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Abstract
Estimation of base level changes in geological records is an important topic for petroleum geologists. Taking the Paleocene 
Upper Lingfeng Member of Lishui Sag as an example, this paper conducted a base level reconstruction based on Basin 
Filling Modelling (BFM). The reconstruction was processed on the ground of a previously interpreted seismic stratigraphic 
framework with several assumptions and simplification. The BFM is implemented with a nonlinear diffusion equation solver 
written in R coding that excels in shallow marine stratigraphic simulation. The modeled results fit the original stratigraphy 
very well. The BFM is a powerful tool for reconstructing the base level, and is an effective way to check the reasonableness 
of previous interpretations. Although simulation solutions may not be unique, the BFM still provides us a chance to gain 
some insights into the mechanism and dynamic details of the stratigraphy of sedimentary basins.
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1 Introduction

Petroleum exploration is committed to identifying the spa-
tial and temporal distribution of petroleum system elements 
(such as source, reservoir and transportation, etc.) to iden-
tify more oil and gas resources (Hu et al. 2016, 2018; Li 
et al. 2020; Zhu et al. 2020). However, the diversity of the 
underground world and the nature of its difficulty to observe 
directly surely increase the complexity of this work. Fol-
lowing sedimentary facies model, the advent of sequence 

stratigraphy has brought another revolution to this industry 
and offered a powerful methodology to analyze and charac-
terize the underground space (Yang et al. 2018; Gao et al. 
2018). Although many schools still exist debating on some 
concepts of sequence stratigraphy, base level is a universally 
accepted term that denotes a driving force ensemble in form-
ing stratigraphic sequences. However, ambiguity may exist 
when talking about the definition of base level. To avoid 
misunderstanding, here we consider the base level definition 
below. The base level approximates the sea level and meets 
the fluvial profile equilibrium at the shoreline (Catuneanu 
2006; Miall 2016). It is different from the “stratigraphic base 
level” of Cross and Lessenger (1998) that has a continental 
part. Comprehensively reflecting the effects of eustasy, tec-
tonics and climate, base level is usually regarded as a rep-
resentative term of allogenic controls. Since allogenic con-
trols provide basin-scale comparable information for facies 
prediction, it makes base level analysis extremely important 
in both the academy and industry (Zecchin and Catuneanu 
2013; Catuneanu and Zecchin 2013; Qayyum et al. 2015; 
van der Meer et al. 2017).

In early ages, base level was deemed almost equivalent 
to the global sea level. Many efforts have been made to 
derive the global sea level curve in geological time scale 
since 1970s (e.g., Haq et al. 1987; Miller et al. 2005; Xu 
et al. 2006; Müller et  al. 2008). With the deepening of 
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understanding, tectonic movements were included into the 
analysis of base level in the field of sequence stratigraphy. 
The global sea level has gradually been replaced by relative 
sea level (RSL) (e.g., Hunt and Tucker 1992; Christie-Blick 
and Driscoll 1995), as it defines the joint effect of global sea 
level and tectonism. The RSL is an efficient tool to encom-
pass the uncertainties in distinguishing the eustacy and 
the tectonism from stratigraphic records, and it could also 
approximate to the base level with some assumptions (the 
climate or environmental energy flux factors are neglected) 
(Miall 2016).

The base level has long been represented by a single 
curve indicating that the globle sea level value is the same 
everywhere at a given moment. While it is not true for the 
RSL or the base level, because their values can vary locally 
due to differential subsidence (Li et al. 2015; Qayyum et al. 
2017). This implies that the RSL and the base level cannot 
be expressed by just one curve as the base level change is 
sensitive to the location of the observation point. Hence, 
reconstructing the complete base level is both a static and 
geomorphic problem, which poses challenges to the tradi-
tional methods (Jerolmack and Paola 2010; Li et al. 2016).

Basin Filling Modelling (BFM, sometimes also called for-
ward stratigraphic modelling) gives a new light to this issue. 
It can forwardly simulate the stratigraphy with parameters, 
and it can also inversely estimate parameters through iter-
ated simulations. Although we cannot completely eliminate 
the non-uniqueness of the solutions, we can still narrow the 
range of the possible scenarios through the BFM. The mod-
els for siliciclastic stratigraphy can generally be classified 
into 3 types, i.e., geometric models, hydraulic models and 
diffusion-based models (Paola 2000; Burgess et al. 2006; 
Sacchi et al. 2015). The first type is relatively simple and can 
directly show the geometric patterns of the objects, while 
it lacks the ability to reveal the physical processes (Strobel 
et al. 1989; Kendall et al. 1991; Li et al. 2018). Hydraulic 
and Diffusion-based models are also called dynamic models, 
for they are process-based and need to solve governing equa-
tions (Kaufman et al. 1991; Rivenaes 1992; Griffiiths et al. 
2001; Hutton and Syvitski 2008). Hydraulic models solve 
degraded Navier–Stokes equations and are good at modeling 
hydraulic-scale (at relatively smaller scales, e.g., river avul-
sion) processes. Diffusion-based models solve diffusion- 
related equations and are good at modeling geomorphology-
scale (at relative larger scales, e.g., clinoform formation) 
processes. Among these three models, the diffusion-based 
models suit this study best, since base level reconstruction is 
a process-based problem while it does not need to deal with 
the details below a clinoform scale.

The study area Lishui Sag is one of the subordinate struc-
tural units of East China Sea Basin (ECSB), offshore east 
China. The study interval Upper Lingfeng Member  (E1lU) 
is an important oil-bearing succession in Lishui Sag that has 

accumulated very rich exploration data. Despite some com-
mercial successes, little consensus has been made regarding 
the base level changes during the deposition of the Pale-
ocene successions. In this paper, taking the Paleocene  E1lU 
of Lishui Sag as an example, we conduct a base level recon-
struction based on a diffusion-based BFM model. It aims 
at not only revealing some base level details to the study 
area, but also gaining some insights into the mechanism and 
dynamic details of the stratigraphic formation.

2  Geological settings

The East China Sea Shelf Basin (ECSB), located in the 
southeast margin of the Eurasian Plate and above the South 
China Plate, is a part of the western Pacific tectonic system, 
ranging from 120° 50′ E to 129° 00′ E in longitude and from 
25° 22′ N to 33° 38′ N in latitude (Fig. 1a, b). The basin has 
an NNE direction and could be divided into East Depression 
belt, Central Uplift belt, and West Depression belt, covering 
an area of 26.7 × 104 km2. Inside the West Depression belt 
are several sags, including Lishui Sag (Fig. 1b, c). Lishui 
Sag is located in the southwest part of the entire ECSB, 
covering an area of 14,600 km2. Before the deposition of 
the Paleocene Mingyuefeng Formation  (E1m), the Lingfeng 
Uplift divided the sag into two sub-sags: Lishui West Subsag 
and Lishui East Subsag, both showing half-graben charac-
teristics (Fig. 1d).

2.1  Tectonism

Three events have influenced the ECSB most since Late Tri-
assic in terms of tectonic evolution. They are (1) the forming 
of ancient Asia Continent, (2) The Pacific Plate subduct-
ing under Eurasian Plate, and (3) Indian Plate subducting 
under Eurasian Plate. These events could be rearranged into 
4 specific tectonic phases (Fig. 2). From the Late Triassic 
to Present, they are: (1) Syn-rift phase (Late Cretaceous to 
Paleocene), during which the basin had undergone inten-
sive movements that created many fault-depression struc-
tures; (2) Post-rift phase (Early Eocene to Late Eocene), 
during which extensional movements reduced; (3) Uplift 
phase (Late Eocene to Oligocene), during which the basin 
had been subjected to uplift and following erosion; and (4) 
Regional subsidence phase (Miocene-present), during which 
the basin have subsided as a whole (Zhang et al. 2015; Li 
et al. 2019).

2.2  Stratigraphy

The Cenozoic strata in the ECSB basin are well developed, 
in contrast with the poorly developed Mesozoic strata. 
According to a generally accepted dividing plan (Zhang 
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et al. 2019; Sun et al. 2019), the Paleogene to Neogene 
strata could be divided into 9 formations. From old to new, 
they are Paleocene Yueguifeng Formation  (E1y), Lingfeng 
Formation  (E1l), Mingyuefeng Formation  (E1m), Eocene 
Oujiang Formation, Wenzhou Formation, Pinghu Forma-
tion, Oligocene Huagang Formation, Miocene Longjing For-
mation, Yuquan Formation, Liulang Formation and Pliocene 
Santan Formation (Fig. 2).

The interval of interest is the Paleocene strata, depos-
ited during the syn-rift stage. The lowest Yueguifeng 
Formation, overlying on Cretaceous Shimentan Forma-
tion  (K2s) via an angular unconformity, has a thickness 
ranging from 0 to 349 m (Fig. 2). The  E1y is of mainly 
lacustrine deposition, characterized by light to dark gray 
sandstones, siltstones, mudstones as well as their interca-
lations, which differs a lot from the underlying brown to 
red-brown deposits. Above the  E1y is the Lingfeng Forma-
tion that could be further divided into 2 members: Lower 
Lingfeng Member  (E1lL) and Upper Lingfeng Member 
 (E1lU). The  E1lU member has very good trap conditions 
and is believed to have a petroleum reservoir potential. 
The depositional environment of the  E1lL and the  E1lU is 
interpreted as shallow marine environment according to 

paleontology, paleogeochemistry and paleogeography evi-
dence (Sun et al. 2019; Li et al. 2019; Zhang et al. 2019). 
The Paleocene uppermost formation is the E1m formation, 
which demonstrates particularly prominent marine-conti-
nent transition characteristics. The lower member of the 
 E1m  (E1mL) formation comprises mainly dark gray mud-
stone and sandstone depositions while the upper member 
 (E1mU) consists of mainly light gray to brown depositions 
containing coal seams.

Typical sequence stratigraphic characteristics are easily 
recognizable in the Paleocene successions, especially in 
the  E1lU member and the  E1mL member. Sequence strati-
graphic surfaces, such as subaerial unconformity, cor-
relative conformity, regressive surface of marine erosion, 
basal surface of forced regression, maximum regressive 
surface and maximum flooding surface were identified 
in our previous work (see Zhang et al. 2015) based on 
seismic characteristics, such as onlap, downlap, offlap, 
truncation, etc. Falling stage systems tracts (FSST) were 
identified in both the two members. Thus, a quartile sys-
tems tract framework following Hunt and Tucker (1992) 
was also established, respectively (Fig. 3).
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3  Methodology

3.1  Assumptions and simplifications

Sequence stratigraphy is still a developing science. 
Although some debates may exist, many consensuses 
have already been made, including that allogenic factors 
(eustacy, tectonics, climate, etc.) are key controls on the 
development of paleogeomorphology and stratigraphic 
sequences (Catuneanu 2006). Among the allogenic fac-
tors, eustacy and tectonics in most cases are the two most 
important ones and are jointly known as RSL. While the 
term base level is slightly different and generally includes 
one more factor, the climate. For simplicity of the prob-
lem, several assumptions and simplifications were made. 
The Paleocene Lishui Sag is of shallow marine environ-
ment located in a back-arc rift basin, and the climate fac-
tors contributed much less than RSL (Zhang et al. 2012). 
Thus in this paper, climate factors were assumed neglecta-
ble. Under this assumption, the base level and the RSL are 

almost the same that these two terms are used as synonyms 
in the following text except for specific discussions.

Besides allogenic controls, sediment supply (both rate 
and content) is another important factor determining the 
depositional patterns, which is primarily a function of 
climate (Rubin and McCulloch 1980; Leeder et al. 1998; 
Catuneanu 2006; Fuller et al. 2009; Liu et al. 2017a). 
Since the climate factor was neglected, the sediment sup-
ply was assumed as a constant in this study. Although this 
may be far from rigorousness, it is still a commonly used 
mean for both experimental and numerical studies (Muto 
and Steel 1997; Nelson and Morgan 2018; Zhang et al. 
2018).

Within a single systems tract, we assumed that the 
stratigraphy was continuously developed and no differen-
tial subsidence occurred. And we assumed the shoreline 
trajectory was continuous between two adjacent systems 
tracts. While due to the incompleteness nature of strati-
graphic records, the shoreline trajectory was not neces-
sarily continuous between two systems tracts. This will 
be discussed in Part 5.
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3.2  General workflow

The general workflow of this study is shown in Fig. 4 and it 
can be summarized as (1) Decompaction the target section, 
(2) Running of the BFM model, and (3) Comparison and 
modification of the BFM results.

Firstly, the time-depth conversion of the target seismic 
section CC’ (see Fig. 3b for location) was made accord-
ing to the VSP data of Well1 adjacent to this section. Then 
decompaction of each systems tract from the section CC’ 
was conducted through backstripping (details see “Appendix 
1” section). The decompacted stratigraphic thickness was 
assumed as the total accommodation space during the whole 
deposition process. Then, time step and mesh system of the 
BFM model were tried and defined according to the geologi-
cal background and the information of the target section CC’ 
(see Fig. 1). Then, the BFM model was run with predefined 
initial topography and sediment supply and RSL parameters 
(for details of the BFM model please see the following Part 
3.3 and “Appendix 2” section). The predefined parameters 
did not always fit the expected results, so a negative feedback 
strategy was used to modify these parameters.

3.3  The BFM model

The BFM simulations were implemented by a program 
named Sedapp, which was written in R codes by the authors. 
This diffusion-based forward stratigraphy modelling pro-
gram was developed based on many similar models, such as 
Syvitski et al. (1988), Flemings and Jordan (1989), Kauf-
man et al. (1991), Rivenaes (1992, 1997), Paola (2000) and 
Harris et al. (2016). While it has some differences compared 
with these above models, especially in the nonlinear diffu-
sion coefficient settings. For mathematical details please see 
“Appendix 2” section.

4  Results

After iterated trials, we finally got the results below, which 
fit the seismic data very well (Fig. 5). The present under-
ground framework, a reference framework after decompac-
tion, and a simulated stratigraphic framework are summa-
rized in Fig. 5. The Wheeler diagram and 3D base level 
diagram is shown in Figs. 6 and 7.
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Four systems tract, from bottom to top, are called “FSST”, 
“LST”, “TST” and “HST” (Fig. 5a), corresponding to previ-
ously interpreted falling stage systems tract, lowstand sys-
tems tract, transgressive systems tract and highstand systems 
tract of the Paleocene  E1lU Member (see Zhang et al. 2015). 
Also, the simulation time periods are called ST.1, ST.2, 
ST.3, and ST.4, respectively. Detailed internal architectures 
and characteristics of each systems tract are described in the 
following sections.

4.1  E1lU “FSST”

The simulated lowest systems tract, “FSST’, covers almost 
the whole area except for the northwest end, and has a 
median thickness of about 251 m. The clinoforms are well 
developed and are of a relatively steep gradient. Offlap and 
downlap features are apparent (Fig. 8a). The shorelines 
points move forward into the basin while their altitudes 
gradually fall. Shallow marine facies is the prevailing facies, 
while the subaerial part is seldom developed. Overall, the 
“FSST” demonstrates a coarsening-upward pattern. The base 

Fig. 4  Flowing charts of the study
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level keeps falling and its changing trends are the same in 
different locations (Fig. 8b).

4.2  E1lU “LST”

The simulated “LST” covers a larger area than the under-
lying “FSST” and has a mean thickness of about 401 m. 
The clinoforms are also well developed, while their slopes 
are relatively gentler than that of the “FSST”. Both onlap 
and downlap features are apparent (Fig. 8c). The shorelines 
points continue to move forward into the basin while their 
altitudes gradually rise. Shallow marine facies is still well 
developed, while the subaerial part is also well developed in 
the northwest part. Overall, the “LST” also demonstrates a 
coarsening-upward pattern. Base level slowly rises while it 
is location-sensitive that the central part has relatively high 
values due to differential subsidence (Fig. 8d).

4.3  E1lU “TST”

The simulated “TST” covers a similar area with the underly-
ing “LST” and has a mean thickness of about 296 m. The 
clinoforms are of a relatively gentle gradient. Onlaps are 
apparent, while downlaps are not (Fig. 8e). The shorelines 
points turn back toward the continent and their altitudes 
continue to rise. Shallow marine facies gradually prevails 
again, while the subaerial part shrinks. Overall, the “TST” 
demonstrates a fining-upward pattern. The base level con-
tinues to rise and is also location-sensitive due to additional 
differential subsidence (Fig. 8f).

4.4  E1lU “HST”

The uppermost “HST” covers a smaller area but occupies 
the northwest end for the first time. Its maximum thickness 
can reach 607 m while its average is at 186 m (Fig. 8g). 
Unlike the first three systems tracts, the simulated “HST” 
is not a typical HST. The shoreline points continue to move 
landward (even somewhere off the chart) and their altitudes 
also continue to rise. Shallow marine facies is the prevailing 
facies, while the subaerial part only shows up at the lower-
left corner. The base level is still location-sensitive while 
rises at a higher speed (Fig. 8h). A new interpretation of this 
“HST” will be discussed in Part 5.

5  Discussions

In most cases, it is very difficult to uniquely reconstruct a geo-
logical unit through limited stratigraphic records. Fortunately, 
our model is an open system, the results can be updated when 
new information is added. For example, if we had some new 
evidence that the shoreline trajectory was not as assumed in 
Sect. 3.1 but some other situations, then we might get some-
what different results (see Figs. 6 and 9). More accurate cali-
bration may depend on more comprehensive shoreline evi-
dence, especially from new drilled cores in the future. This 
is also true for the base level curve shapes. Higher frequency 
base level details, although have little impact on the overall 
sequence geometry, can determine the exact shoreline loca-
tions. However, due to the lack of accurate shoreline details, 
straight lines are the best choices for a rough approximation. 
Things are a little different for the ST.2 (“LST”). In order to 
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avoid an autoretreat (see Muto and Steel 2002) within a nor-
mal regression unit, the straight line is replaced by a convex 
up curve (Fig. 10). Similarly, the simulation time t and the 

sediment transport coefficient α are of a close relationship (See 
Eq. 9 in “Appendix 2” section). If the other parameters were 
kept fixed, these two can determine the final volume of the 
sediments. We used the same α throughout the four systems 
tracts, so we get different ts (Table 1). Also, t here is a rela-
tive time measure and its unit is “step”. Considering the over-
all time span of the study interval (about 0.8 Ma, from 60 to 
59.2 Ma according to Zhang et al. 2019) and taking no account 
of erosion or sedimentation hiatus, each step corresponds to 
297 years. If more detailed aging information was added, more 
accurate time-stratigraphy could also be supplemented.

We indeed cannot completely eliminate the non-uniqueness 
of the solutions under present conditions, but we can still check 
the reasonableness of some previous interpretations. Unlike 
the lower three systems tracts, the previously interpreted 
“HST” has very few typical seismic reflections for identifica-
tion. Onlap/downlap features are not available, neither is the 
direct drilled evidence. Its modelling process makes it even 
distinctive. The “HST” could not be reconstructed through 
typical HST parameters (e.g., relative slow or medium base 
level rise, normal regression. If we really want to do this, the 
parameters can be strange). Conversely, rapid base level rise 
and transgression could easily make it. This also coincides 

0 5000 10000 15000

0
50

0
10

00
15

00
20

00
25

00

x, m

Ti
m

e,
 s

te
ps

Hiatus

ST
.1

 
ST

.2
 

ST
.3

 
ST

.4
 

Condensed interval

Maximum regression

Shoreline

Fig. 10a Fig. 10b Fig. 10c Fig. 10d Fig. 10e Fig. 10f Fig. 10g Fig. 10h Fig. 10i

MFS

MRS

SU
CC.

Fig. 6  Wheeler diagram of the study interval corresponding to the simulation result of Fig. 5c. The color legend can refer to that of Fig. 5c and 
the color density also indicates the layer thickness

Base level color bar

−500

0

500

1000

1500

x, m

5000

10000
Tim

e, 
ste

ps

500

1000

1500

2000
2500

Base level, m −500

0

500

1000

1500

m

Fig. 7  Base level changes of different locations against time. For the 
time axis, Step0-625, Step626-1525, Step1526-2105, Step2106-2685 
correspond to time period ST.1, ST.2, ST.3, and ST.4



Petroleum Science 

1 3

with the common sense that sediments are more likely to 
accumulate on the landward sides during transgressions and 
on seaward sides during regressions (Muto and Steel 1997). 
Under this context, re-interpreting the “HST” as a TST (or part 
of a TST) seems more plausible.

Global sea level has long been a controversial topic. Dif-
ferent people made different results through different methods 
(Müller et al. 2008). Among them, Haq et al. (1987) and Miller 
et al. (2005) are two frequently cited high-resolution curves 
(Fig. 11). During the forming period of the study interval  E1lU, 
the two curves from different sources in Fig. 11 have little 

in common except their magnitudes (both are smaller than 
200 m). They are both one order of magnitude smaller than 
that of the base level in this study (ranging about from − 500 
to 1500 m). Hence, the dominant contributor to the base level 
change may be the basement subsidence rather than the global 
sea level fluctuation, considering that it was then at the inten-
sive Syn-rift phase (Fig. 2). Differential subsidences make the 
accommodation creations different from place to place. This 
makes the base level change local-sensitive and serves a good 
reason that it should be plotted in a 3D graph like Fig. 7. In 
addition, isostasy and sediment compaction can also contribute 
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to the local-sensitivity of the base level change according to 
Airy’s flexural theories (Watts 2001). Besides, like the tec-
tonism having many phases, the base level change can also 
be phased. An abrupt change of the subsidence between two 
adjacent phases may lead to the abrupt raise of the base level 
(Fig. 12).

6  Conclusions

Base level change in an area is not necessarily a single curve. 
It can be a series of curves varying from location to location, 
which can be attributed to differential subsidences. Accord-
ing the BFM results, the dominant controlling factor of the 
base level may be tectonism. The base level change here 
is indeed location-sensitive, especially in the dip direction. 
However, besides differences, there are also some similari-
ties that have nothing to do with the location: (1) During the 
period of ST.1, the base level continuously fell that made 
the shoreline move seaward quickly. (2) During the period 
of ST.2, the base level rose relatively slowly that made the 
shoreline move seaward slowly. (3) During the formation of 
the periods of ST.3 and ST.4, the base level rose very quickly 
that made the shoreline move back landward.

The BFM is not only a powerful tool for reconstruct-
ing the base level, but also an effective way to check the 
reasonableness of previous interpretations. The previously 
interpreted “HST” may not be an HST, it is more like a 
transgressive unit.

Although simulated solutions may be of non-uniqueness 
due to the limitation of current data, the BFM still provides 
us a chance to gain some insights into the mechanism and 
dynamic details of the stratigraphic formation.
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Appendix 1

The backstripping techniques are based on a fundamental 
assumption that the skeleton mass of the strata does not 
change with the compaction process. So we have:

(1)∫
H1

H2

(1 − �(z))dz =∫
H�

1

H�
2

(1 − �(z))dz

Table 1  Several important time and dynamic condition parameters
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H1: the top depth of the interval at its current status;
H2: the bottom depth of the interval at its current status;
H′

1
 : the top depth of the interval at its original status;

H′
2
 : the bottom depth of the interval at its original status;

z: the vertical coordinate;
φ(z): the porosity as a function of z.

Specifically, the porosity φ(z) could be seen as a com-
bination of several functions of different lithologies. Since 
there is only a small amount of limestone in the study inter-
val, the φ(z) function here was regarded as a combination of 
only sandstone and mudstone for simplicity:

ps: the volume fraction of sandstones;
pm: the volume fraction of mudstones;
φs(z): the porosity function of sandstones;
φm(z): the porosity function of mudstones.

The porosity functions of sandstones and mudstones were 
derived from well logging data of Well1. The essence of 
the decompaction is to solve a series of H′

1
 and H′

2
 along 

the target section. This process was implemented through a 
discretization of Eq. (1):

here n and m are the user-defined divisors divided by the 
current thickness and original thickness of the study interval. 
The H1, H2 are known numbers. Considering the original 
status means just at the end of the deposition, the H′

1
 is actu-

ally 0. The left hand side (LHS) of Eq. (3) could be calcu-
lated directly, and the only unknown is the H′

2
 on the right 

hand side. Through rearrangement, Eq. (3) becomes:

Since both left hand side and right hand side of Eq. (4) 
has the unknown H′

2
 , an iteration method was used to cal-

culate the result.

Appendix 2

As the name “diffusion-based” expressed, the most basic 
equation in the model is a diffusion equation:

(2)�(z) = ps�s(z) + pm�m(z)

(3)
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For der = 1 and n = 2, the 3D (exactly 2DH, for the h is 
another dimension perpendicular to x and y) scenario of 
Eqs. (5) and (6) can also be expressed as:

 here x and y are spatial coordinates. This is especially suit-
able for the cases dealing only with 2 classes of lithology 
for simplicity, where Γ1 is the transport coefficient for sand 
and Γ2 is the transport coefficient for mud.

Note that the Γ1 or Γ2 cannot be put outside the parenthe-
ses, because they are not constants but functions of spatial 
coordinates and the time. The expression of a general Γ for 
the 1DH scenario can be expressed as:

here α is a preexponential factor (L2/T), which has a close 
relationship with the simulated time. While β is a spatial 
scale factor (L−1), that can determine the gradient of the 
clinoforms. The d(x,t) is a function of spatial coordinates 
and time, denoting the distance from the shoreline (for the 
marine part).

Numerical methods were used to solve the above model. 
The numerical solution procedure was based on the finite 
volume method (FVM), which has a good local conserva-
tiveness and clear physics meaning (Versteeg and Mala-
lasekera 2007; Moukalled et al. 2016; Liu et al. 2017b; Wang 
et al. 2017). Cell-centered variable arrangement method was 
used to store the unknowns at the centroids of grid elements 
(Appendix Fig. 13).
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Fig. 13  Finite volume discretization and three cell elements for the 
1DH version (after Versteeg and Malalasekera, 2007). (Solid circles 
denote the node points where the unknown h are defined; w and e 
denote the west and east faces of the element)
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