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Abstract
Gas–liquid two-phase flow widely exits in production and transportation of petroleum industry. Characterizing gas–liquid 
flow and measuring flow parameters represent challenges of great importance, which contribute to the recognition of flow 
regime and the optimal design of industrial equipment. In this paper, we propose a novel complex network-based deep learn-
ing method for characterizing gas–liquid flow. Firstly, we map the multichannel measurements to multiple limited penetrable 
visibility graphs (LPVGs) and obtain their degree sequences as the graph representation. Based on the degree distribution, 
we analyze the complicated flow behavior under different flow structures. Then, we design a dual-input convolutional neural 
network to fuse the raw signals and the graph representation of LPVGs for the classification of flow structures and measure-
ment of gas void fraction. We implement the model with two parallel branches with the same structure, each correspond-
ing to one input. Each branch consists of a channel-projection convolutional part, a spatial–temporal convolutional part, a 
dense block and an attention module. The outputs of the two branches are concatenated and fed into several full connected 
layers for the classification and measurement. At last, our method achieves an accuracy of 95.3% for the classification of 
flow structures, and a mean squared error of 0.0038 and a mean absolute percent error of 6.3% for the measurement of gas 
void fraction. Our method provides a promising solution for characterizing gas–liquid flow and measuring flow parameters.
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1  Introduction

Gas–liquid two-phase flow refers to a mixed flow consist-
ing of two immiscible media: gas phase and liquid phase. It 
widely exists in production and transportation of petroleum 
industry. Flow behavior and flow parameters are impor-
tant research issues in gas–liquid flow (Chen 2011). Many 
studies have been made to explore gas–liquid flows, which 
plays an important role in the production assessment of oil 
and gas wells. Zhu et al. (2012) focused on the mechanism 
of sustained casing pressure (SCP) in gas wells. Luo et al. 
(2014) applied separator control to inhibit severe slugging. 
Yin et al. (2018) analyzed heat transfer for gas–liquid flow 
in vertical wellbore annuli. However, due to the changeable 

flow process and diverse flow structures, gas–liquid flow can 
be considered as a typical complex system. The flow behav-
ior underlying such flow situation is still blurry, and flow 
parameters are time varying and difficult to measure. The 
whole flow process presents obvious instability, instantane-
ity and randomness, which also brings series of difficulties 
to the parameter measurement. Characterizing gas–liquid 
flow and measuring flow parameters represent challenges 
of great importance, which contribute to the recognition of 
flow regime and the optimal design of industrial equipment 
(Qi et al. 2012).

Over the past few decades, a mass of work has been done 
for exploring gas–liquid flow behavior and brought us many 
achievements. Qi et al. (2013) employed CFD-PBE model 
to investigate the hydrodynamics of multiphase flow and 
accurately predict radial profiles of local gas holdup and 
bubble diameter. Gao et al. (2016a, b, c, d) characterized the 
slug to churn flow transition in a 20-mm-diameter vertical 
pipe by using multivariate pseudo Wigner distribution and 
multivariate multiscale entropy. Li et al. (2018) revealed the 
nonlinear dynamic characteristics of gas–liquid flow in small 
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channels. Their analysis found obvious differences in the 
dynamic characteristics between different flow patterns in 
small channels, and the sensitivity varies with the change of 
scale. Furthermore, many researchers were dedicated to the 
measurement of void fraction, which can be used to deter-
mine mixture density and estimate gas or petroleum reserves. 
Some studies aimed to establish some formulas to describe 
the correlation of flow structures and response characteris-
tics of sensors. Sardeshpande et al. (2015) utilized electrical 
capacitance tomography (ECT) facility to predict gas void 
fraction. He et al. (2019) developed a multi-wire capaci-
tance probe to obtain the average void fraction and the local 
void fraction. Pan et al. (2018) proposed a slip-ratio based 
equal-diameter double-circle model for void fraction meas-
urement. In addition, some studies applied machine learn-
ing to fit the mapping relationship between sensor response 
and flow parameters. Li et al. (2016) identified flow patterns 
via Fisher discriminant analysis and then measured the void 
fraction via support vector machine in small channels. Wang 
et al. (2019) combined empirical mode decomposition and 
artificial neural networks for void fraction estimation. Dang 
et al. (2019) developed a deep learning method including 
convolutional neural networks and long short-term memory 
networks for flow parameters measurement. Despite these 
existing works, it is still an important challenge to accurately 
measure flow parameters, due to complex and variable flow 
conditions, such as media, pipes and temperature. Moreover, 
complicated flow behavior also affects the measurement of 
flow parameters. It is in urgent need to develop a method 
which can effectively characterize gas–liquid flow behavior 
and achieve accurate measurement of flow parameters.

Nowadays, complex network theory plays an important 
role in characterizing complex systems. Its main idea is 
to map a real-world system to a network, where the nodes 
denote the components of the system and the edges allow 
describing the relationship among these components. It 
provides an effective framework for better understanding of 
complex systems and has made great progress in various 
fields (Newman 2003; Zhang et al. 2008; Xu et al. 2008; 
Donges et al. 2011; Hong et al. 2012; Wang et al. 2016; Gao 
et al. 2018). In particular, complex network theory can effec-
tively extract topological characteristics from the time series. 
A review can be seen in the literature (Gao et al. 2016a, b, 
c, d). Zhang and Small (2006) built complex networks from 
pseudo-periodic time series by considering each cycle as 
a node, which demonstrates that time series with different 
dynamical properties have different topological structures. 
Lacasa et al. (2008) and Luque et al. (2009) proposed the 
visibility graph and horizontal visibility graph, which allow 
mapping a time series to a complex network fast and simply. 
Gao et al. (2016a, b, c, d) proposed a limited penetrable vis-
ibility graph (LPVG) to analyze nonlinear time series, con-
taining EEG signals and two-phase flow signals. The LPVG 

has great noise resistance performance, which enables to 
extract features underlying experimental measurements.

More recently, deep learning methods (LeCun et al. 2015) 
have been widely used in computer vision, speech recogni-
tion and natural language processing and have achieved great 
success. Since AlexNet (Krizhevsky et al. 2017) showed an 
excellent performance on ImageNet, convolutional neural 
network received a lot of attention and achieved consider-
able development in recent layers. He et al. (2016) employed 
shortcut connections to add previous feature maps to current 
outputs, which can solve the issue of the disappearance of 
the gradients and easily train a deeper neural network. Fur-
ther, Huang et al. (2017) designed a dense convolutional 
network which introduces direct connections from any 
layer to all subsequent layers instead of shortcut connec-
tions, achieving a state-of-the-art performance with fewer 
parameters and less computation. More and more research-
ers applied deep learning technology to decode time series 
due to these advantages. Gao et al. (2019) proposed a spa-
tial–temporal convolutional neural network to evaluate the 
fatigue conditions of drivers. Yao et al. (2020) combined 
convolutional neural network, recurrent cells and attention 
module for information fusion on ECG signals. Sors et al. 
(2018) employed a 14-layer convolutional neural network for 
sleep stage detection via single-channel raw EEG.

In this paper, we propose a novel complex network-based 
deep learning method to characterize gas–liquid flow. Based 
on multichannel measurements acquired by four-sector dis-
tributed conductance sensor, we first construct multiple lim-
ited penetrable visibility graphs (LPVGs) and obtain degree 
sequences as the graph representation for flow behavior 
characterization. Then, we design a dual-input convolutional 
neural network to fuse the raw signals and the graph repre-
sentation for the classification of flow structures and meas-
urement of void fraction. Particularly, we implement the 
model with two parallel branches with the same structure, 
each corresponding to one input. Each branch consists of 
a channel-projection convolutional part, a spatial–temporal 
convolutional part, a dense block and an attention module. 
The outputs of the two branches are concatenated and fed 
into several full connected layers for flow structure classifi-
cation and void fraction measurement.

2 � Materials and methods

2.1 � Experiment and data acquisition

The vertical upward gas–liquid two-phase flow experiment 
was carried out based on the multiphase flow loop facil-
ity, which comprises the following parts: a vertical test-
ing pipe, our designed four-sector distributed conductance 
sensor (Gao et al. 2016a, b, c, d), a water tank, a water 
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pump, an air pump and a gas meter as shown in Fig. 1. 
A vertical testing pipe with 50 mm inner diameter was 
used, and the tap water and the air were taken as the liquid 
phase and the gas phase in our experiment. The four-sector 
distributed conductance sensor consists of eight titanium 

alloy concave electrodes, which flush mounted on the 
inside pipe wall. There are two electrode layers with a 
pitch of 10 mm. The electrode height is 10 mm, and the 
electrode angle is 45°. The sensor was employed to obtain 
gas–liquid two-phase flow information, and its installa-
tion location was chosen elaborately so that the gas–liquid 
flow at the sensor can be developed completely. The water 
pump and the gas meter were used to precisely adjust the 
inlet flow parameters, i.e., the water velocity and the gas 
velocity, in our experiment. The water pump and the gas 
meter were calibrated before experiment.

In order to generate different gas–liquid flow conditions, 
we pumped the two phases (gas and liquid) into the pipe 
at many different velocities. In the experiment, we studied 
the gas velocities in the range from 0.014 to 0.212 m/s and 
the water velocities in the range from 0.002 to 0.153 m/s. 
Then, we got 18 flow conditions in total and the gas void 
fraction is in the range from 12.2% to 95.4%. For each 
flow condition, four-channel signals were recorded by the 
four-sector distributed conductance sensor and stored by 
PXI-4472 synchronization data acquisition board card of 
NI Company. The sample rate was 2 kHz, and the sam-
pling duration was 20 min. Meanwhile, we equipped a 
high-speed digital camera for flow pattern definition and 
recording. During the experiment, we can observe six rep-
resentative gas–liquid flow structures, i.e., uniform bubble 
flow (UB), bubble flow with small bubbles (B-SB), bubble 
flow with large bubbles (B-LB), bubble flow with high 
velocity (B-HV), slug flow wrapped in bubbles (S-WB) 
and slug flow with large slugs (S-LS). Figure 2 shows the 
pictures of these flow structures, which are obtained by the 
high-speed digital camera.
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Fig. 1   Schematic of vertical upward gas–liquid two-phase flow loop 
facility

UB B-SB B-LB B-HV S-WB S-LS

Fig. 2   Experimental snapshots of representative flow structures, i.e., uniform bubble flow (UB), bubble flow with small bubbles (B-SB), bubble 
flow with large bubbles (B-LB), bubble flow with high velocity (B-HV), slug flow wrapped in bubbles (S-WB) and slug flow with large slugs 
(S-LS)
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2.2 � Methodology

In this section, we first introduce the construction of multiple 
LPVGs and consider the degree sequences as the graph rep-
resentation. Then, we present the dual-input convolutional 
neural network with the raw signals and degree sequences 
as inputs. Finally, we describe tasks for the classification of 
flow structures and measurement of void fraction in gas–liq-
uid two-phase flow.

2.2.1 � Limited penetrable visibility graph and degree 
sequence

Based on the above multichannel measurements collected 
from the four-sector distributed conductance sensor, we map 
the measurements to complex networks via limited penetra-
ble visibility graph. For the time series per channel, a LPVG 
whose limited penetrable distance is 1 is constructed. The 
LPVG is developed from visibility graph, which is an effec-
tive method for mapping measurements with noise to com-
plex networks. Figure 3 shows a schematic diagram from the 
time series to the LPVG.

For a time series 
{
xt
}L

t=1
 , where L is the length of the 

time series, we treat each time point as a node and the edges 
among these nodes are assigned based on whether two nodes 
can see each other. For visibility graph, we first consider the 
points of the time series as some vertical bars whose heights 
are the values of each time point and whose positions are 
the same as the time series as shown in Fig. 3a. Then, we 
link every two bars and consider they are visible if the vis-
ibility line (i.e., the connection line between two vertices) 
between them is not blocked as shown by the blue lines. For 
example, the point o and the point p can see each other, so 

the edge between them can be inferred. While the visibility 
line between the point o and the point q is blocked by the 
point p, so there is no connection between o and q. More 
formally, for two arbitrary data points ( ta , va ) and ( tb , vb ), 
there is a connection between them only if any other data 
( tc , vc ) located between them satisfy:

where ti is the time of data points and vi is the observation 
values of data points, i = a, b, c.

Compared with the visibility graph, the limited penetrable 
visibility graph adds a limited penetrable distance. Particu-
larly, if we set the limited penetrable distance to be M, there 
is a connection between two nodes only if the number of 
intermediate nodes that cut off the visibility line is no more 
than M. As shown in Fig. 3, the red lines are the added edges 
when we set the limited penetrable distance to be 1. At this 
time, the point p is the only node that cut off the visibility 
line between the point o and the point q, so an edge can be 
inferred between o and q.

After that, we can obtain the multiple LPVGs 
Ak
i,j
∈ {0, 1} , where k = 1, 2, 3, 4 represents the channel of 

the sensor. We then extract the degree sequence (DS) �
Dk

i
=
∑L

j=1,j≠i
Ak
i,j

�L

i=1
 as the graph representation so as to 

characterize the dynamics of the gas–liquid flow.

2.2.2 � Dual‑input convolutional neural network

As shown in Fig. 4, we design a dual-input convolutional 
neural network to fuse the raw signals and the graph rep-
resentation from multiple LPVGs, which contains feature 
extractor and classifier. We implement the feature extractor 
via two parallel branches with the same structure, each cor-
responding to one input. Firstly, each branch extracts spa-
tial–temporal representation from input signals with four 
channels and 400 sample index. We perform a channel-
projection convolutional layer with the kernel size of (1, 1) 
to fuse the information between channels. Then, a tempo-
ral convolutional layer with kernel size of (1, 11), a spatial 
convolutional layer with kernel size of (4, 1) and an average 
pooling layer are applied in turn. Note that, we insert the 
exponential linear unit (ELU) after each convolutional layer 
as the activation function and apply a dropout operation after 
the average pooling layer. In spatial convolutional layer, we 
use depthwise convolution, which performs regular convolu-
tion within each depth slice. The depthwise convolution has 
a lower parameter amount and operation cost. In our model, 
we set the spatial filter of depthwise convolutions as one, 
so that the output of depthwise convolutions has the same 
size as input.

(1)vc < vb +
(
va − vb

) tb − tc

tb − ta

(a)

(b)

o p q

o p q

Fig. 3   Example of a the time series and b its corresponding limited 
penetrable visibility graph (LPVG), where every node corresponds to 
series data point in the same order. The blue lines represent the edges 
of visibility graph, while the red lines represent the added edges of 
LPVG with the limited penetrable distance being 1
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After extracting spatial–temporal representation, we 
employ a dense block to further abstract advanced features. 
Compared to traditional methods that cascade layers together, 
the dense connectivity increases the diversity of input features 
and facilitates the reuse of redundant features. Figure 5 shows 
the details of dense block, which adopts the same structure 
as DenseNet. The dense block includes three same convolu-
tional blocks, which perform six operations sequentially: batch 

normalization, applying ELU activation, convolution with the 
kernel size of (1, 1), batch normalization, applying ELU acti-
vation and convolution with the kernel size of (1, 5). For a 
convolutional block i, its input Xi can be described as follows:

(2)Xi = Cat
([
X0, Y1,… , Yi−1

])

(a)

(b)

o p q

o p q

Raw signals Degree squence

Dense block

Attention

Dense block

Attention

Concentrating layer

Full connection layer

Conv 4@1×1

Conv 32@1×11

Depthwise-Conv 4×1 D = 1

Average pool

Shape transform

Shape transform

Conv 4@1×1

Conv 32@1×11

Depthwise-Conv 4×1 D = 1

Average pool

Shape transform

Shape transform

Flow structure
classification

Void fraction
measurement

Output

LPVG

Fig. 4   The architecture of dual-input convolutional neural network, where indigo rectangle represents a single layer and orange rectangle repre-
sents a network module
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where X0 is the input of the dense block, Yi−1 is the output 
feature map of convolutional block i − 1, and Cat(⋅) is the 
concatenating function. To ensure that these feature maps 
can be concatenated, we set the stride of convolution as (1, 
1) and pad 0 around the margin of the convolution input to 
keep the size of feature maps consistent. We then apply an 
average pooling layer to further reduce the dimension of 
feature maps.

Based on the output of dense block, we then use attention 
mechanism to weight the features at different time steps. Fig-
ure 6 shows the attention module used in our method, which 
is based on the similar principle as the one used in Raffe 
et al. (2016). In the attention module, one fully connected 
layer along with a hyperbolic tangent function is applied to 
the feature vector at each time step. The output size of fully 
connected layer is the same as the input feature vector. Soft-
max is then employed for each series, so that the values in 
each series sum to 1. For each feature, the attention module 
generates an independent group of values which would be 
used as weights. At last, the weighted average of input is 
computed as the output of the attention module. Given a 
module which produces a feature vector Ft ∈ ℝ

d×1 at each 
time step t, attention module computes an output vector 
O ∈ ℝ

d×1 as the weighted mean of the feature vector F by

(3)O =

T∑

t=1

�t ∗ Ft

where T is the total number of time steps, �t ∈ ℝ
d×1 is the 

weight computed at each time step t based on Ft and * rep-
resents element-wise multiply. The weight �t can be formu-
lated as follows:

where w ∈ ℝ
d×d and b ∈ ℝ

d×1 are the trainable neural net-
work parameters. By introducing the attention mechanism 
as the above, we weight the time step separately for each 
feature. It can help the model focus on important segments 
of the signal, thereby improving the network performance.

For the classifier, we first concatenate the outputs of 
the two branches and then apply several full connected 
layers for flow structure classification and void fraction 
measurement. Particularly, for the task of flow structure 
classification, we use a full connected layer with nodes 
of 1024 and a full connected layer with nodes of 6 (the 
number of flow structure categories), and the activation 
functions are set as tanh and softmax, respectively. We 
use categorical cross-entropy loss function as the objec-
tive function for model optimization. For the task of void 
fraction measurement, we use a full connected layer with 
nodes of 1024, a full connected layer with nodes of 18 
(the number of flow conditions) and a full connected layer 
with nodes of 1. The activation functions are set as tanh, 
softmax and sigmoid, respectively. Note that, in the task 

(4)ht = tanh
(
WFt + b

)

(5)�t =
exp

�
ht
�

∑T

k=1
exp

�
hk
�

Inputs

Conv
block

Conv
block

Conv
block

Fig. 5   The architecture of dense block. Conv block means convolu-
tional block, which performs six operations sequentially: batch nor-
malization, applying ELU activation, convolution with the kernel size 
of (1, 1), batch normalization, applying ELU activation and convolu-
tion with the kernel size of (1, 5)

O

Add

F1 F2 F3 FT

�1 �2 �3 �T

Fig. 6   The structure of attention module. The feature vector F
t
 at 

each time step t is fed into a fully connected layer to produce a proba-
bility vector �

t
 , where t = 1, 2,… ,T  and T is the total number of time 

steps. The output vector O is the weighted average of F
t
 with weight-

ing given by �
t
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of void fraction measurement, we establish the connec-
tion between gas void fraction classification and gas void 
fraction measurement. Here, we utilize two output layers 
for classification and prediction, respectively. The total 
loss is

where Lcla is categorical cross-entropy loss function corre-
sponding to classification of gas void fraction, Lpred is mean 
square error loss function corresponding to gas void fraction 
prediction, and � and � are the hyper-parameters that control 
the trade-off between classification objective and prediction 
objective.

(6)Ltotal = �Lcla + �Lpred

3 � Results and discussion

3.1 � Characterization of gas–liquid flow via LPVG

For each flow condition, the multichannel measurements 
are split into segments with length of 3 s via a sliding win-
dow, and the sliding step is 1 s. To simplify the calculation, 
we downsample the segments to 200 Hz. Then, we infer 
multiple LPVGs from each segment and obtain their degree 
sequences. In order to characterize various flow structures, 
we count the distributions of the degree values of the LPVGs 
from all the segments under the six representative struc-
tures. We normalize the degree distributions and calculate 
the frequency of occurrence of each degree value. Figure 7 
shows the degree distributions of six flow structures in one 
channel of the sensor and that of other channels have the 
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Fig. 7   The degree distributions of six flow structures (UB, B-SB, B-LB, B-HV, S-WB and S-LS) in one channel of the sensor, where the 
abscissa represents the degree value, and the ordinate represents the frequency of occurrence of each degree value. D means the degree value 
corresponding to the peak as shown by the red line
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similar distribution. From Fig. 7, it is obvious that the degree 
distribution under bubble flow is narrower and the maximum 
frequency of occurrence is higher, while that under slug flow 
is wider and the maximum frequency of occurrence is lower. 
What’s more, the degree value corresponding to the peak 
under slug flow is larger than that under bubble flow. Par-
ticularly, when the gas velocity is low while water velocity 
is high, the mixture flow appears as uniform bubble flow. 
In this flow condition, gas phase is not able to gather due to 
the impact of water phase, resulting that a large number of 
tiny bubbles flow randomly in the pipe. The gas phase dis-
tributes uniformly in the pipe, and the behavior of mixture 
flow represents strong randomness. Thus, the degree values 
are concentrated on few values and there is a sharp peak in 
the degree distribution. In addition, the degree value cor-
responding to the peak is small under uniform bubble flow 
due to the random flow of a large number of bubbles in 
small sizes. With the decrease in water velocity, the effect 
of water phase on the gas phase reduces and some small 
bubbles with various sizes appear in the pipe. The mixture 
flow turns into non-uniform bubble flow where bubble size 
becomes larger. The degree value corresponding to the peak 
slightly increases, and the degree distribution is similar to 
uniform bubble flow. When water velocity reaches a smaller 
value, gas phase can aggregate into big bubbles and there 
are also some small bubbles scattered in the pipe as shown 
by bubble flow with large bubbles (B-LB) in Fig. 2. The 
heterogeneity of mixture flow enhances, and the degree dis-
tribution becomes smooth. The degree value corresponding 
to the peak becomes larger due to the larger bubble size.

When the gas velocity and water velocity are both high, 
the mixture flow appears as bubble flow with high velocity 
(B-HV) as shown in Fig. 2. We can see a large number of 
bubbles with various sizes in the pipe. The degree distri-
bution becomes wider, corresponding to strong heteroge-
neity of mixture flow. Additionally, the flow of the larger 
bubbles results in a larger degree value corresponding to 
the peak. With the increase in the gas velocity, gas phase 
gradually gathers into slugs and the mixture flow turns into 
slug flow same as slug flow wrapped in bubbles (S-WB) in 
Fig. 2. There are a large number of bubbles around slugs. 
The spatial flow structure in this flow condition is desul-
tory; namely, the mixture flow presents strong transient. The 
flow behavior represents the intermittent quasi-periodic flow 
characteristic and heterogeneity. The degree values evenly 
distribute across multiple values instead of concentrating on 
a value, and the maximum frequency of occurrence is small. 
What’s more, the degree value corresponding to the peak is 
larger than that of bubble flow due to the flow of large slugs. 
When gas velocity keeps the large value and water velocity 
decreases, we can see legible large slugs same as slug flow 
with large slugs (S-LS) in Fig. 2. In this flow condition, there 
are large slugs and some small bubbles in the pipe. Degree 

distribution further widens and the degree value correspond-
ing to the peak further increases, which indicate that the 
quasi-periodicity and heterogeneity characteristics of mix-
ture flow intensify. Therefore, our method can effectively 
characterize the complicated flow behavior and reveal the 
evolution from bubble flow to slug flow.

3.2 � Classification of flow structures

In this section, we aim to accurately recognize six typi-
cal flow structures: UB, B-SB, B-LB, B-HV, S-WB and 
S-LS; each of them contains three flow conditions. For 
each 1200-second flow condition, we choose the top 80% 
measurements as training set, the next 10% measurements 
as validation set and the last 10% measurements as testing 
set. Then, the multichannel measurements are split into seg-
ments of length 3 s via a sliding window, and the sliding 
step was 1 s. We infer multiple LPVGs from each segment 
and obtain their degree sequences. The proposed dual-input 
CNN is implemented with the inputs of raw signals and 
degree sequences. We save the optimal model that has the 
lowest loss in the validate set and assess the classification 
performance through the test set. The method can achieve 
an accuracy of 95.3%. Then, we exploit the detection per-
formance for each special flow structure. Figure 8 shows the 
confusion matrixes where the value on the diagonal repre-
sents the accuracy of each flow structure. We can see that 
all flow structures can achieve a high accuracy over 90%, of 
which B-LB achieves the highest accuracy of 98.3%, while 
B-SB obtains a lowest accuracy of 92.2%. Since it is similar 
between B-SB and UB as well as B-HV, there are some 
misclassified samples between them. However, there are no 
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Fig. 8   Confusion matrixes of flow structures where the value on the 
diagonal represents the accuracy of each flow structure
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misclassified samples between bubble flow and slug flow, 
indicating a large difference between bubble flow and slug 
flow. These results suggest that our proposed method can 
effectively recognize gas–liquid flow structures.

3.3 � Measurement of void fraction

Besides the characterization of flow behavior and the clas-
sification of flow structure, the measurement of gas void 
fraction is also an important challenge in gas–liquid flow 
due to complicated flow conditions. The proposed method 
can not only effectively recognize gas–liquid flow structures, 
but also accurately measure gas void fraction. In this sec-
tion, we evaluate the performance of our method in the task 
of gas void fraction measurement. Note that, we add the 
classification task of gas volume fraction into the model to 
assist the regression task. As described in Sect. 2.2, we set 
the number of neuron nodes as 18 in the penultimate layer, 
corresponding to the number of flow conditions, and then 
apply a softmax layer for classification. Furthermore, we 
cascade a fully connected layer with one neuron node and 
a sigmoid activation function for gas void fraction meas-
urement. We choose mean squared error (MSE) and mean 
absolute percent error (MAPE) as indicators describing the 
measurement performance:

where N is the number of samples, ŷi represents the pre-
dicted value and yi represents the true value. MSE here 
describes the absolute error of measurements, and MAPE 
represents the relative deviations. Our method can reach a 
MSE of 0.0038 and a MAPE of 6.3%.

4 � Conclusions

Characterizing gas–liquid flow and measuring flow param-
eters represent challenges of great importance. We first cap-
ture multichannel measurements of gas–liquid flow via four-
sector distributed conductance sensor. We obtain 18 flow 
conditions in total and six representative gas–liquid flow 
structures. Then, we map the multichannel measurements to 
multiple LPVGs under each flow condition and obtain their 
degree sequences. Based on the analysis of degree distribu-
tion, we characterize various flow structures and find that 
the degree distribution under bubble flow is narrower, while 
that under slug flow is wider. What’s more, the degree value 

(7)MSE =
1

N

N∑

i=1

(
ŷi − yi

)2

(8)MAPE =
1

N

N∑

i=1

|
|||

ŷi − yi

yi

|
|||
× 100%

corresponding to the peak under slug flow is larger than that 
under bubble flow. After that, a dual-input convolutional 
neural network with the inputs of raw signals and degree 
sequences is designed for the classification of flow struc-
tures and measurement of void fraction. We implement the 
model with two parallel branches with the same structure, 
each corresponding to one input. Each branch consists of 
a channel-projection convolutional part, a spatial–temporal 
convolutional part, a dense block and an attention module. 
The outputs of the two branches are concatenated and fed 
into several full connected layers for the classification and 
measurement. Our method achieves an accuracy of 95.3% 
for the classification of flow structures and a MSE of 0.0038 
and a MAPE of 6.3% for the measurement of gas void frac-
tion. Our method is a promising solution for characterizing 
gas–liquid flow and measuring flow parameters.
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