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Abstract
The Middle Ordovician subsalt Majiagou Formation in the Ordos Basin comprises pervasively dolomitized shallow marine 
limestone and is a major reservoir rich in natural gas resources. Four types of dolomite matrix and cement were identified 
based on petrographic textures: (very) finely crystalline, non-planar to planar-s matrix dolomite (Md1); finely to medium 
crystalline, planar-s to planar-e matrix dolomite (Md2); microbialites comprising dolomite microcrystals (Md3); and finely 
to coarsely crystalline dolomite cement (Cd). The Md1 and Md2 dolomites were controlled by alternating lagoon-shoal 
facies and have δ13C values (− 1.89 to + 1.45‰ VPDB for Md1, − 1.35 to + 0.42‰ VPDB for Md2) that fall within or 
are slightly higher than the coeval seawater, suggesting the dolomitizing fluid of evaporated seawater. Md2 dolomite was 
then subjected to penecontemporaneous karstification by meteoric water and burial recrystallization by sealed brines dur-
ing diagenesis, as indicated by its relatively lower δ18O values (− 8.89 to − 5.73‰ VPDB) and higher 87Sr/86Sr ratios 
(0.708920–0.710199). Md3 dolomite comprises thrombolite and stromatolite and is interpreted to form by a combination 
of initial microbial mediation and later replacive dolomitization related to evaporated seawater. Cd dolomite was associ-
ated with early-formed karst system in the Md2 host dolomite. The lowest δ18O values (− 11.78 to − 10.18‰ VPDB) and 
87Sr/86Sr ratios (0.708688–0.708725) and fluid inclusion data (Th: 123–175 °C) indicate involvement of hydrothermal fluid 
from which the Cd dolomite precipitated during deep burial. These results reveal the multi-stage dolomitization history of 
the Majiagou Formation and provide new constraints on fluid origins and dolomites evolution during deep burial in old 
superimposed basins, such as the Ordos Basin and elsewhere.
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1 Introduction

The origins of dolomites and dolomitizing fluids have been 
widely investigated. Various models for dolomitization have 
been proposed to account for the ubiquitous occurrences of 
dolomite in the geological record, including evaporative, 
seepage–reflux, mixing zone, burial, hydrothermal, and 
microbial mechanisms (e.g., Friedman and Sanders 1967; 
Badiozamani 1973; Hsü and Schneider 1973; Garven et al. 
1999; Davies and Smith 2006; Bontognali et al. 2012). The 
origins of dolomitizing fluids and their migration pathways 
are among the most hotly debated subjects (Boni et al. 2000; 
Huang et al. 2014; Wang et al. 2014; Jiang et al. 2016). Due 
to multiple stages of tectonism and diagenesis, the dolomiti-
zation history of the Paleozoic basins of western China is 
complex and difficult to explain with a single model. Early-
formed dolomite and its geochemical signal are also likely 
to be overprinted by multiple diagenetic fluids associated 
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with a complex burial and tectonic history, which limits 
our understanding of the deep burial history of dolomite 
reservoirs.

Due to the abundant gas resources in the Ordos Basin, 
particularly the subsalt Majiagou Formation reservoir with 
proven natural gas reserves of > 200 × 109 m3 (He et al. 
2009), numerous studies have been conducted on the Ordo-
vician Majiagou Formation dolomites. A number of mod-
els have been proposed, including penecontemporaneous 
dolomitization (Han and Xin 1995; He et al. 2014), burial 
dolomitization (Su et al. 2011; Chen et al. 2018; Fu et al. 
2019), mixed-water dolomitization (Zhao et al. 2005), and 
localized hydrothermal dolomitization (Wang et al. 2009; 
Huang et al. 2011). These studies provide important basis 
for understanding the origins of dolomites in the Majiagou 
Formation. Nevertheless, most of these studies did not con-
sider the multi-stage evolution and alteration that might have 
occurred due to multiple and diverse dolomitizing fluids. For 
example, Yao et al. (2009) and Yang et al. (2018) suggested 
that the dolomite reservoir in the Majiagou Formation was 
the product of volume-decreasing dolomitization related to 
burial brines from Upper Carboniferous strata. However, 
a relatively closed diagenetic system in a burial environ-
ment would appear to be incompatible with the continuous 
exchange of large quantities of diagenetic fluids, which is 
the prerequisite for large-scale dolomitization (Warren 2000; 
Ehrenberg et al. 2012). Burial dolomitization may also be 
suppressed by existing barriers (e.g., mudstones and evapo-
rites) in moderate–deep burial environments, as these limit 
the convection or deep circulation of basinal brines (Bjør-
lykke et al. 1988; Huang et al. 2006). Besides, the relation-
ship between dolomitization and porosity formation is still 
controversial, as there is currently no convincing evidence 
showing that porosity directly results from volume-decreas-
ing dolomitization.

This study presents a comprehensive investigation of 
dolomitizing fluids and dolomites evolution in the multi-
stage diagenetic history of the Ordovician subsalt Majiagou 
Formation. Detailed petrographic observations, C–O–Sr iso-
topic data, and fluid inclusion microthermometry data are 
utilized to: (1) define the dolomite types and their petrologi-
cal and geochemical characteristics; (2) constrain the origins 
of the dolomitizing fluids and reconstruct the dolomitization 
history; (3) determine the exploration targets of the subsalt 
Majiagou Formation dolomite.

2  Geological setting

2.1  Stratigraphy and depositional setting

The Ordos Basin is a large superimposed petroliferous 
basin located in the western North China Block. During the 

Middle Ordovician, the Ordos Basin was in a semi-closed 
epicontinental sea environment (Feng et al. 1999; Hou et al. 
2002; Chen et al. 2020) and underwent coeval uplift and sub-
sidence sag (Fig. 1a). The two major tectonic units, which 
are the Central Uplift and Shanbei Depression, significantly 
controlled the paleogeography and depositional environment 
in the central Ordos Basin. Due to compressional tectonic 
events at the periphery of the North China Block, the basin 
experienced periodic sea level regressions and evaporatic 
environments during the Middle Ordovician (Shi et al. 2009; 
Zhang et al. 2015; Chen et al. 2019). As such, the sedi-
mentary environment of the studied samples was of a semi-
closed to evaporatic shallow marine, characterized mainly 
by intraplatform shoals and restricted–evaporatic lagoons 
(Fig. 1b) (Liu et al. 2018; Xiao et al. 2019a; Xiong et al. 
2020).

Ten sub-members comprise the fifth member of Majia-
gou Formation (Shi et al. 2009). In particular, the sixth sub-
member (i.e.,  Ma56) is dominated by massive anhydrite–salt 
layers that are widely distributed across the whole basin and 
constitute an important caprock for the subsalt reservoir (i.e., 
 Ma57 to  Ma510). The subsalt Ma5 reservoir is generally char-
acterized by interbedded carbonate and gypsiferous rocks 
(Fig. 2), corresponding to episodic transgressive–regressive 
cycles (Chen et al. 2017; Xia et al. 2007; Xiong et al. 2019). 
The eighth and tenth sub-members were dominantly depos-
ited in a restricted–evaporatic lagoon and comprise gypsifer-
ous rocks interpreted to have been deposited in a dry climate 
and high salinity conditions. The seventh and ninth sub-
members consist mainly of carbonate successions deposited 
during intermittent marine transgressions (Shi et al. 2009; 
Xie et al. 2013). Intraplatform shoals and microbial mounds 
occur in the carbonate successions (Fig. 3) and are the most 
important reservoir rocks (Yao et al. 2009; Liu et al. 2018).

2.2  Burial history and tectonism

After deposition of the Majiagou Formation, the basin expe-
rienced a protracted burial history and tectonic evolution. 
Since the Middle Ordovician Caledonian orogeny, the North 
China Block has been generally uplifted and exposed to a 
subaerial environment. Intense weathering and erosion of 
the Ordovician carbonates lasted for ca. 150 Myr (Chen 
et al. 2020), which led to large-scale karstification (Feng 
et al. 1999). Thus, large amounts of dissolved pores and vugs 
were formed in the upper part of Majiagou Formation during 
this stage. By the late Carboniferous, the North China Block 
was slowly subsiding and continental-type clastic deposi-
tion occurred (Wang and Al-Aasm 2002). The Ordovician 
carbonates are disconformably overlain by Upper Carbon-
iferous strata. During the Late Jurassic, uplift occurred in 
the Ordos Basin due to the Yanshanian orogeny and com-
pression in the Qilian tectonic domain, which also led to 
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intense magmatism (Yao et al. 2009). During this stage, the 
Ordovician carbonates were subjected to a new phase of 
uplift, and three, large-scale, deep fluid upwelling events 
have been documented at the west margin of Ordos Basin 
(Wan et al. 2006).

3  Materials and methods

This study is based on samples collected from 26 boreholes 
in the Ordovician subsalt Majiagou Formation in the central 
Ordos Basin. Petrographic observations were conducted on 

all core samples and 350 thin sections, which were half-
stained with a mixture of Alizarin-red S and potassium 
ferricyanide to distinguish calcite and dolomite. Cathodo-
luminescence (CL) analysis of 30 representative polished 
thin-sections was undertaken at the School of Geoscience 
and Technology, Southwest Petroleum University, Chengdu, 
China, using a CL microscope (Model CL8200 MK5) oper-
ated at 7–10 kV and 400–500 mA.

Based on petrographic observations, 59 and 17 micro-
samples (20–100 mg) representing different dolomite 
types were obtained for stable C–O and radiogenic Sr 
isotope analyses, respectively. In order to obtain different 
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Fig. 1  a Paleogeography of the North China Block and structural map of the Ordos Basin (modified from Chen et al. 2018). The study area is 
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fabrics of the matrix and cement dolomites, a low-speed 
microdrill (drill bit diameter < 1 mm) was used to care-
fully extract dolomite powders from the fresh core sam-
ples. The isotope analyses were undertaken at the Labora-
tory Center, PetroChina Hangzhou Research Institute of 
Geology, Hangzhou, China. Dolomite powders for δ13C 
and δ18O analysis were reacted with anhydrous phos-
phoric acid at 72 °C for 2 h (Viladkar and Schidlowski 
2000), and then, the produced  CO2 was analyzed using a 
Gasbench device connected to a Finnigan Delta V Advan-
tage mass spectrometer. The results are expressed in per 
mil (‰) relative to the VPDB standard, and the analytical 
precision was better than ± 0.1‰ (1σ). Dolomite powders 
for Sr isotope analysis were dissolved in hydrochloric acid 
(2.5 N HCl; 90 °C). Strontium was then separated using 
conventional ion exchange techniques as described in 
Weis et al. (2006). 87Sr/86Sr ratios were measured with a 
Finnigan TRITON PLUS thermal ionization mass spec-
trometer. Analytical precision of the Sr isotopic measure-
ments was monitored by repeated analysis of NBS-987 
and was better than ± 0.000015 (2σ).

Homogenization temperatures  (Th) of primary fluid inclu-
sions were determined on selected doubly polished thin sec-
tions (60 μm thick) at the School of Geoscience and Tech-
nology, Southwest Petroleum University, Chengdu, China. 
The fluid inclusions were analyzed with a Linkam THMSG-
600 heating–cooling stage, following the methods described 
in Lu et al. (2017).

4  Results

4.1  Dolomite petrography

4.1.1  (Very) finely crystalline, non‑planar to planar‑s matrix 
dolomite (Md1)

This type of dolomite occurs widely in the subsalt Majia-
gou Formation, but is mostly well-developed in the  Ma58 
and  Ma510 sub-members or in the lower part of meter-scale 
cycles (Figs. 2, 3). Md1 dolomite is gray to dark gray in 
color in the cores and has a laminated structure (Fig. 4a). 
In thin section, Md1 dolomite crystals are 5–50 μm in size, 
with non-planar to planar-s textures, and are usually associ-
ated with evaporite mineral. The anhydrite contents of the 
rocks are variable, but commonly 5–30 vol% (Fig. 4b). Some 
scattered pyrites occur occasionally associated with the Md1 
dolomite (Fig. 4c). Under CL, the Md1 dolomite typically 
exhibits no to very dull red luminescence (Fig. 4d).

4.1.2  Finely to medium crystalline, planar‑s to planar‑e 
matrix dolomite (Md2)

Md2 dolomite occurs mainly in the  Ma57 and  Ma59 sub-
members and is distributed in the middle–upper parts of 
meter-scale cycles (Figs. 2, 3). In core samples, Md2 is light 
brown to brown–green in color, medium to thick bedded, 
and not laminated (Fig. 4e). In thin section, the Md2 dolo-
mite has a poikilotopic texture, with euhedral to subhedral 
crystals that are 50–200 μm in size (Fig. 4f). No evapo-
rite minerals are associated with the Md2 dolomite. The 
relatively coarse crystals generally have a cloudy center 
surrounded by a clear rim, and relict textures of precursor 
grains are common. Locally, the finely to medium crystal-
line dolomite crystals are cut by stylolites filled with clay 
and organic matter. Intercrystalline (dissolved) pores with 
associated vadose fillings are widely developed in this type 
of dolomite (Fig. 4g). The Md2 dolomite has a similar very 
dull red luminescence as Md1 under cold CL, but the over-
growth zoning of Md2 dolomite crystals is different. The 
rims display a brighter red luminescence than the interiors 
of crystals (Fig. 4h).

4.1.3  Dolomite microcrystals in microbialites (Md3)

Microbialites are well-developed in the subsalt Ma5 res-
ervoir (Fig. 3) and comprise two types of microbial struc-
tures (i.e., thrombolite and stromatolite). Thrombolite is 
dark brown in the cores (Fig. 4i) and is characterized by the 
ubiquitous presence of microcrystalline dolomite (Md3) in 
thin-section. These dense sub-micron-sized crystals usually 
form organic-rich clusters, and the framework structures 
are commonly infilled by slightly coarser dolomite crystals 
(microsparry dolomite) (Fig. 4j).

Stromatolite is characterized by regular repetitions of 
thin layers consisting of two different components, and 
each growth lamina is generally mm to cm thick. Plate-like 
and small corrugated stromatolites are the most commonly 
observed types (Fig. 4k). In thin section, the stromatolite 
laminations comprise alternating layers of dark gray micro-
crystalline dolomite (Md3) and light gray, (very) finely crys-
talline dolomite (Fig. 4l). The dark layers vary in thickness 
from 50 to 100 μm, and the light layers are 200–500 μm 
thick. Occasional laminated fenestral pores occur between 
the dark layers.

4.1.4  Finely to coarsely crystalline dolomite cement (Cd)

The Cd dolomite consists of 200–2 mm-sized coarse dolo-
mite crystals, which generally occur as infillings of dis-
solution vugs and fenestral pores in the matrix dolomites. 
These dolomite crystals are commonly planar euhedral to 
subhedral, along with some non-planar saddle dolomite with 
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blade-like terminations or curved crystal surfaces (Fig. 5a, 
b). These crystals often show strong undulatory extinction 
under cross-polarized light (Fig. 5b) and display bright red 

luminescence under CL (Fig. 5c). Besides, minerals such as 
quartz (Fig. 5d), fluorite (Fig. 5e), and pyrite are also found 
in the vugs accompanied with Cd dolomite.

400 µm
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Anhydrite beds

Md1

500 µm 200 µm

2 cm 500 µm

Md2Vadose fillings

500 µm 400 µm 2 cm

500 µm 2 cm 500 µm
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(g) (h) (i)

(j) (k) (l)

Fig. 4  Petrographic features of matrix dolomite (Md1, Md2 and Md3). a Md1 dolomite intercalated with laminated anhydrite beds, Well J2, 
3585.10 m, core. b Md1 dolomite with needle-shaped anhydrite crystals and layers (yellow arrows), Well J2, 3611.25 m, plane-polarized light 
(PPL). c Scattered pyrite (green arrows) within Md1 dolomite, Well J2, 3602.55  m, PPL. d Coupled optical and cathodoluminescence pho-
tomicrographs of Md1 dolomite, showing very dull red luminescence, Well T76, 3725.78 m. e Finely to medium crystalline dolomite (Md2) 
with thick-bedded structure, Well JT1, 3674.77 m, core. f Finely to medium crystalline dolomite with euhedral to subhedral crystals and well-
developed intercrystalline pores. Relict textures of precursor grains (yellow arrows) can be vaguely discerned, Well JT1, 3674.64 m, PPL. g 
Dissolved vugs in Md2 dolomite, half-filled by vadose fillings and coarsely crystalline dolomite cement, Well J2, 3590.76 m, PPL. h Coupled 
optical and cathodoluminescence photomicrographs of Md2 dolomite. The mother crystals display very dull red luminescence, while the growth 
zones (green arrows) show lighter red luminescence, Well JT1, 3674.57 m. i Thrombolite with massive structure, Well J2, 3589.66 m, core. j 
Framework structure of thrombolite, composed of dense microcrystals (Md3) with bushy clot clusters. The pore network (green arrows) is full-
filled by microsparry dolomite, Well JT1, 3657.09 m, PPL. k Plate-like stromatolite with alternating laminated structure (yellow arrows), WT60, 
3483.63 m, core. l Stromatolitic laminae formed of alternating layers of dark gray microcrystalline dolomite (Md3) and light gray microsparry 
dolomite, Well S310, 4126.54 m, PPL
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4.2  Pore characteristics

A variety of pores are present in the studied samples, such 
as intercrystalline pores (Fig.  5f), intergranular pores 
(Fig. 5g), fenestral pores (Fig. 5h), and dissolution vugs 
(Fig. 5i). Intercrystalline pores form the major reservoir 
space in the subsalt Majiagou Formation and have become 
the optimal targets for natural gas exploration due to their 
excellent reservoir capacity. These intercrystalline pores, 
which are widely developed in the Md2 dolomite, are gen-
erally polygonal and 0.1–2.0 mm in size (Fig. 5f). In con-
trast to other pores, the intercrystalline pores are mostly 
well-preserved and have relatively higher porosities of 
4–10%. The distribution of intercrystalline pores is closely 

related to the initial grainstone (Fig. 4f), as shown by the 
relict textures of precursor grains in the Md2 dolomite.

4.3  Geochemistry and microthermometry

4.3.1  Carbon and oxygen isotopes

Carbon and oxygen isotope data for the subsalt Ma5 dolo-
mite are plotted in Fig. 6a and listed in Table 1. Fifty-seven 
samples of matrix dolomite yielded δ13C values from 
− 1.89‰ to + 1.94‰ VPDB (Md1 = − 1.89‰ to + 1.45‰, 
Md2 = − 1.35‰ to + 0.42‰, and Md3 = − 0.56‰ 
to + 1.94‰) and δ18O values from − 8.89‰ to − 5.73‰ 
VPDB (Md1 = − 7.95‰ to − 5.83‰, Md2 = − 8.89‰ 

Md2
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Qtz EDS3
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Cd
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Fl Cd

EDS1

Dissolution vugs and
vadose fillings
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Fig. 5  Petrographic features of cement dolomite (Cd) and pores. a Coarsely crystalline dolomite cement in dissolved vugs, showing planar euhe-
dral crystals, Well T38, 3630.16 m, PPL. b Saddle Cd dolomite and accompanied fluorite. Note the undulatory extinction (yellow arrow) of non-
planar saddle dolomite with curved crystal surfaces and complete extinction of fluorite (red arrow) under cross-polarized light (CPL), Well J2, 
3591.14 m. c Coupled cathodoluminescence photomicrograph of c showing dull red luminescence of Md2 dolomite, bright red luminescence of 
Cd dolomite and blue luminescence of fluorite. d Back scattered electron image and energy-dispersive spectrometer (EDS) of Cd dolomite and 
accompanied quartz (Qtz), Well J4, 3672.8 m. e Back-scattered electron image and energy-dispersive spectrometer of Cd dolomite and accompa-
nied fluorite (Fl), Well J2, 3591.14 m. f Numerous intercrystalline pores in Md2 dolomite, with irregular shapes, Well Tao38, 3630.56 m, PPL. g 
Intergranular pores in grain dolomite, Well Tao38, 3612.95 m, PPL. h Fenestral pores (green arrows) occur between the dark layers in stromato-
lite, Well T60, 3483.63 m, PPL. i Dissolved vugs in Md2 dolomite, half-filled by vadose fillings, Well Jin2, 3591.72 m, PPL
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to − 5.73‰, and Md3 = − 8.41‰ to − 6.61‰). δ13C val-
ues of thrombolite (+ 0.37‰ to + 1.94‰ VPDB; aver-
age =  + 1.21‰; n = 11) are significantly higher than 
those of stromatolite (− 0.56‰ to + 0.12‰ VPDB; aver-
age = − 0.16‰; n = 3) in the Md3 dolomite. There were 
only two samples of dolomite cement available for C–O 
isotope analysis, which yielded δ13C values from − 1.56‰ 
to − 1.36‰ VPDB and δ18O values from − 11.78‰ to 
− 10.18‰ VPDB, respectively, which are lower than the 
matrix dolomite.

4.3.2  Strontium isotope

Fifteen dolomite matrix and two dolomite cement sam-
ples analyzed for C–O isotopes were also selected for 
Sr isotopic analysis (Fig.  6b; Table  1). 87Sr/86Sr ratios 
for the matrix dolomite range from 0.708811 from 
0.710199 (average = 0.709190; n = 15). Md1 dolomite 
has 87Sr/86Sr = 0.708811–0.709605 (average = 0.709117; 
n = 3). Md2 dolomite has 87Sr/86Sr = 0.708920–0.710199 
(average = 0.709310; n  = 6), which tends to be 
higher than that of Md1 dolomite. Md3 dolomite has 
87Sr/86Sr = 0.708913–0.709474 (average = 0.709106; n = 6). 
87Sr/86Sr ratios for dolomite cement vary from 0.708688 to 
0.708725 (average = 0.708706; n = 2), which are lower than 
those of matrix dolomite.

4.3.3  Fluid inclusions

Microthermometry was undertaken on 25 two-phase (liq-
uid–vapor) primary aqueous fluid inclusions in Md2 (n = 9) 
and Cd dolomite (n = 16) (Fig. 7a, b). Fluid inclusions in 
Md2 dolomite occur mostly along growth zones, while Cd 
dolomite has a broader distribution of fluid inclusions in 
growth zones, clusters, random populations, microfractures, 
or trails that crosscut crystal boundaries. Fluid inclusions 
in microfractures and trails were not analyzed, since these 
inclusions are generally considered to be of secondary 

origin (Goldstein 2001; Lu et al. 2017). All the analyzed 
liquid–vapor fluid inclusions have variable shapes (elon-
gate or irregular), are generally 3–10 μm in size, and the 
vapor phase comprises 10–15 vol% of the inclusion volumes. 
Homogenization temperatures  (Th) in the Md2 and Cd dolo-
mite types vary from 51.5 to 79.8 °C (average = 66.9 °C; 
n = 9) and 123–175 °C (average = 143.2 °C; n = 16), respec-
tively (Fig. 7c). Unfortunately, microthermometry was not 
conducted on the Md1 and Md3 dolomite types, as no liq-
uid–vapor fluid inclusions were found in these dolomite 
types.

5  Discussion

5.1  Origins of the dolomitizing fluids

5.1.1  Md1 dolomite

Very finely microcrystalline dolomite with anhedral to sub-
hedral texture is commonly linked to penecontemporaneous 
to near-surface dolomitization at low temperatures (Gregg 
and Sibley 1984; Warren 2000; Meister et al. 2013; Guo 
et al. 2016). The Md1 dolomite is laterally continuous and, 
in some cases, intercalated with laminated anhydrite beds 
(Figs. 3, 4a), which is consistent with the characteristics 
of stratiform dolomites formed in evaporatic environments 
(Warren 2000; Guo et al. 2016; Mahboubi et al. 2016). This 
also indicates a possible relationship between the dolomitiz-
ing fluids and evaporated seawater. The dark red to very dull 
luminescence of Md1 dolomite was likely to result from 
extremely low Fe and Mn concentrations in seawater (Xiao 
et al. 2020).

δ13C values of the Md1 dolomite are similar to those 
of Middle Ordovician seawater (− 2‰ to + 0.5‰ VPDB; 
Veizer et al. 1999) (Fig. 6a), suggesting that the dolomitizing 
fluids originated largely from coeval seawater. Some samples 
from the  Ma58 and  Ma510 dolomites have high δ13C values 
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and high anhydrite contents, which are likely to be related to 
evaporated seawater. During these two periods, high-density 
brine and water stratification caused by evaporation could 
have formed in a relatively reducing environment near the 
seawater–sediment interface. In such restricted and oxygen-
deficient conditions, the degradation of isotopically light 
carbon from organic matter in the water would have been 
significantly inhibited (Kelts and Talbot 1990). This results 
in higher δ13C values of the evaporated seawater, as less 
12C was released into the water (Nicolaides 1997; Reinhold 
1998). δ18O values of the Md1 dolomite are slightly lighter 
as compared with Middle Ordovician seawater (− 6.6‰ to 
− 4.0‰ VPDB; Veizer et al. 1999). This is a widespread 
feature of many ancient dolomites, which reflects the effect 
of slightly elevated temperatures on oxygen isotopic frac-
tionation during burial (Nielsen et al. 1994; Guo et al. 2016). 
Petrographic observations also identified neomorphism of 
the Md1 dolomite, as shown by the slightly coarser crystals 
than modern counterparts, which have dolomite crystals 
that commonly range in size from 2 to 4 μm (Shinn 1983; 

Feng et al. 1998). The fluid responsible for Md1 dolomite 
formation has 87Sr/86Sr ratios that largely fall within the 
estimated 87Sr/86Sr range (0.7087–0.7092) of Middle Ordo-
vician seawater (Veizer et al. 1999) (Fig. 6b). One sample 
from the  Ma510 submember shows a slightly higher 87Sr/86Sr 
ratio, which was likely due to the interfusion of terrigenous 
materials from the Central Uplift, argillaceous dolomite 
for example (Yang et al. 2018). In general, the Md1 dolo-
mite likely formed from evaporated seawater in a restricted 
environment.

5.1.2  Md2 dolomite

The Md2 dolomite developed mainly in the shoal facies. It 
is superimposed on the underlying Md1 dolomite and shows 
regular cyclical sequences (Figs. 2, 3). Its numerous second-
ary pores and vadose fillings imply a strong influence of 
meteoric water (Figs. 4g, 5i). In thin sections, the coarsely 
crystalline, subhedral to euhedral textures contrast with the 
Md1 dolomite, suggesting a different depositional setting 
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or diagenetic process. Some Md2 dolomite crystals are cut 
by stylolites, indicating that Md2 dolomite formed before 
stylolite formation, which is commonly thought to start at 
a burial depth of ca. 500 m (Mountjoy et al. 1999; Duggan 
et al. 2001; Fabricius et al. 2007).

δ13C values of the Md2 dolomite fall within the δ13C 
range of Middle Ordovician seawater (− 2.0‰ to + 0.5‰ 
VPDB; Veizer et al. 1999) and largely overlap those of the 
Md1 dolomite (Fig. 6a), suggesting that the dolomitizing 
fluid was still seawater-derived fluid. δ18O values of the Md2 
dolomite are highly variable and lighter than Middle Ordovi-
cian seawater (− 6.6‰ to − 4.0‰ VPDB; Veizer et al. 1999) 
(Fig. 6a). Given the field and petrographic evidence for karst 
features and enhanced porosity, the strongly negative δ18O 
values are attributed to intense leaching by meteoric water 
during the penecontemporaneous karstification (Xiong 
et al. 2019). This is also supported by the 87Sr/86Sr ratios of 
the Md2 dolomite, which partly exceed the 87Sr/86Sr range 
(0.7087–0.7092) of Middle Ordovician seawater (Veizer 
et al. 1999) (Fig. 6b). In addition, intense burial recrystal-
lization can be observed in the Md2 dolomite, as shown by 
the relict textures of grains and overgrowths of dolomite 
crystals. Previous studies have suggested that the burial 
fluid, comprising concentrated seawater sealed in pores of 
contemporaneous rocks from the intracratonic depression, 
has had a strong influence on the petrological features of 
the porous Md2 dolomite (Chen et al. 2018; Fu et al. 2019). 
This highlights the influence of multiple diagenetic fluids 
on the formation of the Md2 dolomite. The coarsening of 
crystals and poikilotopic texture likely resulted from crystal 
overgrowths and subsequent coalescence of crystals, as indi-
cated by the thin lighter CL rims on these dolomite crystals 
(Fig. 4h). This also suggests a change in the fluids responsi-
ble for the later overgrowths.

The average homogenization temperature of liquid–vapor 
fluid inclusions from growth zones of Md2 dolomite crys-
tals is 66.9 °C (Fig. 7c), which is much higher than that 
of 24.2 °C from the Majiagou Formation micritic dolomite 
(equivalent to the Md1 dolomite) obtained in previous stud-
ies (Su et al. 2011). Fluid inclusions reveal that Md2 dolo-
mite probably formed or recrystallized at higher tempera-
tures under shallow burial conditions.

5.1.3  Md3 dolomite

Microbialites in the subsalt Majiagou Formation are all 
dolomite and well-preserved, with typical microbial fab-
rics such as bonding structures, stromatolitic laminae, and 
fenestral pores (Figs. 4j, l, 5h). The framework structure of 
thrombolites is commonly regarded to be wave-resistant and 
associated with shoal-deposited grainstones. The laminated 
structure of stromatolites is interpreted to have been possibly 
caused by intermittent microbial growth due to diurnal and 

tidal cycles (Radtke and Golubic 2011). Microbial mediation 
can facilitate dolomite precipitation because some organic 
functional groups reduce the hydration of  Mg2+ ions that 
inhibits nucleation of dolomite from Mg supersaturated 
brines (Mazzullo 2000; Warthman et al. 2000; Dupraz and 
Visscher 2005; Wolicka and Borkowski 2011). However, the 
model for microbial dolomitization has been recently criti-
cized and is thought to be inappropriate for large-scale dolo-
mitization (Petrash et al. 2017). According to a close exami-
nation and cation ordering comparison of published X-ray 
data for microbial-mediated carbonates synthesized during 
laboratory experiments, Gregg et al. (2015) and Kaczmarek 
et al. (2017) argued that most of the products are very high-
Mg calcite rather than dolomite as claimed previously, since 
these products lack dolomite ‘ordering’ reflections.

In general, the formation mechanisms of microbialites 
comprise several processes: microbial capturing and bond-
ing, microbial mineralization, in situ precipitation of carbon-
ate, and post-depositional processes (Andres and Reid 2006; 
Hips et al. 2015). In the studied subsalt Majiagou Formation, 
the carbonate sediments have been pervasively dolomitized, 
and no direct evidence of microbial dolomitization has been 
found, such as sub-micron-sized spheroidal structures and 
dumbbell-shaped dolomite (Dupraz et al. 2009; Perri and 
Tucker 2015). In addition, abundant microbialites of lime-
stone are found above the salt layer in this area (i.e.,  Ma55) 
(Meng et al. 2019). These characteristics indicate that there 
is no direct correspondence between microbial mediation 
and dolomite content. The initial product of microbial medi-
ation was likely to be calcite (or high-Mg calcite) precursor, 
which was then subjected to replacive dolomitization driven 
by high-salinity seawater and evaporation. Thus, the isotopic 
signatures of Md3 dolomite were inherited from the com-
bined effects of both microbial mediation and evaporated 
seawater. δ13C values of the thrombolites are slightly higher 
than those of the stromatolites (Fig. 6a), which might result 
from two different microbial induction mechanisms. To be 
specific, microbes, such as cyanobacteria, preferentially 
absorbed the 12CO2 from the ambient environment when 
they synthesized organics through photosynthesis, which 
contributed to enriched 12C in the synthesized organics. Cor-
respondingly, the carbonates precipitated from seawater were 
13C-rich. Whereas, other microbes, such as sulfate reducing 
bacteria, produced and released more 12CO2 into ambient 
seawater by sulfate reduction of organics, which ultimately 
resulted in lower δ13C values of the carbonate sediments 
(Irwin et al. 1977; Preuss et al. 1989; Warren 2000). How-
ever, the gap in δ13C values between these two sediment 
types has been narrowed or overprinted by later refluxing 
of evaporated seawater. δ18O values of stromatolites and 
thrombolites are highly similar with those of Md1 and Md2 
dolomites, respectively (Fig. 6a), which is consistent with 
the distribution that stromatolites developed in lagoon and 



Petroleum Science 

1 3

thrombolites associated with shoal-mound facies. The rela-
tively lower δ18O values of thrombolites than stromatolites 
indicate relatively high positions of microbial mounds that 
were more likely to exposed and leached by meteoric water. 
87Sr/86Sr ratios of the Md3 dolomite largely fall within the 
estimated 87Sr/86Sr range of the coeval seawater (Fig. 6b), 
also suggesting the seawater-sourced dolomitizing fluid 
responsible for Md3 dolomite.

5.1.4  Cd dolomite

The finely to coarsely crystalline dolomite cement com-
monly infills dissolution pores and vugs (Fig. 5a), suggesting 
that its formation was associated with previous karst sys-
tems. The coarse dolomite crystals with curved surfaces and 
undulatory extinction under cross-polarized light (Fig. 5b) 
typically reflect rapid crystallization and precipitation under 
higher temperature conditions (Guo et al. 2016; Feng et al. 
2017). The very bright luminescence contrasts with the 
matrix dolomite and implies a different dolomitization fluid 
with a higher concentration of Mn ions at higher tempera-
tures (Fig. 5c). Minerals such as fluorite, quartz, and pyrite, 
which are associated with the Cd dolomite, also indicate a 
hydrothermal process (Fig. 5d, e). The relatively lower δ18O 
values (Fig. 6a) and higher homogenization temperatures of 
Cd dolomite (Fig. 7c) relative to matrix dolomite indicates 
late-stage precipitation at high temperatures during deep 
burial. Besides, its lower 87Sr/86Sr ratios (Fig. 6b) as com-
pared with the matrix dolomite indicate possible involve-
ment of 87Sr-depleted, mantle-sourced fluids.

To determine the δ18Ofluid compositions of the Md2 
and Cd dolomites, δ18O values were plotted versus  Th 
(Fig. 7d). The calculated δ18Ofluid for Md2 dolomite ranges 
from − 6.0‰ to + 2.0‰ (relative to V–SMOW) and for 
Cd dolomite from + 1.5‰ to + 7.5‰ V–SMOW. Given 
that evaporated seawater near the gypsum saturation state 
would be 3‰ ± 1‰ enriched in δ18O relative to contempo-
raneous seawater (Gonfiantini 1986), then the evaporated 
Ordovician seawater would have δ18O = − 10‰ to − 5‰ 
V–SMOW (Smith 2006; Wang et al. 2009), close to that of 
the calculated δ18Ofluid for Md2 dolomite. Hence, concen-
trated Ordovician seawater could have supplied the initial 
dolomitizing fluid for the Md2 dolomite. There are strong 
similarities and overlap between the δ18Ofluid values of the 
Cd dolomite and the estimated values for magmatic fluids 
(+ 5.5‰ to + 10.0‰ V–SMOW; Taylor 1997). This suggests 
that fluids with hydrothermal sources, possibly magmatic 
fluids, were involved in the formation of the Cd dolomite.

5.2  Dolomitization history and dolomites evolution

Combining our results and their implications with the depo-
sitional setting and burial history of the study area (Fig. 8), 

a multi-stage dolomitization model was proposed to explain 
the formation and evolution of dolomites in the subsalt Maji-
agou Formation (Fig. 9).

During the Middle Ordovician, the study area was a 
restricted–evaporatic carbonate platform, in which the 
circulation of seawater was greatly restricted (Chen et al. 
2018; Liu et al. 2019). In such a geographic setting, a warm, 
semiarid to arid climate could have enhanced evaporation 
and resulted in elevated salinity of the seawater. The pri-
mary limestone sediments in the lagoon and shoal facies 
were likely replaced when highly saline seawater infiltrated 
and migrated downslope (Fig. 9a). Precipitation of gypsum 
would increase the Mg/Ca ratios of bottom waters, which 
also promoted dolomitization. Sea level fluctuations during 
this stage (Bai et al. 2016; Xi et al. 2017; Liu et al. 2018) 
controlled the depositional sequence of lagoon–shoal facies 
and water exchange between the platform interior and the 
open marine environment. This facilitated continuous 
dolomitization and alternation of Md1 and Md2 dolomites 
(Fig. 2). In general, a seepage–reflux dolomitization model 
could explain the initial replacement of the underlying lime-
stone sediments by Md1 and Md2 dolomites. Meanwhile, 
near the sediment–water interface, microbial mediation 
and early dolomitization driven by highly saline seawater 
could also facilitate the formation of Md3 dolomite. The 
initial fenestral pores, developed between the thrombolitic 
clots and stromatolitic dark layers, were then cement-filled 
by microsparry dolomite during penecontemporaneous to 
shallow burial setting.

Since the late Carboniferous, the North China Block have 
slowly subsided after a long period of subaerial exposure, 
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and the subsalt Majiagou Formation underwent burial 
diagenesis, with gradual increases in temperature and pres-
sure. A large amount of Mg-rich fluids sealed in the salt-
bearing depression (eastern Ordos Basin) were released 
and then migrated into the high porosity–permeability lay-
ers in the central Ordos Basin. The Md2 dolomite, which 
developed in shoal facies, preserved abundant dissolved 
pores and vugs that could provide flow pathways for burial 
diagenetic fluids (Fig. 9b). Thus, the high salinity sealed 
brines preferentially migrated into the porous Md2 dolo-
mite. Consequently, intense recrystallization occurred in the 
shoal facies dolomite, and the doloarenites were transformed 

into crystalline dolomites with more ideal crystal shapes 
(Fig. 9c). The estimated depth for recrystallization varies 
from 1150 to 1800 m, based on its homogenization tempera-
tures and the burial history in this area (Fig. 8).

During the Late Jurassic, the Ordovician carbonates were 
subjected to a new stage of uplift due to the Yanshanian 
orogeny and compression in the Qilian tectonic domain. 
Intense magmatic activities and deep fluid upwelling 
events occurred at the west margin of Ordos Basin (Wan 
et al. 2006). These deep-sourced fluids could have migrated 
into the basin along basement faults, as well as via uncon-
formities (Yao et al. 2009). According to the occurrence and 
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distribution of Cd dolomite, fluid flow within the Majiagou 
Formation was controlled by preexisting high-porosity–per-
meability layers. Thus, the Md2 dolomite, with abundant 
dissolved pores and vugs formed by early karstification, pro-
vided favorable fluid migration pathways for the dolomitiz-
ing fluids. The primary hydrothermal fluid caused dissolu-
tion along fractures and in early-formed dissolution vugs, 
while then became progressively enriched in  Mg2+. Once 
the  Mg2+ concentrations reached the saturation threshold 
for dolomite, Cd dolomite would have been precipitated in 
these pores and vugs, in the form of cement (Fig. 9d). The 
estimated forming depth for Cd dolomite is 3500–4100 m 
(Fig. 8). Therefore, karst-controlled hydrothermal alteration 
can explain the formation of Cd dolomite. Similar hydro-
thermal dolomitization controlled by early karst systems 
has been reported worldwide (Beckert et al. 2016; Liu et al. 
2016; Xiao et al. 2016; Garaguly et al. 2018).

6  Conclusions

The Ordovician subsalt Majiagou Formation was deposited 
on a shallow marine platform in the Ordos Basin and has 
been pervasively dolomitized. Four types of dolomite matrix 
and cement were identified: (very) finely crystalline, non-
planar to planar-s matrix dolomite (Md1); finely to medium 
crystalline, planar-s to planar-e matrix dolomite (Md2); 
dolomite microcrystals in microbialites (Md3); finely to 
coarsely crystalline dolomite cement (Cd).

Md1 dolomite is commonly associated with evaporite 
mineral and has isotopic features similar to the Middle 
Ordovician seawater, and formed from evaporated sea-
water in a near-surface setting. Md2 dolomite, with lower 
δ18O and higher 87Sr/86Sr values than Md1 dolomite, was 
initially dolomitized by evaporated seawater reflux during 
very shallow burial and then subjected to dissolution and 
burial recrystallization, which formed abundant intercrystal-
line porosity. Md3 dolomite resulted from a combination of 
initial microbial mediation and later replacive dolomitization 
related to evaporated seawater. The Cd dolomite has the low-
est δ18O values and highest homogenization temperatures 
and was likely precipitated from hydrothermal fluids during 
deep burial.

The Md2 and Md3 dolomites, which were controlled by 
shoal-mound facies, karstification, and recrystallization, are 
the major reservoir rocks in the subsalt Majiagou Formation, 
although part of the porosity was infilled by Cd dolomite.
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