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Abstract
Nowadays, the unconventional gas-bearing system plays an increasingly important role in energy market. The performances 
of the current history-matching techniques are not satisfied when applied to such systems. To overcome this shortfall, an 
alternative approach was developed and applied to investigate production data from an unconventional gas-bearing system. 
In this approach, the fluid flow curve obtained from the field is the superposition of a series of Gaussian functions. An auto-
matic computing program was developed in the MATLAB, and both gas and water field data collected from a vertical well 
in the Linxing Block, Ordos Basin, were used to present the data processing technique. In the reservoir study, the automatic 
computing program was applied to match the production data from a single coal seam, multiple coal seams and multiple 
vertically stacked reservoirs with favourable fitting results. Compared with previous approaches, the proposed approach 
yields better results for both gas and water production data and can calculate the contributions from different reservoirs. The 
start time of the extraction for each gas-containing unit can also be determined. The new approach can be applied to the field 
data prediction and designation for the well locations and patterns at the reservoir scale.

Keywords Gaussian function · Flow rate · Unconventional gas · Ordos Basin · Gas-bearing reservoirs

1 Introduction

The unconventional gas-bearing system, containing con-
tinuous accumulations of unconventional natural gases, 
has attracted much attention with the depletion of conven-
tional natural gases (Feng et al. 2016; Cui et al. 2019). It 
is widely found in the Ordos Basin, China, and Cooper 
Basin, Australia. As two or more gas-bearing reservoirs 
co-exist in the systems bringing more difficulties, current 

history-matching approaches do not perform well when 
applied to such system. This work mainly attempts to over-
come these difficulties.

The concept of a gas-bearing system can be dated back 
to the 1970s by Dow (1974) and was further developed by 
Masters (1979) and Magoon (1994). In the system, a series 
of gas reservoirs can be developed continuously in adjacent 
strata in the same basin. With the exhaustion of conventional 
reservoirs, more researchers investigated unconventional 
gas-bearing systems (Collett 2002; Curtis 2002; Law 2002; 
Schmoker 2002; Shurr and Ridgley 2002). The differences 
exist between unconventional and conventional gas systems 
(Ayers 2002). Taking coal seam gas as an example, it is a 
self-sourcing reservoir and stores hydrocarbons primarily 
in an adsorbed state and secondarily as free gas (Crosdale 
et al. 1998; Mastalerz et al. 2004). Consequently, the history-
matching and analysis approaches of field data for the uncon-
ventional gas-bearing system should be different from that 
in a conventional system (Su et al. 2005).

History-matching methods of field data can be catego-
rised into a mathematics-based approach and a physics-
based approach (Cui et al. 2018c). The mathematics-based 
approach establishes the decline curve equation and uses 
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curve fitting to match the field data, and it has attracted 
more attention due to its ease of use. The most popular Arps 
curves (Arps 1945) were classified into three types based on 
the decline exponent value: a harmonic decline, an expo-
nential decline and a hyperbolic decline. Considering the 
difference between the conventional and unconventional gas 
reservoirs, some improved mathematical methods have been 
developed in recent years such as the power-law exponential 
decline method (Ilk et al. 2008a, b), the stretched exponen-
tial decline method (Valko 2009; Valko and Lee 2010) and 
the Duong method (Duong 2011).

On the other hand, proponents of the physics-based 
approach establish a set of partial differential equations 
(PDEs) to match the bottom hole pressure curve or the pro-
duction data curve. There are two categories of the physi-
cal approach based on the solution method: an analytical 
method and a numerical method. For the analytical method, 
the most popular method in recent years is the tri-linear flow 
model (Brown et al. 2009; Stalgorova and Mattar 2012), 
simulating flow within the fracture, flow within the stimu-
lated region and flow within the un-stimulated region. The 
numerical method is popular with the development of com-
puting speed and can be divided into continuous and discrete 
models. For the continuous model, the dual-porosity models 
and multi-porosity models are widely used (Schepers et al. 
2009; Cipolla et al. 2010; Fan et al. 2010; Biswas 2011), 
and in these models, the computational notes on the grids 
can represent different physical meanings. For the discrete 
model, the widely used method is discrete fracture network 
(DFN) where the fractures are directly modelled and the 
computational notes represent either matrix or fracture (Der-
showitz et al. 2010; Wang et al. 2018).

When applied to the unconventional gas-bearing system, 
these approaches perform poorly: (1) for the mathematics-
based approach, most methods only describe the declining 
trend (Ilk et al. 2008a, b), while the field data from uncon-
ventional gas-bearing systems may exhibit multiple peaks 
because of the overlapped gas-bearing units (Shen et al. 
2018); (2) for the physics-based approaches with an analyti-
cal solution, they are used to simplify the reservoir property 
to search for an analytical solution while ignoring the cou-
plings between the gas flow and solid deformation (Ozkan 
et al. 2011); (3) for the physics-based approaches with a 
numerical solution, they are usually time- and resource-con-
suming (Biswas 2011) and the required data and information 
are not available for all reservoirs (Cipolla et al. 2010), espe-
cially for unconventional gas-bearing systems as they con-
tain two or more gas-bearing systems. Furthermore, within 
the unconventional gas-bearing strata, gas-bearing reservoirs 
are stacked vertically with a lack of the fluid connectivity 
between different stratigraphic features (Wang et al. 2015; 
Shen et al. 2016), causing difficulty in determining the start 
time of the extraction for each reservoir. Moreover, each 

gas-bearing unit has its own reservoir pressure, gas transport 
properties and hydrodynamic conditions (Ebanks 1987; Cui 
et al. 2018b). Therefore, it is difficult to find an applicable 
method for all the reservoirs in the same basin. All of factors 
aforementioned make the matching of the unconventional 
gas-bearing system difficult.

As stated previously, the current history-matching 
approaches are insufficient for unconventional gas-bearing 
systems. To cope with the defects of the current approaches, 
a mathematical model was proposed with an auto-computing 
program to match the field data from the unconventional 
gas-bearing system. The field data collected from the Linx-
ing Block, Ordos Basin, were applied to illustrate the data 
processing process. Then the automatic program was applied 
to the reservoir study to verify its applicability. The paper 
is organised as follows: the mathematical model and auto-
computing program are introduced in Sect. 2, the verified 
case is introduced in Sect. 3, and the applications of the 
proposed model are introduced in Sect. 4, followed by the 
conclusions.

2  Conceptual model

2.1  Mathematical model

Figure 1 illustrates the different types of unconventional 
resources including gas reservoir (coalbed methane, shale 
gas and tight reservoirs), oil reservoir (oilshale, shale oil 
and heavy oil) and other reservoirs (gas hydrates). In some 
sedimentary basins, it may contain one or more specific res-
ervoirs which are stacked vertically. For an unconventional 
gas-bearing system, it contains at least two gas-bearing 
units. For the whole strata, each gas-bearing system has 
unique gas storage and flow properties and can be treated 
as a separate domain.

The surface vertical well is usually applied to the co-
exploitation of an unconventional gas-bearing system as it 
can reach more gas-containing reservoirs (Li et al. 2018). 
Usually, a water-based fracturing liquid is used for hydrau-
lic fracturing (Cui et al. 2018b) and gas would be released 
from the top reservoir to the lower reservoir due to the water 
flowback process (Cui et al. 2018a).

To present the mathematical model in this work, we estab-
lished a simple sandwich stratum with two gas-containing 
reservoirs (tight sandstone gas and coalbed methane) sepa-
rated by a low-permeability mudstone as shown in Fig. 2. In 
the figure, the sandstone, mudstone stone and coal seam are 
vertically stacked with a vertical well going through in the 
middle. As introduced above, the gases stored in different 
gas reservoirs release at different times. The light green parts 
in the well represent the gas mass from different reservoirs. 
At time t0, the gas masses of sandstone and coalbed seam are 
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s0 and d0. At time t, the gas mass of sandstone is represented 
by st, while the gas mass of coalbed seam is separated into 
dtf and dtm because of the different gas transport abilities of 
fracture and matrix systems in which the subscripts f and 
m represent the matrix and fracture system. Taking the gas 
depletion process in sandstone as an example, at the initial 
state the gas in a sandstone (shown as s0 in the figure) having 
a length Ls flows in the vertical well with the radius of R and 
the flow length is Lr at the time t.

Taking the gas depletion process in sandstone as an exam-
ple, the general equation of flow process of the gas mass in 

the long tube was firstly investigated by Taylor (1954) and 
can be written as:

where the Dm is the gas conductivity coefficient and has the 
same units as the diffusion coefficient, u denotes the flow 
velocity, and x and r represent the coordinate axis (mass 
flow direction and well axial direction). For the case where 
the gas mass forms a very small slug of length Ls and the 
flow path Lr is relatively long, the equation can be written 
as (Kolev 1995):

where � denotes the dimensionless time as ut/Vt, Vt repre-
sents the characteristic mass per unit volume, X denotes the 
dimensionless flow distance as x/L, L represents the charac-
teristic length, S represents the dimensionless concentration 
as sVt/V0s0 and V0 represents the initial volume of s0. The 
details of their definitions can be found in Kolev’s work 
(1995), and Pe = uLr∕Dm is the Peclet number which char-
acterises the dispersion properties of the flow system. The 
general solution (Kolev 1990) is:

where l is the dimensionless length of the initial gas mass. If 
the gas mass is very small compared to the well volume, it 
can be approximated by an ideal delta function input. Under 
the such condition, the solution can be written as:
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Fig. 1  Illustration of unconventional resources (Scotchman 2016)
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Fig. 2  Gas depletion process of the unconventional gas-bearing sys-
tem. R is the inner radius of the well, Ls is the length of the mass of 
sandstone tight gas, and Lr represents the length of the flow path. At 
the initial state (t = 0), the gas masses are in their initial states (s0 and 
d0)
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In fact, the dimensionless concentration (S) represents 
the mass (gas or water) flow rate measured at the well and 
Eq. (4) can be written in the general form:

where q(t) represents the mass (gas or water) flow rate varia-
tions with time. Equation (5) is the standard form of Gauss-
ian function whose graph is a characteristic symmetric bell-
shaped curve. a, b and c are the curve parameters controlling 
the shape of the Gaussian function. a is the height of the 
curve’s peak, b is the time of the centre of the peak, and c 
controls the width of the curve.

As discussed above, the gas flow in the well can be simpli-
fied as the dispersion problem in the long tube and its solu-
tion is Gaussian function under the assumption that gas mass 
is very small compared to the well volume. Additionally, the 
Gaussian functions are widely applied in statistics to describe 
the normal distributions, in signal processing to define 
Gaussian filters, in image processing where two-dimensional 
Gaussians are used for a Gaussian blur and in mathematics to 
solve heat equations and diffusion equations. In the uncon-
ventional gas-bearing system, several gas-bearing units coex-
ist. Furthermore, in some reservoirs, several gas-containing 
porosity systems coexist and exhibit huge differences in gas 
transport abilities (Cui et al. 2020). These two factors would 
lead to the coexistence of the Gaussian function (Cui et al. 
2018c). In the full-scale production process, the gas flow rate 
infield data are considered to be a superposition of several 
components which can be described by:

in which q(t) represents the gas/water flow rate of the whole 
unconventional gas-bearing system and n denotes the num-
ber of Gaussian functions.

2.2  Development of the mathematical tool

In the previous section, we have proved that the field data 
from an unconventional gas-bearing system can be repre-
sented by the superposition of a series of Gaussian functions 
and the Gaussian functions may overlap with each other. In 
this section, a mathematical tool was proposed to distinguish 
the overlapped Gaussian function and calculate the exact 
expressions. The development of the mathematical tool is 
illustrated in Fig. 3, and the details are introduced below.

2.2.1  Noise cancellation

Savitzky and Golay (1964) proposed a method for data 
denoising with a polynomial structure. The general equa-
tion of the Savitzky–Golay method can be given as follows:

(5)q(t) = ae−(t−b)∕2c
2

(6)q(t) =

n∑
i=1

aie
−(t−bi)∕2c

2
i

where q is the original field data value, q* refers to the 
resultant field data value, Cr is the coefficient for the field 
data value of the smoothing window and N is the number of 
convoluting integers and is equal to the smoothing window 
size 2m + 1. The index j is the running index of the original 
ordinate data table. The smoothing array consists of 2m + 1 
points, where m is the half width of the smoothing window. 
The coefficients of the Savitzky–Golay equation (Cr) can be 
obtained directly from Steinier et al. (1972) or calculated 
based on the equations presented by Madden (1978) and are 
given in “Appendix 1”.

2.2.2  Regression algorithm

Due to the co-existence of the gas-containing reservoir, the 
field data from the unconventional gas-bearing system usu-
ally largely fluctuate, making the data processing difficult. 
In that situation, data regression is helpful. In this work, 
polynomial fitting is applied as shown in Eq. (8):

where i represents the exponent of the polynomial, p denotes 
the coefficient of the polynomial and k is the index number.

The least-squares method is applied to find the value of 
pi (i = 0, 1, 2, …, N) as given in Eq. (9):
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Fig. 3  Flow chart of the mathematical tool
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The partial differential of pi can be expressed as:

Equation (10) can be expanded to give:

or expressed as:

This gives an expression for pi (i = 0, 1, 2, …, N):

2.2.3  Derivative of the field data

The data derivative is helpful for the case where the impor-
tant information is hard to extract from the original data. 
In this work, the data derivative value (especially the sec-
ond derivative) is the basis of peak detection. The direct 
regularisation technique was proposed by Roy (2015), and it 
selects a posteriori optimal regularisation parameter to solve 
the inverse problem for estimation of first-order derivative 
spectra. The higher-order derivative spectra can be obtained 
using the algorithm in the sequel.
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The noise contaminated dataset is denoted as q(t)δ, with 
noise δ within an interval [a, b], and the first derivative is 
denoted as w(t) which is a continuous function.

The w(t) can be obtained as follows:

where �̂ is the first-order differential on w; superscript T rep-
resents the transposition of the matrix; A represents the grid 
interval matrix which can be termed as design matrix (Krey-
szig 2011); for the direct method, Aw = qδ·η > 1 is suitably 
chosen scalar quantity satisfying an obvious constraint; the 
parameter η is widely known as the regularisation parameter.

The algorithm is as follows. 
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 is chosen. The code 
in the MATLAB environment is given in “Appendix 2”.

2.2.4  Peak detection

As mentioned above, the field data from an unconventional 
gas-bearing system are a combination of a series of Gaussian 
functions. The method of accessing the rough initial values 
for iteration is introduced in this section, and the final value 
is determined by way of a curve fitting algorithm. The initial 
iteration values can be obtained from the original field data 
and its second derivative. The details of the approach are 
illustrated below, and the overlap of two Gaussian functions 
is taken as an example.
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Table 1 lists the calculations needed to obtain the initial 
values and the upper/lower bounds for each parameter.

Figure 4 demonstrates the values of b0, bl, bu, a1 and a2. 
a1 is the value of the input data at x = b0. b0 is calculated by 
calculating the minimum of the second derivative, bl and bu 
are the times where the second derivative is zero, and a2 is 
the value of the second derivative at x = b0.

2.2.5  Curve fitting

To identify the intrinsic parameters ai, bi and ci from the 
production data, the Levenberg–Marquardt method is intro-
duced. The Levenberg–Marquardt method was proposed 
by Levenberg (1944) and Marquardt (1963), and it takes 
advantage of two methods based on different orders of the 
gradient: “steepest descent” and “Gauss–Newton” (Lampton 
1997; Lourakis 2005).

Considering the system of nonlinear equations in this 
work, we obtain:

(15)F(t) = q(t) −

n∑
i=1

aie
−(t−bi)∕2c

2
i = 0

where the F(t) is the objective function.
The iteration for the LM algorithm gives

where �k is a non-negative regularised parameter, I is the 
unit matrix and J(tk) is the Jacobian of F(t) at tk.

3  Verification of the mathematical tool

3.1  Geological conditions of the Ordos Basin 
and the Linxing Block

Ordos Basin is located in the Northwest China and sur-
rounded by the Yellow River on its eastern, northern and 
western sides (Li et al. 2008). More than fifty types of min-
eral resources are found in the basin among which the coal, 
gas and sandstone-hosted uranium are particularly impor-
tant for national strategic development. The proven coal and 
gas reserves are 213.3 billion tons and 1789.3 billion cubic 
metres, respectively, which account for 13.7% and 17.3% of 
the national reserve (Feng et al. 2016).
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1376 Petroleum Science (2020) 17:1370–1388

1 3

The Linxing region is an economically significant area 
located in the eastern Ordos Basin near the city of Yulin 
(Fig. 5). A significant volume of unconventional gas (coal-
bed methane, shale gas and tight sandstone gas) has been 
found within this region (Ju et al. 2017). After a long and 
complex multi-cycle geological history, a multi-period and 
multilayer sandstone reservoir was formed (Fig. 6) (Li et al. 
2016). The Taiyuan and Shanxi Formations are located 
directly up the Benxi Formation. The Lower Shihezi For-
mation was deposited directly onto the Shanxi Formation 
along with fluvial sandstones. The Benxi Formation is one of 

the main coal-bearing strata containing a one- to four-layer 
coal seam, and the 8# and 9# coal seams are the main tar-
get. The Benxi Formation can be divided into Ben 1 Mem-
ber and Ben 2 Member. The Taiyuan Formation consists of 
dark grey–black carbonaceous mudstone, black oil light grey 
medium-fine sandstone and siltstone. The Taiyuan Forma-
tion can be divided into Tai 1 Member and Tai 2 Member. 
The Shanxi Formation consists of two to five coal layers, and 
the 4# and 5# coal seams are the main target. The Shanxi 
Formation can be divided into Shan 1 Member and Shan 
2 Member. The Lower Shihezi Formation contains grey 
mudstone and light grey medium-fine sandstone and can be 
divided into four members: He 5 to He 8. The Upper Shihezi 
Formation also contains grey–green mudstone and light fine 
sandstone and can be separated into He 1 to He 4 Members. 
Shiqianfeng Formation, 173–286 m thick, is composed of 
purplish red pebbly coarse sandstone embedded with pur-
plish red to lime green sandy mudstone. The formation can 
be separated into Qian 1 to Qian 5 Members. The separa-
tions of these formations are given in Table 2 from top to 
bottom (Li et al. 2016).  

3.2  A verified case study

The production data collected from a vertical well, located 
in the north part of the Linxing Block, were used for model 
verification (Li et al. 2018). The well is about 2100 m deep 
and goes through five gas-bearing strata: three tight gas 
sandstone layers (Qian 5, He 2 and Tai 2 from the top) and 
two coal seams (8# and 9# coal seams in Benxi Formation). 
The gas and water production data with 350 days are dis-
played in Fig. 7. As shown in the figure, the early gas and 
water production data oscillate significantly because of the 
well shutdown; therefore, only long-term production data 
were used for verification. It is noted that there is only one 
porosity system in a tight gas sandstone reservoir, while two 
porosity systems are present in the coalbed methane reser-
voir (matrix system and a fracture systems); therefore, the 
total number of Gaussian functions is seven in this case: 
three for the three tight gas sandstone layers and four for the 
two coal seams.

3.3  Verification and results

3.3.1  Noise cancellation and data regression

Before curve fitting, the Savitzky–Golay method and 
polynomial fitting were used for noise cancellation and 
data regression, respectively. The results after using the 
Savitzky–Golay method and polynomial fitting are plotted 
in Fig. 8. As illustrated in the figure, the noise cancellation 
and data regression can reduce data oscillation such as the 
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rapid decrease between 150 and 160 days and the well shut-
down between 240 and 250 days.

3.3.2  Curve fitting

After noise cancellation and data regression, the initial 
values for iteration were obtained and the Levenberg–Mar-
quardt method was adopted for curve fitting. The results are 
shown in Fig. 9. Good results were obtained for both gas 
flow rate and water flow rate (goodness of fit 86% and 80%, 
respectively).

3.4  Discussion

For further discussion, the gas flow rates from different gas 
reservoirs and porosity systems are illustrated (Fig. 10a). The 
proportion variations with time are also plotted (Fig. 10b). 
As shown in Fig. 10a, the gases in different storage systems 
flow out in sequence: (1) the tight gas in the sandstone flows 
out first; then, the gas in the coal seam flows out later; (2) the 
gases stored in the fracture system in the coal seam are first 
depleted and the gases absorbed in the matrix system diffuse 
out later. The discrepancy between different gas reservoirs 
is caused by the water flowback process as the reservoir in 
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the upper strata reaches the gas extraction pressure earlier 
than the lower reservoir. The difference between different 
porosity systems arises because of the discrepancy of gas 
transport abilities as the fracture permeability is usually 
thousands of times than that of the matrix system. Similar 
observations can also be made from Fig. 10b: the gas in the 
sandstone occupies a bigger proportion early in the period, 
while the coalbed methane does so in the long term. For the 
time period, we noticed that the gas flow in coal fractures 
has a shorter period than that in the matrix system because 

of its larger permeability. To our surprise, the gas in Tai 2 
Member has a relatively large period. That is maybe because 
Tai 2 Member is served as the overlying strata for 8# and 9# 
coal seams, and most gases in coal seams are flowing into 
and accumulated in Tai 2 Member.

Similarly, the water flow rate and proportion variation 
with time from different reservoirs and porosity systems 
are illustrated in Fig. 11. Also, similar conclusions can be 
obtained: the water in sandstone flows out first for the dif-
ferent gas reservoirs; and the water stored in the fractures 
is first depleted from the coal seam. The water flow in coal 
fractures has a shorter timescale than that in the matrix sys-
tem. It should be noticed that the water in He 2 Member 
has the longest period from start to the end. The reason for 
this is that it may include water sourced from other strata. 
The effect of the number of water sources will be discussed 
below.

4  Applications

In this section, the verified mathematical model was applied 
in field practice. In particular, three cases are introduced: 
both the gas and water production rate from a single coal 
seam, both the gas and water production rate from multiple 
coal seams, and the gas production rate from co-production 
practice of tight gas and coalbed methane.

4.1  Production data from a single coal seam

In this section, the proposed mathematical tool was applied 
to match the CBM production data from a vertical well in the 
south of Shanxi Province, China (Ma et al. 2017). Initially, 
approximately 320 m3 of pressurised water was injected 
into the coal seam for hydraulic fracturing to improve the 

Table 2  Separations of the formations

TG: denotes tight gas, CBM: denotes coalbed methane

Formation Member Reservoir type

Shiqianfeng Formation Qian 1 TG
Qian 2 TG
Qian 3 TG
Qian 4 TG
Qian 5 TG

Upper Shihezi Formation He 1 TG
He 2 TG
He 3 TG
He 4 TG

Lower Shihezi Formation He 5 TG
He 6 TG
He 7 TG
He 8 TG

Shanxi Formation Shan 1 CBM
Shan 2 CBM

Taiyuan Formation Tai 1 TG
Tai 2 TG

Benxi Formation Ben 1 CBM
Ben 2 CBM
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connectivity to the well and increase the permeability of 
the reservoir. Both the methane and water were produced 
through the vertical well. Field history data of methane 
and water production, from 4 October 2007 to 3 Septem-
ber 2008, were used for model calibration herein. The gas 
production rate was matched, and the results are shown in 
Fig. 12. For comparisons, the results of the physics-based 
approach (Ma et al. 2017), the mathematics-based approach, 
traditional power-law exponential decline method (Ilk et al. 
2008a) and the Duong method (Duong 2011) are drawn. For 
the mathematics-based approaches, they can well match the 
early production data, but do not perform well for the later 
peak. The physics-based approach can match the trend- first 
decreases and then increases, but its results are unsatisfied. 
Compared with the previous approaches, our approach is 
able to well match the results. As shown in the figure, the 
gas from coal fractures plays the dominant role in the early 

period, while the gas from the coal matrix takes the full 
proportion overall in the long-term production process.

Similarly, water production data were analysed; as dis-
cussed above, the number of water sources plays an impor-
tant role in the matching results. Firstly, we assume that the 
water comes only from the coal matrix and coal fractures 
(two Gaussian functions), then the hydraulic fracturing 
water is considered (three Gaussian functions), and finally, 
the water coming from other strata is added (four Gaussian 
functions). The fitting results are shown in Fig. 13a, and the 
goodness of fitting is 0.51, 0.67 and 0.75, respectively. Also, 
the results obtained from Ma’s work are also drawn, having 
a goodness of fitting of 0.45. As shown in the figure, the fit-
ting results are not good when using two or three Gaussian 
functions, especially for long-term production data, while 
the use of four Gaussian functions can fit the field data well. 
The proportions of different resources with four Gaussian 
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functions are also plotted in Fig. 13b. As illustrated in the 
figure, the water from fracturing liquid and coal matrix plays 
less important roles, while most water comes from the coal 
fractures and other water-containing strata resources in this 
case.

4.2  Production data from multiple coal seams

In this section, the proposed mathematical tool was applied 
to match the production data from multiple coal seams. Both 
gas and water production data were collected from a verti-
cal well in the Ordos Basin, China (Nie et al. 2018). The 5# 
coal seam in the Shanxi Formation and 8# coal seam in the 
Taiyuan Formation are its target reservoir, and the 5# coal 
seam is located above the 8# coal seam. Field history data of 
methane and water production from 2011 to 2016 were used 
for model calibration in this study. Firstly, the matching of 
gas production rate was made and the results are shown in 
Fig. 14. Two remarkable characteristics can be observed: (1) 

the gas stored in the 5# coal seam is first depleted, while gas 
in the 8# coal seam is produced later because of the water 
flowback process; (2) similar to the above discussion, the 
gas in the fracture system flows out earlier than that in the 
matrix system.

The water production data were also analysed. The effects 
of numbers of Gaussian functions were also investigated, 
and the results are illustrated in Fig. 15a. Four Gaussian 
functions represent the matrix and fracture systems in both 
coal seams, the hydraulic fracturing water is considered in 
five Gaussian functions and the resources from other strata 
are considered in six Gaussian functions. As shown in the 
figure, both the set of five and that of six Gaussian functions 
can fit the field data well, but a poorer result was obtained 
when using the set of four Gaussian functions. The propor-
tions from different sources are also presented in Fig. 15b. 
Three characteristics can be inferred from the figure: (1) 
the hydraulic fracturing water depletes first as characterised 
by the high water rate; (2) for the coal seam, most water is 
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present in the fracture system rather than the matrix system; and (3) the water present in other strata serves as a signifi-
cant resource herein.
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4.3  Production data from co‑production of coalbed 
methane and tight gas

In this section, the co-production data of CBM and tight gas 

(TG) from the Linxing Block were applied to the history-
matching process (Shen et al. 2018). The geological condi-
tions of the Linxing Block are introduced in Sect. 3.1.
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The co-production gas data collected from the six vertical 
wells in the Linxing Block were applied to history matching. 
Wells A and B were drilled for the co-production of tight gas 
in the Shihezi Formation, and both wells are targeting two 
gas-containing reservoirs. Therefore, the number of Gauss-
ian functions is two for both cases. The history-matching 
results and the contributions from different gas reservoirs 
are demonstrated in Fig. 16a, b. As shown in the figure, good 
fitting results were obtained for both cases.

Wells C and D were drilled for the co-exploitation of 
coalbed methane and tight gas, and both wells are avail-
able to at least three gas-containing gas reservoirs. The fit-
ting results are shown in Fig. 16c, d, and the contributions 
from different gas reservoirs were also drawn. A good fitting 
result was obtained in Fig. 16c, while a relatively poor fitting 
result is shown in Fig. 16d. This is mainly attributed to oscil-
lations in the field data from Well D. On the other hand, the 
Shan 2 Formation is close to the Shan 1 Formation and the 
gas that was stored therein may have been depleted.

In the first four cases, the number of Gaussian functions is 
assumed to be the same as the number of gas-containing sys-
tems and good fitting results were acquired. This approach 
may not always work well. Wells E and G were drilled for 
the production of tight gas in the Tai 2 Member, and both 
production data exhibit fluctuations. When one Gaussian 
function was applied, poor fitting results were obtained for 
both cases as shown in Fig. 17a, c. As introduced above, 
the Taiyuan Formation consists of dark grey–black carbona-
ceous mudstone, black oil light grey medium-fine sandstone 
and siltstone. In such conditions, we assume that the gas 
stored in the upper formation (Tai 1 and Shan 2 Members) 
and lower formation (Ben 2 Member) might be depleted due 
to the high permeability of the Tai 2 Member. Therefore, 
the number of Gaussian functions is four (as follows) for 
the gas in the Tai 2 Member, gas in the Tai 1 and Shan 2 
Members, gas in the Ben 2 fracture system and the matrix 
system. Good history-matching results were obtained with 
four Gaussian functions as shown in Fig. 17a, c. The con-
tributions from different gas reservoirs for both cases are 
illustrated in Fig. 17b, d. The gas stored in the Tai 2 Mem-
ber accounts for a significant proportion in the early period, 
while gas from the adjacent formation takes the full pro-
portion later. The proportion in the upper formation (Tai 1 
and Shan 2 Members) is the biggest. For Well G, the He 7 
and Tai 2 Members are its target formation, while when two 
Gaussian functions were applied poor fitting results were 
acquired. Then we assume that there would be four Gauss-
ian functions: two for the gas-containing reservoir itself 
(He 7 Member and Tai 2 Member) and two for its adjacent 
reservoirs. A good fitting result was obtained as shown in 
Fig. 17e. Also the contributions from different gas-contain-
ing reservoirs are illustrated and most gas comes from the 
adjacent reservoir as illustrated in Fig. 17f.

5  Conclusions

In the unconventional gas-bearing system, the varying gas-
bearing reservoirs are stacked vertically with a lack of fluid 
connectivity between different stratigraphic features and 
each gas-bearing unit has its own reservoir properties. Fur-
thermore, traditional history-matching approaches including 
a mathematics-based approach and physics-based approach 
do not play well when applied to an unconventional gas-
bearing system. In this work, an alternative approach was 
developed and successfully applied at reservoir scale with 
an automatic calculation program. Based on the calculated 
results, the main conclusions can be summarised as follows:

The production data in a specific gas-containing unit can be 
described by a Gaussian function since the mass volume is relative 
small compared with the length of mass flow. Therefore, the co-
production data from the unconventional gas-bearing system were 
controlled by the supervision of a series of Gaussian functions 
whose number can be determined based on the amount of the 
gas-containing units. The adjacent reservoir should be considered 
when determining the number of Gaussian functions to be used.

Compared with the previously proposed approaches, the 
proposed method yields better results for both gas and water 
production data and it can calculate the contributions and 
proportions from different reservoirs, and determine the star 
time of the extraction for each gas-containing unit.

The production data characteristic of the unconventional 
gas-bearing system was investigated using the proposed 
approach. The flow rate in the early stage is driven mainly from 
the upper reservoir, while the later flow rate is mainly driven 
from the lower reservoir because of the water flowback process. 
Most depleted gases come from the reservoirs where the well 
is located. When these gases are depleted, the gas stored in the 
adjacent reservoir would be desorbed and flow into the well.

This work provides an alternative approach to match the 
gas and water production data from single reservoir and the 
unconventional gas-bearing system. This approach shows 
better results and is easy to use; thus, it can be applied to the 
field data prediction and designation for the well locations 
and patterns at the reservoir scale.
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Appendix 1

The Savitzky–Golay convolution smoothing technique is 
based on fitting an array of n (= 2m + 1, with m a positive inte-
ger from 1 to 12) equally spaced data points to a polynomial,

These n points are normally a subgroup of a larger group 
of N points, and to smooth the entire set of points (except for 
m points at each end of the data array that must be treated 
separately), one takes a moving average. Savitzky and Golay 
pointed out that application of these smoothing formulas is 
equivalent in digital computers to convoluting a uniformly 
spaced data array with a set of smoothing coefficients derived 

(17)U(x) = c0 + c1x + c2x
2 +⋯ + cjx

j =

j∑
q=0

cqx
q

from the least-squares-fit formulas. The object of the digital 
least-squares-fit convolution procedure is thus the determina-
tion of a set of n coefficients, 

{
p(0)
s

}
 , maybe used with a set 

of uniformly spaced digital data points centred around a data 
point ui, to obtain a smoothed value for the ith point,

or a different set of coefficients, 
{
p
(q)
s

}
 , that give the 

smoothed value of the qth derivative according to,

i = m + 1, ⋯ , N − m + 1 . N is the number of points in the 
array to be smoothed. The coefficients, 

{
p
(q)
s

}
 , can be 

obtained from the following equations.
See Table 3.

Appendix 2

The MATLAB code is listed as follows, and the annotation 
is with the symbol of %.

(18)ui=

m∑
s=−m

p(0)
s
ui+s

(19)
dqu

dxq
=

m∑
s=−m

p(q)
s
ui+s

Table 3  Calculation of p(q)s

q Order of polynomial Equation for p(q)s

0 2 or 3
p(0)
s

=
3(3m2+3m−1−5s2)
(2m+3)(2m+1)(2m−1)

0 4 or 5
p(0)
s

=
(

15

4

)
(15m4+30m3−35m2−50m+12)−35(2m2+2m−3)s2+64s4

(2m+5)(2m+3)(2m+1)(2m−1)(2m−3)

1 2 p(1)
s

=
3s

(2m+1)(m+1)(m)

1 3 or 4
p(1)
s

=
5{5(3m4+6m3−3m+1)s−7(3m2+3m−1) s3}
(2m+3)(2m+1)(2m−1)(m+2)(m+1)(m)(m−1)

1 5 or 6
p(1)
s

=
(
21

4

){
7
(
25m8 + 100m7 − 50m6 − 500m5 − 95m4 + 760m3 + 180m2 − 300m + 72

)
s

− 105
(
6m6 + 18m5 − 15m4 − 60m3 + 17m2 + 50m − 12

)
s3 + 33

(
15m4 + 30m3 − 35m2 − 50m + 12

)
s5
}

÷ {(2m + 5) (2m + 3)(2m + 1)(2m − 1)(2m − 3)(m + 3)(m + 2)(m + 1)(m)(m − 1) (m − 2)}

2 2 or 3
p(2)
s

=
30{3s2−m (m+1)}

(2m+3)(2m+1)(2m−1)(m+1)(m)

2 4 or 4
p(2)
s

=
(

−105

2

)
15(6m2+6m−5)s4−21(4m4+8m3−4m2−8m+5)s2+5m(2m5+6m4−m3−12m2−m+6)

(2m+5)(2m+3)(2m+1)(2m−1)(2m−3)(m+2)(m+1)(m)(m−1)

3 3 or 4
p(3)
s

=
210{5s3−(3m2+3m−1) s}

(2m+3)(2m+1)(2m−1)(m+2)(m+1)(m)(m−1)

3 5 or 6
p(3)
s

=
(
−945

2

){
7
(
6m6 + 18m5 − 15m4 − 60m3 + 17m2 − 50m − 12

)
s

− 15
(
12m4 + 24m3 − 28m2 − 40m + 39

)
s3 + 77

(
2m2 + 2m − 3

)
s5
}

÷ {(2m + 5)(2m + 3)(2m + 1)(2m − 1)(2m − 3) (m + 3)(m + 2)(m + 1)(m)(m − 1) (m − 2)}

4 4 or 5
p(4)
s
=

(1890){3m(m3+2m2−m−2)−5(6m2+6m−5)s2+35s4

(2m+5)(2m+3)(2m+1)(2m−1)(2m−3)(m+2)(m+1)(m)(m−1)

5 5 or 6
p(5)
s

=
(20790){(15m4+30m3−35m2−50m+12)s−35(2m2+2m−3)s3+63s5

(2m+5)(2m+3)(2m+1)(2m−1)(2m−3)(m+3)(m+2)(m+1)(m)(m−1)(m−2)
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