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Abstract
Pore structure characterization and its effect on methane adsorption on shale kerogen are crucial to understanding the fun-
damental mechanisms of gas storage, transport, and reserves evaluation. In this study, we use 3D scanning confocal micros-
copy, scanning electron microscopy (SEM), X-ray nano-computed tomography (nano-CT), and low-pressure N2 adsorption 
analysis to analyze the pore structures of the shale. Additionally, the adsorption behavior of methane on shales with different 
pore structures is investigated by molecular simulations. The results show that the SEM image of the shale sample obviously 
displays four different pore shapes, including slit pore, square pore, triangle pore, and circle pore. The average coordination 
number is 4.21 and the distribution of coordination numbers demonstrates that pores in the shale have high connectivity. 
Compared with the adsorption capacity of methane on triangle pores, the adsorption capacity on slit pore, square pore, 
and circle pore are reduced by 9.86%, 8.55%, and 6.12%, respectively. With increasing pressure, these acute wedges fill in 
a manner different from the right or obtuse angles in the other pores. This study offers a quantitative understanding of the 
effect of pore structure on methane adsorption in the shale and provides better insight into the evaluation of gas storage in 
geologic shale reservoirs.
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1  Introduction

The extraction of gas from shale is regarded as an energy 
game-changer (Hughes 2013). As a transition fuel, shale 
gas offsets reducing of conventional gas production (Vidic 
et al. 2013). Horizontal drilling coupled with multi-stage 
hydraulic fracturing makes it possible to extract hydrocar-
bons from shale reservoirs (Ren et al. 2016; Shi et al. 2019). 
Gas in shale reservoirs mainly exists in three forms: free 
gas, adsorbed gas, and dissolved gas. Particularly, about 
20%‒85% of the total gas-in-place is adsorbed gas (Curtis 
2002). In shale gas production, the desorption of adsorbed 
gas can compensate for the loss of free gas, which is a sig-
nificant reason that shale gas maintains long-term stable pro-
duction (Wang et al. 2019a). Therefore, understanding the 
adsorption of hydrocarbons in shale is essential for reliable 
resource assessment and shale gas recovery.

In general, pores in shale are much smaller than those 
in conventional sandstone reservoirs (Loucks et al. 2012; 
Shen et  al. 2019). Pore structure characterization has 
attracted great attention. Nitrogen adsorption tests are used 
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to measure pore size distribution in shale samples (Feng 
et al. 2018; Groen et al. 2003). Also, the non-local-density 
functional theory is also used to characterize the pore struc-
tures in shale media (Wei et al. 2016). This is considered to 
be a more accurate method for pore characterization when 
taking the entire size distribution of nanopores into account. 
However, these methods of gas physisorption cannot iden-
tify the location of the pores. Small-angle neutron scattering 
and ultrasmall-angle neutron scattering techniques have been 
applied for understanding the porosity characteristics of the 
shale samples (Clarkson et al. 2013; Mastalerz et al. 2012a). 
Scanning electron microscopy (SEM) and atomic force 
microscopy (AFM) are also used to characterize the pores 
in the sample (Javadpour et al. 2012; Tian et al. 2018; Tian 
et al. 2019). Although they can directly reveal the locations 
of the pores, the connectivity of the pores cannot be revealed 
by SEM and AFM. Nano-CT and nano-transmission X-ray 
microscopy are sufficient methods to quantify nanometer 
pore structures in shale (Tiwari et al. 2013). Each of these 
methods has its own advantage and deficiency. In this work, 
both indirect and direct methods are used on shale samples 
to characterize the pore structures.

Adsorbed gas content is an essential parameter to pre-
dict the production of shale reservoirs (Chen et al. 2019; 
Zhou et al. 2018). Methane adsorption has attracted much 
attention to understanding the storage and adsorption mecha-
nisms in shale (Ren et al. 2017; Singh and Cai 2018). Many 
scholars have done much experimental research about this 
problem (Gensterblum et al. 2014; Yuan et al. 2014). Pres-
sure as an external condition is a key parameter of methane 
adsorption on shale. Due to the high-pressure geological 
conditions of shale reservoirs, methane adsorption meas-
ured at relatively low pressures is generally used to predict 
the adsorption at high pressures (Ross and Bustin 2008). 
Accurate measurement of the high-pressure adsorption of 
methane on shale poses a long-stand challenge. Therefore, 
molecular simulation is recently used to study the adsorption 
mechanisms of methane on shale media (Jin and Firoozabadi 
2014; Xiong et al. 2017; Yuan et al. 2015). Grand canonical 
Monte Carlo (GCMC) simulation is used to investigate the 
effect of O/C ratio and oxygen-containing chemical groups 
on methane adsorption capacities in graphitic slits (Liu 
and Wilcox 2012). The moisture content reduces methane 
adsorption on shale (Zhao et al. 2017). The moisture con-
tent in shale reservoirs is increased due to hydraulic frac-
turing. Therefore, the pores and throats can be blocked by 
water, which reduces the methane adsorption capacity on 
shale media (Krooss et al. 2002). Also note that shale with 
more water content has lower gas adsorption than that with-
out water in the pores because water occupied some of the 
adsorption sites in shale (Zou et al. 2018). The influence 
of pore structures on methane adsorption also attracts the 
attention of the researchers. Song et al. (2018) investigated 

the influences of different carbon pore structures on methane 
adsorption by GCMC simulations. In our previous work, 
we also developed a model, which considers the matrix and 
slit nanopores of kerogen, to describe the real shale kerogen 
nanopores and quantify CO2/CH4 competitive adsorption 
(Wang et al. 2018b).

Although great achievements of methane adsorption on 
shale have been made, there are still some problems because 
of the complex adsorption behavior. The first problem is 
lacking comprehensive research on pore structure charac-
terization. Real pores and throats in shale media have com-
plex and variable cross sections. However, they are usually 
approximated as a cylinder of constant cross section. The 
second problem involves the effect of the pore structure on 
methane adsorption in shale kerogen. Often shale adsorption 
ability is represented by the adsorption of methane against 
the specific surface area or pore volume (Wu et al. 2015). 
The ability is also expressed by the adsorption capacity 
per weight of shale (Sharma et al. 2015; Zhai et al. 2014). 
However, the pore size has a great impact on the adsorp-
tion capability of methane on shale samples. In addition, the 
simple models for porous carbon materials, such as graphene 
slit and carbon nanotubes, cannot accurately describe the 
complex kerogen structure (Song et al. 2018). Therefore, 
comprehensive research is required to characterize the pore 
structure and investigate the effect of pore shape on methane 
adsorption.

In this work, we firstly use a 3D scanning confocal 
microscope to characterize the surface topography of shale 
samples. Then, a combination of the SEM and the energy 
dispersive X-ray spectrometry (EDS) is used to characterize 
the pore structure and detect various structural components 
of shale. X-ray nano-CT imaging is performed to quan-
tify nanometer pore structures in shale. Low-pressure N2 
adsorption analysis is used to measure the specific surface 
area, average pore diameter, pore volume, and micro-pore 
volume of four shale samples. In addition, we use GCMC 
simulations to study the adsorption behavior of methane 
on shale with different pore shapes. Finally, we study the 
impacts of water content on the methane adsorption in dif-
ferent pores based on a more realistic model. The scientific 
significance of this work is that we provide an understanding 
of the effects of pore structure on methane adsorption from 
a microscopic perspective and quantify this effect to provide 
better insight into the evaluation of gas storage in geologic 
shale reservoirs.

2 � Materials and methods

Shale samples were collected from Lower Silurian Long-
maxi Formation, which has been the most successfully 
developed shale gas reservoir in China. The total organic 
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carbon (TOC) content of the shale samples is 5.71 wt%. 
The high energy argon ion beam was used to decrease the 
roughness of the shale surface. The topography and rough-
ness of the shale surface were measured with a 3D scanning 
confocal microscope (KEYENCE VK-X100). The distribu-
tions of organic matter (OM) and inorganic matter (IOM) 
were observed with an SEM (Hitachi SU8010) under a high 
vacuum. The compositions of shale samples were analyzed 
by EDS. The nanostructures of shale samples were investi-
gated with an X-ray nano-CT scanner (Ultra XRM-L200 CT, 
Xradia). A cylindrical shale block with a diameter of 65 μm 
was drilled for a CT scan. The scan time and exposure time 
were 32 h and 120 s, respectively. A cubic model, with a side 
length of 38.4 μm, was built through 3D reconstruction tech-
nology. Information about the pore distribution was deter-
mined using the Avizo Fire software, which can obtain the 
3D pore structure of the sample. N2 adsorption/desorption 
experiments were conducted with a Bel-Max high-end volu-
metric gas adsorption instrument. The BELSORP-max was 
used to analyze the surface area and pore size distribution.

3 � Results and discussion

3.1 � Surface topography and composition 
assessment

To make a careful observation, we use the high-energy argon 
ion beam to decrease the roughness of the shale surface. 
After that we use the 3D measurement system to character-
ize the shale surface topography. Figure 1a, b shows the sur-
face topography and height distribution of the shale sample, 
which has a mean surface roughness of 0.785 μm. Further-
more, the microstructures and elemental distribution of the 
shale surface are observed by SEM and EDS. As can be seen 
in Fig. 1c, d, SEM images have shown that the distinction 
between the organic matter and inorganic matter is obvious, 
which indicates that shale is highly heterogeneous at the 
micro-scale. Carbon is a major component of the organic 
matter of shale, while the inorganic matter surface is rich 
in oxygen. The elemental distributions of oxygen, carbon, 
silicon, and aluminum are shown in Fig. 1e, h. On balance, 
the main elements of the shale sample are carbon, oxygen, 
silicon, and aluminum, as shown in Fig. S1 (see electronic 
supplementary material). A similar result is also presented 
by previous research (Wang et al. 2019b). However, these 
elements are slightly different in proportion for different 
shale samples. This is also because of the heterogeneity of 
shale gas reservoirs.

3.2 � Analysis of pore characteristics

The size distribution and shape of shale pores and throats 
determine the reserves and transmission capacity of shale 
gas. Figure 2a plots the nano-CT image of a shale block with 
a diameter of 38.4 μm. The pore size distribution and shape 
factor are determined using the attribute extraction method. 
The red part in Fig. 2b represents the pores and throats. 
The largest maximal balls are identified as pores, while 
the smallest balls are throats (Dong and Blunt 2009). The 
pore network is simplified using the ball-and-stick model, 
and the parameters of pores and throats are obtained. The 
statistical sizes of pores and throats include their inscribed 
radius and shape factors. The statistical comparisons of the 
inscribed radius, shape factors of pores and throats are plot-
ted in Fig. 2c-2d, respectively. The radii of most of the pores 
and throats are less than a micron, including the organic 
pores and inorganic pores in shale media. The peak val-
ues of the radii of pores and throats are 8.22 × 10−8 m and 
1.46 × 10−7 m, respectively. The throat is a continuous chan-
nel between the nanopores and a key parameter of shale 
transport capacity.

The connectivity of the pore network is expressed by 
coordination numbers. The coordination numbers of pores 
and throats are shown in Fig. 3. The average coordination 
number is 4.21 and the distribution of coordination numbers 
demonstrates that the pores in shale samples have high con-
nectivity (Zhang et al. 2015). The presence of pores with 
high connectivity may be attributed to the existence of more 
tortuous paths that join a large number of pores together (Al-
Kharusi and Blunt 2007).

In the previous section, it has been shown that the shale 
samples have complicated pore structures. In this section, 
we are primarily concerned with the quantitative analy-
sis of pore structure parameters. N2 adsorption isotherms 
are used to measure the specific surface area, pore vol-
ume, average pore diameter, and micro-pore volume of 
four shale samples. N2 adsorption isotherms of the four 
shale samples can be seen in Fig. 4. The adsorption and 
desorption isotherms are almost overlapped under rela-
tively low pressures. However, with increasing relative 
pressure, the adsorption and desorption isotherms do not 
overlap, which results in a hysteresis loop. This is because 
the capillary condensation occurs within the meso-pores 
(Sing 1985). N2 adsorption/desorption isotherms with 
hysteresis loops indicate that the shale samples contain 
both meso-pores and macro-pores (Xiong et al. 2015). 
Table 1 displays the pore structure parameters calculated 
by the Brunauer–Emmett–Teller method. The specific 
surface area is 9.83–22.84 m2/g with an average value of 
14.03 m2/g, and the pore volume ranges from 1.34 × 10−2 
to 2.27 × 10−2 cm3/g with an average value of 1.61 × 10−2 
cm3/g. The average pore diameter and micro-pore volume 
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Fig. 1   a Surface topography of the shale sample; b Height distribution of the shale sample; c SEM image of the shale sample; d Local enlarged 
image of the shale sample; e EDX image of O element of the local enlarged image; f EDX image of C element of the local enlarged image; g 
EDX mapping of Si element of the local enlarged image; h EDX mapping of Al element of the local enlarged image
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range from 3.97 to 5.44  nm with an average value of 
4.785 nm and from 3.19 × 10−4 to 4.59 × 10−3 cm3/g with 
an average value of 1.81 × 10−3 cm3/g, respectively. Some 
previously published experimental data (Sun et al. 2016; 
Yang et al. 2016) are also included in Fig. 5 and it can 
be seen that the specific surface area positively correlates 
with the pore volume (Fig. 5a). In contrast, the average 
pore size is in a negative correlation to the pore volume 
and specific surface area (Fig. 5b, c), which is consistent 
with previous studies (Chalmers et al. 2012). In addition, 
the pore shape is also an important factor that affects the 
adsorption capacity of methane on shale, which can be 
observed directly from the SEM image, as shown in Fig. 6. 

The SEM image of the shale sample obviously displays 
four different pore shapes, including slit pore, square pore, 
triangle pore, and circle pore. We use GCMC simulations 
to study the adsorption behavior of methane on shale with 
these four pore shapes.

4 � Molecular simulation

4.1 � Models and methodology

The kerogen model is built by Ungerer et al. (2014) based 
on the experimental data (Kelemen et al. 2007), as shown in 
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Fig. 7a. The composition of the kerogen is C251H385O13N7S3. 
It is typical of kerogen deposited in excellent conditions of 
preservation, such as anoxic lacustrine environments, and it 
is classified as immature based on its hydrocarbon genera-
tion (Ungerer et al. 2014). The parameters of the molecular 
model match analytical data well with reasonable accuracy, 
as indicated in Table S1 (see electronic supplementary mate-
rial). We use 10 kerogen molecules to build a kerogen cell, 
as shown in Fig. 7b. In our previous work, we have vali-
dated the molecular model with the experimental data from 
the literature (Wang et al. 2018b). The density is 1.097 g/
cm3, which is in agreement with the measured result rang-
ing from 1.0 g/cm3 to 1.15 g/cm3 (Mastalerz et al. 2012b). 
In this work, we modify the kerogen model with different 
pore shapes compatible with SEM images. Figure 8 plots the 
kerogen models with different pore shapes. Different pore 
shapes have the same pore volume, which means the matrix 
volumes are the same. The diameter of the circle pore is 
2 nm. The volume of the circle pore is 3.9825π nm3, and 
thus, the surface areas of the slit pore, square pore, triangle 
pore, and the circle pore are 38.0038, 28.2351, 27.7895, and 
25.0220 nm2, respectively, as shown in Table 2. The adsorp-
tion isotherms of methane on shale kerogen are simulated 
by the GCMC method, and the COMPASS (Sun 1998) force 
field is adopted for all simulations. For the nonbonding inter-
actions, we use the Ewald method and the Lennard-Jones 
9-6 potential to describe the electrostatic potential and the 
vdW interaction, respectively. In the GCMC simulation, the 
chemical potential is a function of fugacity. The fugacity of 
methane is calculated by the Peng-Robinson equation (Pol-
ing et al. 2001).

4.2 � Adsorption isotherms of methane on shale

Four molecular models are constructed to study the effect of 
pore shapes on methane adsorption on shale kerogen. The 
adsorption isotherms of methane on the slit pore, square 
pore, triangle pore, and the circle pore of shale are calcu-
lated to study the effects of the pore structure. The absolute 
adsorption capacities and excess adsorption capacities are 
plotted in Fig. 9. The excess adsorption capacities are calcu-
lated by the following equation (Wang et al. 2018a):

where na is the absolute adsorption capacity, mol/kg; ne is 
the excess adsorption capacity, mol/kg; ρ is the equilibrium 
density of methane, kg/m3; Va is the adsorption volume, m3/
kg; M is the molar mass of methane, kg/mol.

Taken the absolute and excess adsorption isotherms of the 
slit pore as an example. At 30 MPa, the absolute adsorption 
capacities are 7.21, 6.82, 6.28, and 5.89 mmol/g at 298, 328, 
358, and 388 K, respectively. This indicates that the abso-
lute methane adsorption capacity increases with increasing 
pressure, while decreases with increasing temperature. This 
is because the adsorption of methane on shale is an exo-
thermic process (Hao et al. 2013). The absolute adsorption 
increases sharply at low pressures. However, with increasing 
pressure, the absolute adsorption increases slowly. This indi-
cates that as the pressure decreases, the methane desorption 
increases. In the shale gas production, the loss of produc-
tion due to decreased reservoir pressure is compensated by 
desorption of adsorbed gas, which may be one of the reasons 
that the shale gas maintains a long-term stable production 
(Wang et al. 2018b). For excess adsorption of methane, 
with increasing pressure, the excess adsorption increases, 
and then decreases gradually to converge. The adsorption 
capacities of methane on other shapes of shale pores also 
follow this trend.

4.3 � Analysis of pore structure effects

The pore structure affects the methane adsorption on shale. 
In this section, we study the effect of pore shape on methane 
adsorption on shale nano-pores. Figure 10 depicts the abso-
lute and excess adsorption of methane on different pores of 
kerogen. The absolute adsorption at 30 MPa on triangle pore 
is 7.93 mmol/g at 298 K, and that on the slit pore, square 
pore, and the circle pore are 7.21, 7.30, and 7.46 mmol/g, 
respectively. The adsorption capacity of methane on the tri-
angle pore is larger than that on the slit pore, square pore, 
and the circle pore. This phenomenon is also observed for 
carbon pore structures (Song et al. 2018). Specifically, com-
pared with the adsorption capacity of methane on the tri-
angle pore, the adsorption capacity of methane on the slit 
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pore, square pore, and the circle pore are reduced by 9.86%, 
8.55%, and 6.12%, respectively. The adsorption capacity of 
methane on the triangle pore is larger than that on the slit 
pore, square pore, and the circle pore. Figure 11 depicts the 
distributions of methane molecules in four different pores at 
1 MPa and 388 K. Methane molecules distribute randomly 
in slit pores, as shown in Fig. 11a. Particularly, Fig. 11b, 

c indicates that methane molecules prefer to adsorb near 
the corner. In Fig. 11d, we can see that methane molecules 
adsorb on the surface of the circle pore. The main differ-
ence between the triangle pore and other shapes is that the 
presence of acute angles which form wedges along the pore 
length. With increasing pressure, the acute wedges fill in a 
manner different from the right or obtuse angles found in the 
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Table 1   Pore structure parameters of shale samples

Sample No. Specific surface area, m2 g−1 Pore volume, cm3 g−1 Average pore diameter, nm Micropore vol-
ume, cm3 g−1

L-1 22.84 2.27 × 10−2 3.97 4.59 × 10−3

L-2 10.52 1.38 × 10−2 5.23 7.66 × 10−4

L-3 9.83 1.34 × 10−2 5.44 3.19 × 10−4

L-4 12.93 1.46 × 10−2 4.50 1.59 × 10−3
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other pores (Malanoski and van Swol 2002b). It is also pre-
sented by Malanoski and van Swol (2002a) that more adsor-
bent adsorbed near the acute angle corner, which results in 
the reduction of variation in the curvature of the pore film. 
Figure 12 depicts the methane distributions in triangle pores 
at different pressures. It can be noticed that methane mol-
ecules adsorb in both the kerogen matrix and triangle pores. 
Particularly, Fig. 12b indicates that methane molecules pre-
fer to adsorb near the corner at low pressures. With the pres-
sure increases, the methane adsorption in the triangle pore 
increases, and there are more methane molecules adsorbed 
in the center area of triangle pores. The excess adsorption 
isotherms simulated by the Song et al. (2018) show a nota-
ble difference for different pore structures. This is because 
different pore structures have different pore volumes. The 
pore volume amplifies the difference between absolute 
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adsorption and excess adsorption, and the effect causes a 
significant decrease in the excess adsorption of circle and 
square pores. In the present work, because the effect of the 
pore volume is eliminated, the excess adsorption on shales 
with different pore structures have slight different values. 
As the temperature increases, the differences between the 
adsorption of various shapes decrease gradually. When the 
gas temperature rises to 388 K, the adsorption capacities of 
methane on the slit pore, square pore, and the circle pore 
are reduced by 4.23%, 7.61%, and 4.64%, respectively. This 
can be explained by the fact that the effect of temperature is 
more prominent with high adsorption capacity.

To quantify the effect of the water content on adsorption 
capacities of methane on different shaped pores, methane 

adsorption at 30 MPa is simulated, as shown in Fig. 13a. Com-
pared with the results of previous research (Gasparik et al. 
2013; Zhang et al. 2014; Zhao et al. 2017), water contents 
in moisture kerogen models are 0.6, 1.2, 1.8 and 2.4 wt%, 
respectively. The methane adsorption on all different pores 
decreases with increasing water content. Taken the methane 
adsorption in the triangle pore as an example, in 0.6, 1.2, 1.8, 
and 2.4 wt% moisture kerogen models, the methane adsorp-
tion capacities are 7.58, 7.31, 6.89, and 6.67 mmol/g, respec-
tively, at 30 MPa. Compared with the adsorption capacity of 
methane on the kerogen model without water, the adsorption 
capacities on the moisture kerogen models reduce by 4.22%, 
7.62%, 12.94%, and 15.67%, respectively. The pore shapes also 
affect the adsorption capacity of methane on moisture kerogen 
models. The adsorption of methane on the triangle pores is less 
affected by water content than other pore shapes. For differ-
ent pore shapes, the methane adsorption capacities decrease 
by about 18.47%, 17.20%, 15.74%, and 17.40%, respectively 
on the slit pore, square pore, triangle pore, and circle pore 
models with a water content of 2.4 wt% at 388 K. This is 
because the triangle pores have the largest methane adsorption 
capacity without the water content. Wang et al. did simulations 
(Wang et al. 2018b) to investigate the effects of water content 
on methane adsorption and concluded that water molecules 
adsorb in the kerogen matrix and decrease the pore volume.
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Fig. 7   a Kerogen molecule used in this work; b Model of the kerogen cell; c Density of the kerogen cell

Fig. 8   Visualization of constructed kerogen pore structures. a Slit pore; b Square pore; c Triangle pore; d Circle pore

Table 2   Pore structure parameters of shale samples

a Surface area is rounded to four decimal places

Pore shape Pore volume, nm3 Surface areaa, nm2

Slit pore 3.9825π 38.0038
Square pore 3.9825π 28.2351
Triangle pore 3.9825π 27.7895
Circle pore 3.9825π 25.0220
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5 � Conclusions

A series of experimental techniques, such as SEM, 3D scan-
ning confocal microscopy, X-ray nano-CT, and low-pressure 
N2 adsorption analysis, are performed on the shale samples 
to characterize pore structures. Additionally, the adsorption 
behavior of methane on shale with different pore structures 
are studied by GCMC simulations. Through the experimen-
tal and simulation studies, major findings are summarized 
as follows.

(1)	 The distinction between the organic matter and inor-
ganic matter is obvious, which indicates that shale is 
highly heterogeneous at the micro-scale. Carbon is a 

major component of the organic matter of shale, while 
the inorganic matter surface is rich in oxygen. In addi-
tion, four different pores are observed on the SEM 
image of the shale sample, including slit pore, square 
pore, triangle pore, and circle pore.

(2)	 The radii of most of the pores and throats are less than 
a micron, including the organic pores and inorganic 
pores in shale media. The peak values of the radii of 
pores and throats are 8.22 × 10−8 m and 1.46 × 10−7 m, 
respectively. The average coordination number is 4.21 
and the distribution of coordination numbers demon-
strates that there are some pores with high connectivity.

(3)	 Compared with the adsorption capacity of methane on 
triangle pores, the adsorption capacity of methane on 
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Fig. 9   Absolute and excess adsorption isotherms at different temperatures. a Slit pore; b Square pore; c Triangle pore; d Circle pore
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Fig. 11   Snapshots of the methane in different pores. a Slit pore; b Square pore; c Triangle pore; d Circle pore. The yellow part represents meth-
ane and to facilitate the observation, we magnified the methane molecules
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slit pore, square pore, and circle pore is reduced by 
9.86%, 8.55%, and 6.12%, respectively. With increasing 
pressure, these acute wedges fill in a manner different 
from the right or obtuse angles found in the other pores. 
As the temperature increases, the differences between 
the adsorption on various structures decrease gradually. 
When the gas temperature rises to 388 K, the adsorp-
tion capacity of methane on the slit pore, square pore, 
and the circle pore is reduced by 4.23%, 7.61%, and 
4.64%, respectively.

(4)	 Methane adsorption on all different pores decreases 
with increasing water content. The adsorption of meth-
ane adsorption on triangle pores is less affected by the 
water content than other pore shapes.
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