu S, Lew MS. Deep learning for 
visual understanding: a review. Neurocomputing. 2016;187:27–
48. https ://doi.org/10.1016/j.neuco m.2015.09.116.

Hossain D, Capi G. Multiobjective evolution of deep learning param-
eters for robot manipulator object recognition and grasping. Adv 
Robot. 2018;32(20):1090–101. https ://doi.org/10.1080/01691 
864.2018.15296 20.

Hu ZP. Research on application of BP neural network based on genetic 
algorithm in multi-objective optimization. In: 2016 8th interna-
tional conference on information technology in medicine and edu-
cation (ITME). https ://doi.org/10.1109/itme.2016.0159.

Huang QY, Li YX, Zhang JJ. Unified wax deposition model. Acta Pet 
Sin. 2008;29(3):459–62 (in Chinese).

Huang ZY, Lu YD, Hoffmann R, Amundsen L, Fogler HS. The effect 
of operating temperatures on wax deposition. Energy Fuels. 
2011;25(11):5180–8. https ://doi.org/10.1021/ef201 048w.

Irani R, Nasimi R. Evolving neural network using real coded genetic 
algorithm for permeability estimation of the reservoir. Expert 
Syst Appl. 2011;38(8):9862–6. https ://doi.org/10.1016/j.
eswa.2011.02.046.

Li XY, Liu DJ, Ma W, Wang F, Gao Z. Effect of wax deposit area in 
waxy hot oil pipeline on whole running conditions. Oil Gas Stor-
age Transp. 2014;33(1):46–9 (in Chinese).

Liu S, You XM, Wu Z. A cultural immune quantum evolutionary algo-
rithm and its application. J Comput. 2013;8(1):163–9. https ://doi.
org/10.4304/jcp.8.1.163-169.

Nguyen ST, Nguyen HT, Taylor PB, Middleton J. Improved head direc-
tion command classification using an optimised Bayesian neural 
network. In: International conference of the IEEE engineering in 
medicine and biology society. IEEE; 2006. pp. 5679–82. https ://
doi.org/10.1109/iembs .2006.43987 45.

Obanijesu EO, Omidiora EO. Artificial neural network’s predic-
tion of wax deposition potential of nigerian crude oil for pipe-
line safety. Pet Sci Technol. 2008;26(16):1977–91. https ://doi.
org/10.1080/10916 46070 13994 85.

Sotirov S, Atanassov K, Krawczak M. Generalized net model for 
parallel optimization of multilayer perceptron with momentum 
backpropagation algorithm. In: 2010 5th IEEE international 
conference intelligent systems. 2010. https ://doi.org/10.1109/
is.2010.55483 61.

Sun CY.Mind-evolution-based machine learning: framework and the 
implementation of optimization. In: Proceedings of IEEE inter-
national conference on intelligent engineering systems. 1998. pp. 
355–9. https ://doi.org/10.1109/wcica .2000.85992 7.

Sun CY, Sun Y, Sun Y. Economic prediction system using double mod-
els. Syst Man Cybern. 2000;3:1978–83. https ://doi.org/10.1109/
icsmc .2000.88640 4.

Wang YX, Liu MQ, Bao ZJ. Deep learning neural network for power 
system fault diagnosis. In: 2016 35th Chinese control conference 
(CCC). 2016. https ://doi.org/10.1109/chicc .2016.75544 08.

Xie Y, Xing Y. A prediction method for the wax deposition rate 
based on a radial basis function neural network. Petroleum. 
2017;3(2):237–41. https ://doi.org/10.1016/j.petlm .2016.08.003.

Xu GH. Application of RBF neural network in dam deformation pre-
diction. Appl Mech Mater. 2014;675–677:261–4. https ://doi.
org/10.4028/www.scien tific .net/amm.675-677.261.

Yan Y, Liu Y, Bao W, Lin H, Peng L, Qing X. A short term load 
forecasting by considering heat island effect factor based on 
IGA-ELM model. In: China international conference on electric-
ity distribution (CICED). IEEE; 2018. pp. 2477–81. https ://doi.
org/10.1109/ciced .2018.85925 77.

Yao B, Li C, Yang F, Sjöblom J, Zhang Y, Norrman J, Paso K, Xiao Z. 
Organically modified nano-clay facilitates pour point depressing 
activity of polyoctadecylacrylate. Fuel. 2016;166:96–105. https 
://doi.org/10.1016/j.fuel.2015.10.114.

Yao B, Li C, Yang F, Zhang X, Mu Z, Sun G, Zhao Y. Ethylene-Vinyl 
acetate copolymer and resin-stabilized asphaltenes synergisti-
cally improve the flow behavior of model waxy oils. 1. Effect 
of wax content and the synergistic mechanism. Energy Fuels. 
2018;32(2):1567–78. https ://doi.org/10.1021/acs.energ yfuel 
s.7b036 57.

Yu F, Xu XZ. A short-term load forecasting model of natural gas based 
on optimized genetic algorithm and improved BP neural network. 
Appl Energy. 2014;134(134):102–13. https ://doi.org/10.1016/j.
apene rgy.2014.07.104.

Zhang JH, Su WK, Wang XX. Determination of pigging circle for 
heated waxy oil pipeline under different flow states. Adv Mat 
Res. 2013;803:430–3. https ://doi.org/10.4028/www.scien tific .net/
amr.803.430.

Zhao XL, Jia MP. A new local-global deep neural network and its appli-
cation in rotating machinery fault diagnosis. Neurocomputing. 
2019;366:215–33. https ://doi.org/10.1016/j.neuco m.2019.08.010.

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.4236/cweee.2017.62012
https://doi.org/10.4236/cweee.2017.62012
https://doi.org/10.1109/wcica.2000.859933
https://doi.org/10.1109/wcica.2000.859933
https://doi.org/10.1007/s10462-011-9208-z
https://doi.org/10.1007/s10462-011-9208-z
https://doi.org/10.1016/j.petrol.2013.02.007
https://doi.org/10.1016/j.petrol.2013.02.007
https://doi.org/10.1109/ccdc.2018.8407611
https://doi.org/10.1109/ccdc.2018.8407611
https://doi.org/10.1002/jccs.201700329
https://doi.org/10.1002/jccs.201700329
https://doi.org/10.1016/j.neucom.2015.09.116
https://doi.org/10.1080/01691864.2018.1529620
https://doi.org/10.1080/01691864.2018.1529620
https://doi.org/10.1109/itme.2016.0159
https://doi.org/10.1021/ef201048w
https://doi.org/10.1016/j.eswa.2011.02.046
https://doi.org/10.1016/j.eswa.2011.02.046
https://doi.org/10.4304/jcp.8.1.163-169
https://doi.org/10.4304/jcp.8.1.163-169
https://doi.org/10.1109/iembs.2006.4398745
https://doi.org/10.1109/iembs.2006.4398745
https://doi.org/10.1080/10916460701399485
https://doi.org/10.1080/10916460701399485
https://doi.org/10.1109/is.2010.5548361
https://doi.org/10.1109/is.2010.5548361
https://doi.org/10.1109/wcica.2000.859927
https://doi.org/10.1109/icsmc.2000.886404
https://doi.org/10.1109/icsmc.2000.886404
https://doi.org/10.1109/chicc.2016.7554408
https://doi.org/10.1016/j.petlm.2016.08.003
https://doi.org/10.4028/www.scientific.net/amm.675-677.261
https://doi.org/10.4028/www.scientific.net/amm.675-677.261
https://doi.org/10.1109/ciced.2018.8592577
https://doi.org/10.1109/ciced.2018.8592577
https://doi.org/10.1016/j.fuel.2015.10.114
https://doi.org/10.1016/j.fuel.2015.10.114
https://doi.org/10.1021/acs.energyfuels.7b03657
https://doi.org/10.1021/acs.energyfuels.7b03657
https://doi.org/10.1016/j.apenergy.2014.07.104
https://doi.org/10.1016/j.apenergy.2014.07.104
https://doi.org/10.4028/www.scientific.net/amr.803.430
https://doi.org/10.4028/www.scientific.net/amr.803.430
https://doi.org/10.1016/j.neucom.2019.08.010

	Standard friction prediction model of long-distance hot oil pipelines
	Abstract
	1 Introduction
	2 Modeling and methods
	2.1 Modeling and optimization
	2.1.1 GA optimization
	2.1.2 MEA optimization
	2.1.3 Predictive model structure

	2.2 Pipe friction analysis
	2.3 Influencing factor selection
	2.4 Data preprocessing

	3 Results and discussion
	3.1 Model comparison analysis
	3.2 Model application and evaluation

	4 Conclusions
	Acknowledgements 
	References




