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Abstract
Smart water flooding, as a popular method to change the wettability of carbonate rocks, is one of the interesting and chal-
lenging issues in reservoir engineering. In addition, the recent studies show that nanoparticles have a great potential for 
application in EOR processes. However, little research has been conducted on the use of smart water with nanoparticles in 
enhanced oil recovery. In this study, stability, contact angle and IFT measurements and multi-step core flooding tests were 
designed to investigate the effect of the ionic composition of smart water containing  SO4

2− and  Ca2+ ions in the presence of 
nanofluid on EOR processes. The amine/organosiloxane@Al2O3/SiO2 (AOAS) nanocomposite previously synthesized using 
co-precipitation-hydrothermal method has been used here. However, for the first time the application of this nanocomposite 
along with smart water has been studied in this research. Results show that by increasing the concentrations of calcium and 
sulfate ions in smart water, oil recovery is improved by 9% and 10%, respectively, compared to seawater. In addition, the 
use of smart water and nanofluids simultaneously is very effective on increasing oil recovery. Finally, the best performance 
was observed in smart water containing two times of sulfate ions concentration (SW2S) with nanofluids, showing increased 
efficiency of about 7.5%.
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1 Introduction

On average, two-thirds of the oil remains in oil reservoirs 
after the primary and secondary production (injection of 
water). Despite the constant supply of crude oil, the demand 
for it is increasing due to the industrial development and 
the global population growth. These factors have led to an 

increase in oil prices and the need to define and implement 
enhanced oil recovery projects (Kokal and Al-Kaabi 2010; 
Stosur et al. 2003). There are different EOR methods such as 
chemical, thermal and microbial processes. Chemical flood-
ing such as polymer flooding, injection of alkaline or simi-
lar compounds is limited due to the high cost of injectable 
materials, their corrosion potential and the loss of injectable 
materials during movement in the reservoir (Elyaderani and 
Jafari 2019; Engeset 2012; Yousefvand and Jafari 2018).

Due to their small size (1–100 nm), nanoparticles can 
enter into the pores without sticking to them. This will 
reduce the amount of injectable matter during flood pro-
cesses. Nanoparticles are more environmentally friendly 
compared to other materials used in chemical flooding 
techniques. However, a large amount of energy is required 
to transform and eliminate them, which makes it easier 
to use nanoparticles in deep and high-pressure reser-
voirs. Nanofluids increase the efficiency of oil reservoirs 
through various mechanisms such as reduction of contact 
angle, which changes the wettability from oil wet to water 
wet. The ability of water flooding in EOR processes is 
improved by changing the wettability properties of the 
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rock (Elyaderani et al. 2019; Engeset 2012; Gharibshahi 
et al. 2015; Kong and Ohadi 2010; Qiu 2010).

In an experimental attempt by Nazari Moghaddam et al. 
(2015), the impact of various nanofluids [zirconium diox-
ide  (ZrO2), calcium carbonate  (CaCO3), titanium dioxide 
 (TiO2), silicon dioxide  (SiO2), magnesium oxide (MgO), 
aluminum oxide  (Al2O3), cerium oxide  (CeO2) and carbon 
nanotube (CNT)] on the wettability of carbonate rocks was 
studied (Nazari Moghaddam et al. 2015). Nwidee et al. 
(2016) studied the potential of zirconium oxide nanoparti-
cles in limestone formations for EOR (Nwidee et al. 2016). 
Many researchers have attempted to investigate the abil-
ity of nanoparticles to change the wettability of porous 
media (Al-Anssari et al. 2016; Karimi et al. 2012; Nazari 
Moghaddam et al. 2015; Roustaei and Bagherzadeh 2015).

According to the reports, injection of different nano-
particles into the porous medium causes changes in wet-
tability and sometimes interfacial tension (IFT). However, 
in some cases, there is no change in IFT (Fan and Striolo 
2012). In general, the ability of nanofluids to be adsorbed 
at the contact surface between nanoparticles and rocks 
and the oil–water interface changes the wettability and 
interfacial tension (Binks and Whitby 2004). In fact, the 
amount of adsorption determines the ability of these two 
parameters. Therefore, to adsorb nanoparticles on these 
interfaces, their surface activity can be improved by modi-
fying the surface of the nanoparticles. For instance, it has 
been shown that the ether groups in the chain of silanic 
compounds are used to cause surface water wetting, as 
reported by Yan et al. (2015) (Yan et al. 2015). Behzadi 
and Mohammadi (2016) investigated the surface modifica-
tion of nanosilica by measuring the contact angle and IFT 
for EOR process (Behzadi and Mohammadi 2016). There-
fore, there have been extensive studies of investigation of 
surface modification of nanoparticles in different fields 
(Lan et al. 2007; Lei et al. 2016; Li et al. 2013; Metin et al. 
2012; Sun et al. 2005).

On the other hand, recent studies indicate that water flood-
ing can be improved by considerable lowering of the salinity 
and ionic exchange of injection brine. Yousef et al. (2011) 
reviewed the effect of salinity changes on oil recovery factor in 
carbonate rocks. They found that the change in seawater salin-
ity would have a significant potential for increasing oil produc-
tion. In addition, by diluting the seawater, the wettability of 
the rock will go further toward water wetness (Yousef et al. 
2011). By performing a series of experimental works, Awolayo 
et al. (2016) examined the effect of sulfate ion in smart water 
in carbonate reservoir on enhanced oil recovery. They found 
that by increasing the concentration of sulfate ion in injectable 
brine, the oil recovery factor increases significantly (Awolayo 
et al. 2016). Many works were subsequently performed, dem-
onstrating that smart water can play a remarkable role in EOR 

processes (Pierre et al. 1990; Puntervold et al. 2015; Rashid 
et al. 2015; Zhang and Austad 2006; Zhang et al. 2006).

So far, there has been some discussion on water chem-
istry of dispersion fluid of nanoparticle. Hendraningrat and 
Torsæter (2016) examined the effect of salinity and ionic com-
position of injected brine on the performance of nanoparticles 
in enhanced oil recovery by measuring the contact angle and 
core flooding for sandstone rock. They found that the presence 
of divalent ions in nanofluid solutions, compared to monova-
lent ions, could increase the oil recovery factor of sandstone 
rocks (Hendraningrat and Torsæter 2016). Similar results have 
been reported by other researchers in this field (Kiani et al. 
2016; Sulaiman et al. 2015).

The objective of this research was to apply the synthetic 
functionalized alumina/silica nanocomposite by siloxane and 
amine agent in EOR processes. In addition, to investigate 
the effect of water chemistry like ionic exchange  (Ca2+ and 
 SO4

2−) of brine on oil recovery factor, the combined method 
of nanofluid and smart water was utilized. In this study, differ-
ent concentrations of sulfate and calcium were used (0 and 2 
times). Therefore, the wettability alteration was examined in 
carbonate rock sections by contact angle measurement. Finally, 
oil recovery factor was investigated by flooding into carbonate 
core plug.

2  Experimental section

2.1  Materials

All the materials used in the synthesis of brines and func-
tionalized nanocomposites were purchased from Merck and 
Aldrich Chemical Companies. Table 1 illustrates the properties 
of crude oil. In addition, the carbonate rock was obtained from 
a reservoir, southwest Iran (Gachsaran). Four core samples 
were used for flooding experiments. The properties of core 
plugs are shown in Table 2.

2.2  Synthesis and characterization of amine/
organosiloxane@Al2O3/SiO2 (AOAS) 
nanocomposite

Silica mineral is the most abundant material on the planet’s 
surface and can be produced and used at a low cost. Also, 
the surface of this material is modifiable and can be applied 
for various purposes by making it functional. In this research, 
silica and alumina nanoparticles have been applied which are 
widely applied in EOR processes and completely matched 

Table 1  Crude oil properties

Asphaltene content, % Density, g/cm3 Viscosity, cP API gravity

2.9 0.899 14.52 25
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with this environment. This functionalized nanocomposite was 
synthesized in the previous Authors’ work. In this research, the 
process was briefly explained as follows: (1) Preparation of 
alumina/silica nanocomposite: 20 g  AlCl3 was mixed with the 
solution of tetraethyl orthosilicate (30 g), ethanol and distilled 
water and then heated. Moreover, a cooled alkaline solution 
of potassium hydroxide was gently poured into the previous 
solution. Afterward, the final mixture was cold refluxed for 
half an hour and was refluxed for 3 h at 70 °C. Finally, the 
mixture was washed and dried. (2) A solution of hexane, 
dimethylformamide and toluene was added to the mixture of 
polydimethylsiloxane (PDMS) and alumina/silica. Then, the 
resulting solution was refluxed and heated. Moreover, 2 g of 
hexamethylenetetramine in distilled water was poured into the 
solution of 20 mL octylamine and ethanol. Finally, the product 
was synthesized after refluxing, washing and heating. Fourier 
transform infrared (FTIP) spectroscopy analyses, dynamic 
light scattering (DLS) and zeta potential measurements were 
carried out. In this research, a Malvern zeta-sizer nano instru-
ment was applied for nanoparticles in the aqueous phase.

2.3  Preparation of solutions

Some synthetic seawater was designed to evaluate the 
impact of calcium and sulfate ions in different concentra-
tions (0 and 2 times). In order to compare the effect of ions 
on oil recovery factor, brines were considered to have the 
same ionic strength as that of the seawater (Persian Gulf). 
Sodium chloride (NaCl) was also used to adjust the ionic 
strength. Table 3 shows the molar compositions of various 

brines used in contact angle and core flooding tests (SWXCa 
where X shows X times the  Ca2+ concentration of seawater). 
According to the observations in Sect. 3.2, the nanofluid is 
stable only in the concentration of 50 ppm in specified syn-
thetic seawater. As a result, 50 ppm of nanofluid is added 
to the brines. Therefore, in this research, smart water and 
smart water with nanofluid were prepared as the main test 
solutions.

2.4  Stability analysis

In this research, two quantitative and qualitative methods 
have been used to study the stability of nanofluid with smart 
water solutions. In the qualitative studies, after preparing the 
desired solution, it was placed in a transparent and closed 
small container for a few hours to several days away from 
light and heat and photographs were taken at various time 
intervals. If no significant deposition and color variation 
were observed, the solution was considered stable in quali-
tative terms. An OPTIZEN 3220UV UV–visible spectro-
photometer and a Malvern zeta-sizer nano instrument were 
used to ensure the stability of the nanofluids and quantitative 
investigations. In fact, the amount of light absorption pass-
ing through the solutions was measured at different times 
by the UV–visible spectrophotometer. In other words, the 
absorbance of light by distilled water at all wavelengths is 
zero. Therefore, the amount of light absorption decreases 
with deposition, approaching that of distilled water. All 
measurements were conducted at the maximum absorbance 
indicated by the apparatus for each solution (200 nm). In 

Table 2  Properties of core plugs

Plug No. Length, cm Diameter, cm Pore volume, mL Porosity, % Permeability, mD Initial water 
saturation, %

1 8.6 3.8 8.36 8.57 0.57 35.8
2 7.2 3.8 8.36 10.24 0.59 33.4
3 8.7 3.8 9.31 9.44 0.53 31.2
4 6.3 3.8 8.2 11.5 0.54 30.3

Table 3  Molar composition of synthetic seawater

Brine Concentration, mol/L Total dissolved solid, 
g/L

Ionic 
strength, 
mol/LNa+ Mg2+ Ca2+ Cl− SO4

2−

Seawater 0.460 0.045 0.013 0.530 0.024 33.20 0.659
SW0Ca 0.499 0.045 0 0.543 0.024 34.04 0.659
SW2Ca 0.421 0.045 0.026 0.517 0.024 32.37 0.659
SW0S 0.484 0.045 0.013 0.602 0 34.01 0.659
SW2S 0.436 0.045 0.013 0.458 0.048 32.40 0.659
Formation water 3.649 4.041 0.010 0.194 0.012 236.226 10.049
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addition, the nanoparticle size distribution over time was 
measured by the DLS method to examine the tendency of 
nanoparticles to sediment.

2.5  Contact angle and IFT measurements

Interfacial tension of oil/water was measured by the pendant 
drop method in the presence of AOAS nanocomposites and 
smart water. The average value of three different measure-
ments for each sample was used to obtain reliable results 
from these measurements. Contact angle measurement was 
used to determine the rock wettability in brine (smart water) 
and brine with nanofluid solutions. At first, polished car-
bonate slices were cut in a coin shape with a thickness of 
2 mm. The plates were subjected to Soxhlet extraction with 
methanol for 24 h to remove any salt, followed by washing 
with toluene for 7 days, washing with distilled water and 
drying in an oven at 75 °C for a day. The plates were then 
aged in crude oil for 2 weeks and placed vertically in the 
prepared solutions for 24 h in the end (Karimi et al. 2012; 
Rashid et al. 2015; Roustaei et al. 2012). For measuring 
the contact angle, a drop of oil was gently injected into the 
cell containing the aqueous phase. The oil droplet was then 
photographed by a camera attached to the rock surface, and 
the picture was analyzed with the accuracy of ∓ 1° using the 
system software. The schematic of this apparatus is shown 
in Fig. 1.

2.6  Core flooding experiments

The coreflood apparatus includes two high-pressure cylin-
ders to transport the fluid, such as formation water, oil and 
nanofluid with smart water. Figure 2 shows the different 
parts of this system. Each core plug was cleaned the same 

way as plates which indicated in Sect. 2.5. After placing the 
sample in the core holder and subjecting it to vacuum, the 
main valve inlet was opened and connected to the cylinders 
containing the formation water until the sample was com-
pletely saturated. The permeability was measured by inject-
ing brine at different rates and measuring the pressure drop 
between the two ends of the core sample. The weight of the 
wet core sample was then determined to measure its poros-
ity. In the next step, 5 pore volumes of the oil were injected 
into the saturated core. By measuring the initial volume of 
the water in the core and reducing the amount of outlet water 
by the injection of oil, the initial water saturation was calcu-
lated (Swi). The cores were placed in oil for 4 weeks at 75 °C 
and atmospheric pressure in order to carry out the aging 
process and draw the core to the wettability conditions in 
the reservoir. Afterward, seawater was injected, followed by 
the secondary water flooding, until no oil was removed from 
the core. Smart water and smart water with nanofluid were 
subsequently injected. Hence, in each experiment, three 
stages of flooding tests were performed. Furthermore, the 
ions were evaluated by calculating the ratio of the output 
concentration to the input of active ions in solutions using 
ion chromatography.

3  Results and discussion

3.1  Characterization of amine/organosiloxane@
Al2O3/SiO2 (AOAS) nanocomposite

The Fourier transform infrared (FTIR) spectrum of function-
alized  Al2O3/SiO2 nanocomposite is shown in Fig. 3. It dem-
onstrates the functional groups of synthesized nanoparticles. 
Results illustrate that the absorption peak at 3400 cm−1 is 
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Fig. 1  Schematic of contact angle measurement apparatus



Petroleum Science 

1 3

attributed to the tensile vibration of –OH related to the water 
molecules on the nanoparticle surface (Metin et al. 2011). 
Also, the peak at 1100 cm−1 is observed in the FTIR spec-
trum of silica structure (Si–O). As observed in Fig. 3, the 
peak associated with the Al–O bond occurs in the range of 
400–900 cm−1 (Damayanti 2010; Gao et al. 2017; Tokoro 
et al. 2014). In addition, the N–C bonds appear in the range 
of 1080–1360 cm−1 which is related to the hexamethyl-
enetetramine. The peak at 1260 and 800 cm−1 correspond-
ing to the Si–CH3 and Si–OH bonds are presented in the 
FTIR spectrum of PDMS (Johnson et al. 2013). The size of 
particles and particle distribution of functionalized nano-
composite is illustrated by DLS measurements. Figure 4 

demonstrates that the dominant size of amine/organosilox-
ane@Al2O3/SiO2 is 91.28 nm. Furthermore, the zeta poten-
tial of this nanocomposite is − 26 mV. This indicates that 
the net surface charge of AOAS nanocomposite is negative 
which means the nanoparticle has superficial groups with 
negative charges.

3.2  Stability and nanofluid concentration 
determination

In this section, the qualitative stability of nanofluids at vari-
ous concentrations (2000, 1000, 500, 250, 100 and 50 ppm) 
along with the specified brines was discussed. Among syn-
thesized brines, SW2S and SW2Ca caused more instability 
in solutions due to more concentration of  SO4

2– and  Ca2+. 
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Fig. 2  Schematic of core flooding apparatus
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The results show that the nanofluids were unstable in all 
concentrations and quickly formed white sediment, except 
at concentrations of 100 and 50 ppm. Figure S1 demon-
strates the sediment formation of these samples (nanofluid 
with SW2S). As shown in Figure S2, the nanofluid with a 
concentration of 100 ppm with synthetic seawater formed 
little precipitate after 24 h while at 50 ppm concentration, it 
remained stable over 3 days without formation of any sedi-
ment. In addition, the stability of nanofluid (at 50 ppm) was 
checked over a week and the images showed no change, 
which means that the nanofluid was stable at this concentra-
tion. As shown in Figure S3, immediately after the prepa-
ration of these solutions (different concentrations of nano-
fluids with SW2Ca), the nanoparticle aggregation occurs. 
Figures S1, S2 and S3 are presented in electronic supple-
mentary information. With the addition of calcium ions, they 
are attracted to the negatively charged nanoparticles, reduc-
ing their negative surface charge. In other words, divalent 
cations like  Ca2+ can be effective in neutralizing negatively 
charged nanoparticles. Hence, van der Waals gravity forces 
between particles become greater than electrostatic repulsive 
ones causing agglomeration and instability of the solutions. 
Figure 5 illustrates the schematic of this mechanism.

Several DLS measurements were performed to inves-
tigate the quantitative stability of nanoparticles in differ-
ent brines. The average particle sizes of following solu-
tions (100-SW0Ca, 100-SW2Ca, 100-SW0S, 100-SW2S, 
50-SW0Ca, 50-SW2Ca, 50-SW0S, 50-SW2S, 100 and 50 
show the concentration of nanofluid in ppm) were meas-
ured at one, three and 7 days (24, 72, 168 h) without shak-
ing them to investigate the particle size changes due to 
natural precipitation. Generally, in unstable solutions, the 

diameter of the nanoparticles decreased due to the depo-
sition of larger particles from the first to the last day of 
measurement. Table 4 demonstrates the average diameter 
of the nanoparticles in the solutions listed. The average 
diameter of particles in solutions containing 100 ppm of 
nanofluid was only measurable in the first 2 days because 
on the seventh day these solutions completely precipi-
tated and the concentration of particles in suspension was 
reduced to a level that was not detectable. Thus, the mean 
diameter of particles decreased over time and only smaller 
particles stayed in the solution while larger ones precipi-
tated at the bottom of the container. According to Table 4, 
solutions containing 50 ppm of nanofluid remained quite 
stable. In other word, the average size obtained from DLS 
at day 1 and day 7 was almost similar. Figure 6 illustrates 
the particle size distribution for the 100-SW2S solution at 
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Fig. 5  The schematic of nanoparticle aggregation mechanism by adding  Ca2+

Table 4  The average diameters of nanoparticles at different times 
from their preparation by DLS measurements

Note: 100 and 50 show the concentration of nanofluid in ppm

Solution Diameter at different standing times, nm

24 h 72 h 168 h

100-SW0Ca 85 60 –
100-SW2Ca 80 53 –
100-SW0S 87 60 –
100-SW2S 78 50 –
50-SW0Ca 91 90 90
50-SW2Ca 93 93 91
50-SW0S 91 90 90
50-SW2S 94 93 93
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1 h, day 1 (24 h), day 3 (72 h). In addition, the quantitative 
stability of the solutions shows that the light absorption 
amount of nanofluids is significantly reduced at 100 ppm 
with specified synthetic seawater. As a result, these solu-
tions are rapidly unstable, confirming the qualitative 
results. Figure 7a demonstrates these observations. How-
ever, as shown in Fig. 7b, the change in the light absorp-
tion amount of nanofluids at a concentration of 50 ppm 
is not very tangible and the solution is stable. Therefore, 
in order to ensure that the injected fluid is stable during 
the core flooding time period, 50 ppm of the nanofluid 
was selected. The stability of a solution is justified by the 
use of DLVO theory. In fact, by increasing the electrolyte 
concentration, the repulsion forces between the particles 
are reduced and the van der Waals gravity forces increase. 
This leads to the absorption of nanoparticles into each 
other and eventually the formation of a sediment. There-
fore, interactions of the particles and these forces increase 
in the presence of brines and high concentrations of nano-
fluid and the solution becomes more unstable.

3.3  Contact angle and IFT measurements

This section discusses how the carbonate rock wettability 
changes in the presence of the specified synthetic seawater 
and these brines with 50 ppm nanofluid. Figure 8 shows 
the results of these measurements in brines and brines with 
nanofluid solutions, respectively, after 72 h. As observed in 
Fig. 8a, the addition of calcium ions to the brine solution 
(SW0Ca, SW2Ca) increases the ability to change the wet-
tability. In other words, in the absence of calcium ion, sulfate 
ion as the ion pair of  Ca2+ cannot change the wettability of 
the media alone, and thus, the improvement of oil recovery 
factor is not significant. As presented in Fig. 8b, the contact 
angle decreases dramatically by the addition of nanofluid 
to saltwater solutions, which is a sign of the high strength 
of the nanofluid to modify the wettability and change the 
surface toward water wetness. These observations can be 
related to the fact that the nanofluids with negative surface 
charge rapidly move toward the positive surface of carbon-
ates and reduce their positive charge. Due to the reduction of 
repulsive electrostatic forces, the concentration of  Ca2+ ions 
increases near the surface. Thus, these ions adhere to the 
negatively charged carboxyl groups of crude oil and sepa-
rate them from the surface. In addition, Fig. 8a shows the 
effect of sulfate ion on the wettability alteration of oil wet 
surfaces. As observed in Fig. 8, increasing the concentra-
tion of sulfate ions reduces the contact angle significantly. 
Figure 8b demonstrates that the addition of nanofluid to syn-
thetic seawater solutions (SW0S and SW2S) considerably 
reduces the contact angle and changes the oil wet surfaces to 
strongly water wet. The nanofluid with negative charge helps 
sulfate ion neutralize the positive charge of the surface. As 
a result, calcium ions approach the surface and separate oil 
droplets more easily. According to the obtained data, brine 
containing twice the concentration of sulfate ions along with 
nanofluid has the greatest impact on reducing the contact 
angle and water wetting of the surface up to 38º.
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On the other hand, the influence of synthetic seawater 
(smart water) and nanocomposite on IFT values are illus-
trated in Fig. 9. This figure demonstrates that the interfacial 
tension is not sensitive to the ionic composition of smart 
waters. Furthermore, by adding 50 ppm modified  Al2O3/
SiO2 nanocomposite to smart water solutions, the IFT val-
ues are reduced. A comparison of the results of contact 
angle with IFT values indicates the higher potential of this 

nanocomposite in wettability alteration than IFT reduction. 
Thus, the main mechanism for improving oil recovery is 
wettability alteration.

3.4  Core flooding and ionic analysis

As noted above, the core flooding tests were carried out 
in three steps, respectively, by injection of seawater, smart 
water and smart water along with the nanofluid. Core sam-
ples 1 and 2 were used to evaluate the effect of various 
concentrations of calcium ion. As observed in Fig. 10a, 
first, 4 pore volumes of seawater were injected into core 
sample 1 and the oil recovery of the seawater flooding was 
43.9%. In the next steps (injection of smart water SW0Ca 
and smart water with 50 ppm nanofluid), the corresponding 
values were 49.2% and 53%, respectively. In addition, the 
oil recovery factors for core sample 2 (injection of SW2Ca) 
in each step were 44.0%, 53.0% and 58.5%, respectively. 
Therefore, by comparing the oil recovery of second steps for 
core samples 1 and 2, it can be concluded that an increase in 
the concentration of calcium ions significantly improves the 
oil recovery. In fact, it will change the wettability of the rock 
surface to more water wet according to the previous section 
and improve the oil recovery. In other words, the number 
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of calcium ions stuck to the carboxyl groups increases and 
further separates the oil from the surface. Moreover, as 
observed in Fig. 10b, the oil recovery factors for core sam-
ple 3 (injection of SW0S) in each step were 42.5%, 47.3% 
and 50.3%, respectively, and the corresponding values for 
core sample 4 (injection of SW2S) were 45.0%, 55.0% and 
62.5%, respectively. The results showed that adding nano-
fluid to the solutions increased the oil recovery factor by 
about 3% to 7% in all cases. This increase in oil recovery 
for SW2S is more than those of other brines. On the other 
hand, a coreflood test was performed to investigate the abil-
ity of AOAS nanofluid without the presence of smart water 
in oil displacement. Thus, 50 ppm of AOAS nanocomposite 
solution in distilled water was prepared and injected into the 
core. As shown in Fig. 10b, the oil recovery of nanofluid 
injection was about 57.4%. However, higher oil recovery 
would be achieved by injecting smart water with nanofluids. 
Therefore, the injection of smart water with nanofluid has 
a great ability to displace oil in comparison with nanofluid 
only (AOAS in pure water).

These observations are consistent with the results 
obtained at contact angle section. As observed, the addi-
tion of nanofluid makes the rock surface strongly water wet. 
This will cause the oil drop to be removed from the surface 
and recover it more. In order to determine the mechanism 
governing the system, ion analysis was carried out by meas-
uring the concentration of the ions in the effluent during 
core flooding tests. According to Fig. 11, the decrease in sul-
fate ion concentration in the outlet indicates that these ions 
were adsorbed to the positively charged carbonate surface. 
Due to the decreased net positive charge of the rock surface, 
calcium ions then tend to approach the surface and stick 
to the negatively charged carboxylic groups of oil to sepa-
rate it from the surface. Finally, these processes change the 
rock wettability. Therefore, ion exchange is one of the main 
mechanisms for wettability alteration of cores. Moreover, 
the increase in calcium ion concentration in the outlet veri-
fies the dissolution of carbonate rock into the liquid phase. 

Figure 12 shows these phenomena. In other words, calcium 
carbonate is dissolved to balance the calcium concentration 
in the brines. When the rock is dissolved, more calcium ions 
are released and connected to the carboxyl groups and con-
sequently produce more oil. These two mechanisms lead to 
the greater separation of oil from the carbonate surfaces and 
increase the oil efficiency in core flooding tests.

4  Conclusions

In summary, for the first time, synthetic nanocomposite 
AOAS with smart water has been used as a new method for 
wettability alteration of carbonate rock. Based on the experi-
mental results, smart water solutions at 50 ppm concentra-
tion of nanofluid showed acceptable stability during the 
flooding period. By increasing the concentration of active 
ions such as  Ca2+ and  SO4

2−, the ion exchange mechanism 
was activated, and as a result, the contact angle decreased 
and the rock wettability shifted toward water wetness. In 
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addition, the contact angle dropped sharply by adding nano-
particles to brine solutions. This reduction was higher in 
the SW2S smart water solution and made the rock surface 
strongly water wet. On the other hand, the increase in the 
concentration of  Ca2+ and  SO4

2− ions significantly improved 
the oil recovery. In addition, investigating the effect of nano-
fluid present in SW0Ca, SW2Ca, SW0S and SW2S solutions 
on oil recovery factor during flooding period showed that 
they could increase this coefficient very well. This increase 
in oil recovery was 7.5% for SW2S. According to ion analy-
sis, dissolution of carbonates and ion exchange mechanisms 
increased the tendency of oil to separate from the rock sur-
face, changed the wettability and finally improved oil recov-
ery factor.
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