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a b s t r a c t

A data-space inversion (DSI) method has been recently proposed and successfully applied to the history
matching and production prediction of reservoirs. Based on Bayesian theory, DSI can directly and
effectively obtain good posterior flow predictions without inversion of geological parameters of reservoir
model.

This paper presents an improved DSI method to fast predict reservoir state fields (e.g. saturation and
pressure profiles) via observed production data. Firstly, a large number of production curves and state
data are generated by reservoir model simulation to expand the data space of original DSI. Then, efficient
history matching only on the observed production data is carried out via the original DSI to obtain
related parameters which reflects the weight of the real reservoir model relative to prior reservoir
models. Finally, those parameters are used to predict the oil saturation and pressure profiles of the real
reservoir model by combining large amounts of state data of prior reservoir models. Two examples
including conventional heterogeneous and unconventional fractured reservoir are implemented to test
the performances of predicting saturation and pressure profiles of this improved DSI method. Besides,
this method is also tested in a real field and the obtained results show the high computational efficiency
and high accuracy of the practical application of this method.
© 2021 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This
is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/

4.0/).
1. Introduction

Accurate estimation of state field of reservoir can help deploy
the position of new drilling wells and production plans to improve
reservoir development efficiency. In practice, accurate estimation
obtained by engineers is depend on precise judgments of subsur-
face flow situation through a large amount of production and
geological data. Rather, due to uncertainty of reservoir with high
heterogeneity and flow complexity, it is usually a hard task to get
available estimation in real time.

The history matching method based on a full-scale reservoir
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model can solve this problem (Evensen et al., 2007; Haugen et al.,
2006; Li and Reynolds, 2011; Naevdal et al., 2002, 2003). As a
model-driven method, the posterior model is obtained through
adjusting the model parameters repeatedly to make its simulation
results match the observation data (Brouwer et al., 2001). The
corresponding state field can be calculated through simulator.
However, history matching is a very hard and time-consuming
work, which involves intensive use of computational resources
with long-time repeated numerical simulation process. And the
uncertainty of the reservoir model is hard to be quantified under
limited collected data.

To reduce computational cost, the data-drivenmodel is developed
for quick production prediction to replace classical reservoir simula-
tion (Araque-Martinez, 1993; Barros-Griffiths, 1998; Heffer et al.,
1997; Jansen and Kelkar, 1997; Refunjol, 1996). The data-driven
model does not require any prior knowledge of a detailed geological
model but a large number of production data. The computational
speed of the data-driven model is hundreds of times faster than
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traditional numerical simulation. At present, the typical data-driven
models such as the capacitance-resistance model (CRM) (Albertoni
and Lake, 2003; Sayarpour et al., 2009; Tiab and Dinh, 2008; Yousef
et al., 2005), inter-well numerical simulation model (INSIM) are
applied successfully for two-phase (water/oil) flow simulation (Guo
et al., 2018; Guo and Reynolds, 2019; Zhao et al., 2016, 2020). Never-
theless, most of data-driven models can only calculate pressure and
saturation onwell points and its connections.

As an alternative history matching method, the machine
learning model can also generate reservoir prediction in a short
time as long as we have enough training data (Rao et al., 2020b;
Nguyen et al., 2011; Cao et al., 2015). Among the machine learning
methods, the recurrent neural network (RNN) method is suitable
for solving time series problems with regard to short-term pre-
diction (Chaki et al., 2020). However, the construction of these
models also relies on the information of the physical flow model.
Recently, the long short-term memory (LSTM) method was applied
to establish a model for predicting water saturation and pressure
profiles (Zhang et al., 2019a). Thesemachine-learning proxymodels
provide fast forecasts among input/output relations, but they
require a large number of data to train the model, and the data
preparation is very time-consuming sometimes.

Recently, a novel DSI method has been proposed and greatly
improved the computational efficiency of history matching (Sun
and Durlofsky, 2017; Sun et al., 2017). This method uses the pro-
duction data of prior models to establish a proxy model with
parameterization method. Different from machine learning model,
this proxy model can measure the weight of the real model relative
to each prior model. DSI only needs the prior model set which
reflect the geological characteristics and its production perfor-
mance data under simulation. Under the Bayesian framework, DSI
can directly obtain the trustworthy production forecast by
following the random maximum likelihood (RML) principle with
no repeated numerical simulation process. Importantly, the pos-
terior forecast can quantify uncertainty of reservoir systemwithout
constructing any posterior reservoir model.

Up to now, DSI method is mainly used to predict the production
performance of reservoirs, and the related production optimization
method has been formed (Jiang, 2018; Jiang et al., 2019). Never-
theless, due to the lack of the inversion of geological parameters
(e.g., permeability profile, porosity profile and etc.), this method is
extremely limited in the prediction of reservoir state fields (i.e.,
pressure profile, saturation profile and etc.). Additional, Sun and
Durlofsky (2019) used the DSI method to predict carbon dioxide
plume location given the pressure and saturation data at observa-
tion wells. Application of DSI with optimal monitoring wells is
shown to consistently reduce the posterior variance of average CO2
saturation in the top layer, and provide detailed CO2 saturation
fields in reasonable correspondence with the true saturation field.
However, DSI have not been applied for predicting real-time oil
saturation and pressure field of a real reservoir.

This paper introduces an improved DSI method to quickly pre-
dict reservoir state fields by using prior geological model simula-
tion results and the observed production data. Compared with the
original DSI method, the reservoir state data is added into the data
space as extra data variables. The posterior state prediction is
extrapolated from the proxy model, but the part of reservoir state
field in data space does not participate in history matching. In this
paper, we improve the optimization algorithm and use SPSA algo-
rithm to avoid overfitting problem. Two numerical examples
including conventional and unconventional reservoir models are
carried out to valid the good performances and generality of this
method. Moreover, the improved DSI method is also used for a real
field case and the obtained posterior forecasts shows the practi-
cability of this method.
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2. Methodology

Compared with the original DSI (Sun and Durlofsky, 2017), the
improved DSI puts the state data of reservoir as additional data
variables into data space. Only the observed production data are
used for history matching and we can use the conditional proxy
model to extrapolate the posterior state field. Therefore, the history
matching process is basically consistent with DSI.

2.1. The data-space formulation

Based on random sampling, Nr prior reservoir models with
geological characteristics are generated. Let m2RNm�1 represents
the geological parameters of one of those prior reservoir models.
We designate dstate2RNstate�1 to represent the state data of one
reservoir model which contains Nstate-dimensional column of the
form

dstate ¼
h
dTstate;1; d

T
state;2; :::; d

T
state;Nk

; :::; dTstate;Nh
; :::; dTstate;Nt

iT
(1)

where the subscript k is the kth control time step, dTstate;Nk
is the

vector of the state data at time step k, Nh represents the number of
time steps in the history matching period, Nt is the total number of
time steps including history matching and forecast period, Nstate ¼
2*Nm*Nt. We also designate d2RNd�1 to represent the production
data which are the other data variables in the data space, which
contains oil production rate, bottom hole pressure, etc.

d ¼
h
dT1; dT2; :::; dTNk

; :::; dTNh
; :::;dTNt

iT ¼
h
dThm; dTp

iT
(2)

where dhm2RNhm�1 is the production data in history matching
period and dp2RNp�1 is the production data in forecast period,
Nhm þ NP ¼ Nd. Assuming that there are n production indicators,
then Nd ¼ n*Nt. The dstate and d of each prior model can be
calculated numerically via

ðdstate; dÞi ¼ gðmiÞ; i ¼ 1; 2; :::; Nr (3)

where gð ,Þ is the numerical simulator. In the original DSI (Sun and
Durlofsky, 2017), the data space only contains production data. For
the improved DSI method, its goal is to predict production perfor-
mances and state fields at the same time. Therefore, state variables
are added into the data space, that is�
dfull

�
i
¼ ðdstate; dÞi; i ¼ 1; 2; :::; Nr (4)

where dfull2RNf�1 represents the data space which includes the
data variables in history matching and prediction period, Nf ¼ Nd þ
Nstate. In practice, the observed production data is known, but the
state fields of subface cannot be measured. Therefore, we take only
the observed production data to be history matching and generate
the trained proxy model. The state fields are then calculated rapidly
by the trained proxy model. Thus, the history matching process in
this paper is similar to that in the original DSI method. The next
section briefly introduces the history matching process of the
improved DSI.

2.2. Inversion procedure

Let dobs2RNhm�1 denote the vector of the observed production
data and dobs is equal to dhm, the relationship between dfull and dobs



Fig. 1. Overfitting phenomenon in the process of training for the machine learning
model.

Fig. 2. Permeability field

Fig. 3. Comparisons of production data
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can be represented as

dobs ¼ Hdfull þ ε (5)

where ε2RNhm�1 is the vector of measurement errors of the
observed data, which is assumed to be Gaussian random variables
with mean 0 and covariance matrix CD, CD2RNhm�Nhm . Besides, H2
RNhm�Nf is applied to extract the historical production data from
dfull. Similar to H matrix, we also define E2RNd�Nf to extract the
total production data from dfull, it can be expressed as

d ¼ Edfull (6)

Therefore, under Bayesian framework, it is straightforward to
determine the likelihood of d, that is
(Permeability, mD).

before and after history matching.



Fig. 4. Comparisons of the oil saturation profiles at different time in the case of water flooding reservoir.
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Fig. 5. Comparisons of the pressure profiles at different time in the case of water flooding reservoir (Pressure, MPa).
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Fig. 6. The relationship between the number of prior models and the relative error.
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OðdÞ ¼
�
Edfull � dprior

�T
C�1
d

�
Edfull � dprior

�
þ
�
Hdfull � dobs

�T
C�1
D

�
Hdfull � dobs

�
(7)

where dprior2RNd�1 and Cd2RNd�Nd represent the mean of and
covariance of d, respectively, that are,

dprior ¼
1
Nr

XNr

i¼1

di (8)

and

Cd ¼ 1
Nr � 1

XNr

i¼1

�
di � dprior

��
di � dprior

�T (9)

Posterior production predictions can be obtained through the
minimization of Eq. (7). However, due to long production history

for a real field, it is still difficult to solve the covariance matrix C�1
d

with high dimensions of d. Sun and Durlofsky (2017) introduced the
parameterizationmethod of d to construct a proxymodel and avoid

the calculation of C�1
d . The conditional proxy model can calculate

posterior production predictions after history matching. The pa-
rameters in the conditional proxy model basically reflect the
weight of the real model relative to the prior models.

2.3. Reparameterization methods

In the original DSI, Sun and Durlofsky (2017) applied PCA
method to parameterize the data space for avoiding the calculation

of C�1
d . Singular value decomposition is carried out for X ¼
Fig. 7. Sketch of fracture geometry and ma
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�
d1 � dprior; d2 � dprior; :::; dNr

� dprior
�
, which denotes

X
. ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Nr � 1
p

¼ USVT ¼ FVT (10)

where U2RNd�Nd is the unitary matrix containing the left singular
value of X=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nr � 1

p
, S2RNd�Nr is the diagonal matrix containing

non-zero singular values of X=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nr � 1

p
, V2RNr�Nr is the unitary

matrix containing the right singular value of X=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nr � 1

p
, F2RNd�Nr

is the basis matrix,F ¼ US. Then, an ‘energy’ criterion methodwas
applied to remain the largest Ns number of singular values in S to
preserve data characteristics. In this case, let FPCA2RNd�Ns denote
the transformed basis matrix, and for any production data d, it can
be expressed as

dzFPCAxþ dprior (11)

where x2RNs�1 can be regarded as the proxy of the production
data, whose order is much lower than that of geological parame-
ters. Through the parameterization method, DSI can avoid the

calculation of C�1
d and solve the optimization problem in Ns-

dimensional. The target function can be expressed as

OðxÞ ¼
�
FH

PCAxþ dHprior � dobs
�T

C�1
D

�
FH

PCAxþ dH
prior � dobs

�
þ xTx

(12)

where FH
PCA2RNhm�Ns and dHprior2RNhm�1 represent the historical

portion ofFPCA and dprior. The optimization problem is transformed
into that to find a best posterior estimation of x to minimize the
target function. Served as a proxy model, the elements of the
conditional x can be regarded as the optimal weight coefficient of
production data, which relates prior model to true model.

Sun and Durlofsky (2017) indicated that the application of PCA
method may lead to unphysical values for production predictions.
In practice, it usually occurs in the period before water break-
through. For this reason, some mapping operations based on
shifting and stretching the time series were adopted to transform
the prior production data into approximate Gaussian field. But it
became more complex for the implementation of DSI when well
controls change frequently. Histogram transformation was imple-
mented on PCA data and got good result (Sun et al., 2017). In this
paper, to simplify the calculation process, we directly parameterize
production data in the section of the data space to avoid computing

C�1
d . We redefine the basis matrix of d,F ¼ X=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nr � 1

p
,F2RNd�Nr ,

therefore,
trix permeability (Permeability, mD).



Fig. 8. The comparisons of production data before and after history matching.
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d ¼ Fxþ dprior (13)

where x2RNr�1, if for di, the ith component of the corresponding xi
is equal to

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nr � 1

p
, and other components are zero. Besides, Cd can

be expressed as

Cd ¼ FFT (14)

thus

�
d� dprior

�TC�1
d
�
d� dprior

� ¼ ðFxÞT,
�
FFT

��1
,ðFxÞ ¼ xTx

(15)

In this way, the calculation of the covariance matrix C�1
d is

avoided. Besides, the first-order image gradient of the objective
function can be obtained. In historymatching process, the elements
of the conditional x is the optimal weight coefficient of production
data, which relate prior model to truemodel. Theweight coefficient
reflects the uncertainty of reservoir, including the uncertainty of
1133
reservoir model state field. Therefore, posterior state fields can be
predicted by

dstate ¼ Fstatexþ dstate;prior (16)

where dstate;prior2RNstate�1 and Fstate2RNstate�Nr represent the mean
and the basis matrix of dstate, respectively, that are

dstate;prior ¼
1
Nr

XNr

i¼1

dstate;i (17)

and

Fstate ¼ Xstate

. ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nr � 1

p
(18)

Xstate ¼ �dstate;1 � dstate;prior;dstate;2 � dstate;prior; :::;dstate;Nr

� dstate;prior
�

The objective function can be expressed as



Fig. 9. The comparisons of the pressure profiles at different time in the case of depletion development (Pressure, MPa).
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OðxÞ ¼
�
FHxþ dHprior � dobs

�T
C�1
D

�
FHxþ dHprior � dobs

�
þ xTx

(19)

where FH2RNhm�Nr and dHprior2RNhm�1 represent the historical
portion of F and dprior, respectively. Random maximum likelihood
method (RML) is introduced to sample the posterior forecast with
gradient algorithm (Sun and Durlofsky, 2017). Each RML sample is
generated by minimizing Eq. (20) given by

OðxÞ ¼
�
FHxþ dHprior � d*obs

�T
C�1
D

�
FHxþ dHprior � d*obs

�
þ ðx� x*ÞTðx� x*Þ (20)

where x*2RNr�1 is sampled from the standard normal field N½0; I�,
d*obs2RNhm�1 is the perturbed observation sampled from the
1134
Gaussian distribution N½dobs;CD�. In this paper, simultaneous
perturbation stochastic approximation (SPSA) algorithm is adopted
for solving this problem. Because the gradient of SPSA deviates
slightly from the real gradient, the posterior forecast derived by
SPSA can also approximately quantify uncertainty. In addition, the
application of SPSA can avoid over fitting phenomenon. We will
introduce the reason about algorithm selection in the next section.
2.4. Algorithm selection

The gradient algorithm is used to solve the above optimization
problem (Sun and and Durlofsky, 2017), but the application of the
gradient algorithm often leads to overfitting phenomenon in the
history matching procedure. This phenomenon is similar to the
overtraining result of machine learning model. Fig. 1 demonstrates
the correlation between the training and cross validation error in
training process. The training error of themodel on the training data



Fig. 10. The comparisons of the pressure profiles at different time in the case of water flooding reservoir (Pressure, MPa).
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set will gradually decrease during the training period. However, as
the complexity of the model increases, the error of the training
model on the verification set will go up at the same time. When the
gradient algorithm is applied, it achieves great results in history
matching period. In contrast, the deviation from the true data in the
forecast period is large and often leads to unpractical data.

Recently, Lima et al. (2020) used the DSI-ESMDA method to
assimilate the observed data and the posterior forecast is more
robust than the original DSI. Importantly, the localizationmethod is
adopted to revise the gradient to approximate the real gradient in
model updating process, which significantly improve the quality of
forecast results.

In this paper, we apply the SPSA algorithm (Spall 1992, 2000,
2000; Wang et al., 2009) to solve the optimization problem and
improve the generalization ability of the proxy model. The gradient
of SPSA is obtained by synchronous disturbance for all the control
variables and the calculation of the objective function value.
1135
Although the disturbance gradient is random, its expected value is
the real gradient. For the SPSA algorithm used in this paper, the
early stopping method in the machine learning procedure is also
adopted. In this method, the number of iterations is truncated to
prevent overfitting before the convergence of value of target
function. More details and parameter settings about SPSA algo-
rithm are given in Appendix.
2.5. Selection of the prior models

Good training data can improve the generalization ability of the
model and help to predict the dynamic state field of reservoir. Sun
and Durlofsky (2017) used rejection sampling to screen data curves
of prior reservoir realizations which are quite deviated from the
observed data. In this paper, we adopt a similar method, the process
is given as follows:



Fig. 11. The comparisons of the oil saturation profiles at different time in the case of water flooding reservoir.
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(1) Generate an ensemble of prior reservoir realizations based
on geological information.

(2) Randomly sampling p from the standard normal distribution
Nð0; 1Þ.

(3) Accept reservoir realizations if p � LðmÞ. The likelihood
function is defined as

LðmÞ ¼
ffiffiffiffiffiffiffi
2p

p
,
kgðmÞ � dobsk2

kdobsk2
(21)
2.6. Summary of the improved DSI method

This section summarizes the specific steps of the improved DSI
method as follows:
1136
Step 1. Generate some prior models by randomly sampling on
geological parameters.

Step 2. Perform simulation on prior models and obtain produc-
tion and state data in the lifetime of reservoir.

Step 3. Select the production and state data to form dfull (shown in
Eq. (4)) and apply parameterization method to construct the proxy
model through dfull in Eq. (13).

Step 4. Perform history matching and apply SPSA algorithm to
solve the optimization problem in Eq. (19), then obtain the poste-
rior parameter x.

Step 5. By Eq. (16), using x and dstate formed from state fields data
to predict the pressure or saturation profiles of the real reservoir
model.

The whole history matching process of DSI is efficient because
the dimension of variables is low and repeated numerical



Fig. 12. Comparisons of production data before and after history matching.

Fig. 13. Top structure of Brugge field.

D. Liu, X. Rao, H. Zhao et al. Petroleum Science 18 (2021) 1127e1142
simulation is not required. The proxy model can give reliable
forecasts in a few minutes and reduce uncertainty of reservoir.
Besides, the calculation will be more accurate if prior data set are
approximately in accordance with the multivariate Gaussian field.

In order to make an intuitive comparison in the following ex-
amples, the perturbation on x and dobs vector in Eq. (20) is not taken
in consideration. In this way, we can directly predict the posterior
state field to perform accuracy of the improved DSI method
comparedwith the true state field. It is noteworthy that we can also
calculate the ensemble of posterior forecasts to quantify uncer-
tainty of reservoir on the basis of RML principle.

3. Numerical examples

In this section, two numerical examples are implemented to
verify the feasibility of the improved DSI for general reservoir
models. The first example is a conventional reservoir with two-
phase (oil/water) channel system. The second example is the un-
conventional fractured reservoir with depletion or water flooding
operation.

3.1. Conventional reservoir with high-permeability channels

This section gives an example of waterflooding development for
conventional heterogeneous reservoir. The reservoir model has one
1137
layer which is divided into 15 � 15 � 1 cells. The size of each cell is
25 m � 2 5 m � 15 m. There is one injector and one producer in the
reservoir, which are located on the side of high permeability
channel. Fig. 2(a) shows the permeability field of the true model.
100 prior models are generated based on the plane permeability
profile, one of them is shown in Fig. 2(b). These prior models all
possess the characteristics of high permeability channel, and the
true model is not included in the set of prior models.

The initial porosity and oil saturation of those models are 0.2
and 0.8, respectively. The initial reservoir pressure is 25 MPa. The
well controls are rate controls for the injector and producer 400m3/
d, and the production time is set as 450 days. The first 300 days are
used for history matching and the last 150 days are used for pre-
diction and verification. The target of history matching are cumu-
lative oil production and cumulative water production.

The reservoir simulator Eclipse is used to calculate the pro-
duction data and state data (oil saturation and pressure) in the
production time for all prior models, which are shown in Fig. 3. In
Fig. 3, the prior production data are displayed as grey line and the
observed data generated by the true model are indicated by red
circles, and the true model data is indicated by the blue curve. In
addition, the black line distinguishes the historical period and the
forecast-stage period. Obviously, most of the prior production data
from prior models cannot match the observed data of the true
model.



Fig. 14. The comparisons of the oil saturation profiles at the 2700th day.
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The history matching results generated by the improved DSI are
shown as red curves in Fig. 3. On the one hand, the posterior pro-
duction data are in good agreement with the observed data and can
measure production trends in the future. On the other hand, the
posterior state field derived by the conditional proxymodel also get
good response in general, as shown in Figs. 4 and 5 (The left graph
represents the state field simulated by the true model and the right
graph represents the state field calculated by the improved DSI).
Besides, the improved DSI achieves a better effect of oil saturation
prediction compared with pressure prediction. However, the pre-
diction effect of each cell is different. In Figs. 4 and 5, the improved
DSI make it better for producer and injector but poor for a few cells.
The rough prediction results show that the state field obtained by
the improved DSI cannot meet the true field perfectly. But the
improved DSI can quickly grasp the basic law of reservoir state field,
which is helpful for regulating well controls and new drilling well
positions in a certain range.

To study the relationship between the number of prior models
and the computational accuracy in this method, we define the
relative average error between the predicted and true state fields at
Nt time step in Eq. (22). And the relative error vs. the number of
prior models is plotted in Fig. 6. In general, the relative error will
1138
decrease when the number of prior models increases. Especially,
the relative error can be reduced to less than 5% when the number
of prior models is only 100. Because the calculation process of this
method mainly involves prior model simulations, choosing the
appropriate number of prior models is necessary to meet the
calculation accuracy requirements and reduce computational cost.

Er ¼ 1
2� Nm

 X2�Nm

i¼1

	
dstate;predict;Nt

� dstate;true;Nt

dstate;true;Nt


2!
(22)

3.2. Unconventional reservoir with fractured horizontal well

In this section, examples of depletion and waterflooding oper-
ations of unconventional reservoirs with fractured horizontal wells
are given to test the performances of presented method. The
reservoir model used in this section is divided into
40 � 25 � 1 cells, and the size of each cell is 30 m � 30 m � 10 m.
Through random sampling of fracture geometry, matrix properties
and fracture physical properties, 100 prior models are generated. In
the example of depletion development of fractured horizontal



Fig. 15. The comparisons of the pressure profiles at the 2700th day (Pressure, MPa).
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wells, the initial reservoir pressure is 20 MPa, the fixed bottomhole
pressure of the fractured horizontal well is 12 MPa, and the pro-
duction time is set as 500 days.

In the example of waterflooding development, there are four
water injection wells in the reservoir, which are respectively
distributed in the four corners of the rectangular reservoir. The
initial reservoir pressure and bottomhole pressure of production
wells are the same as those in depletion development. The injection
rate of water injection wells is set as 10 m3/d, and the production
time is 2000 days. The first 1200 days are used for history matching
and the last 800 days are used for prediction and verification. The
embedded discrete fracture model (EDFM) (Rao et al., 2019, 2020a,
2020b; Liu et al., 2020; Zhang et al., 2017, 2019b; Ma et al., 2020) is
used for flow simulation (the fracture geometries and matrix-cell
permeability profiles in two models are shown in Fig. 7), then the
production data (oil/water production rate, cumulative oil/water
production, etc.) and pressure and saturation profiles of each prior
model are obtained. Fig. 8 shows the production data set obtained
from the simulation results of those prior models during water-
flooding development.

First of all, the production data is used for history matching to
obtain the vector x. Then, the vector x is used to predict the pressure
1139
and saturation profiles of the real model with the reservoir state
data of prior models. The predicted results are compared with the
reliable real-model EDFM simulation results. The comparison re-
sults of the pressure profiles at different time in the case of
depletion development are shown in Fig. 9, and the comparisons of
the pressure and saturation profiles in the case of waterflooding
development are shown in Fig. 10 and Fig. 11. It can be seen that the
results predicted by the proposed method are in good agreement
with the trustworthy results, which proves that the presented
method has a high accuracy.

4. A field case

Brugge field was developed by TNO as a benchmark case for
closed-loop reservoir management. Similar to the previously
reservoir examples, we generate 100 reservoir realizations based
on plane permeability of the true model, the corresponding pro-
duction data are shown by the grey curve in Fig. 12. This real field is
developed by waterflooding with long production history (7200
days divided into 40 control steps) and a large number of wells (20
injectors and 10 producers), as shown in Fig. 13. The reservoir has
strong edge and bottomwater and injectors are located around the



Fig. 16. The comparisons of the oil saturation profiles at the 5400th day.
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reservoir for continuous energy supply. And well controls are rate
controls for injectors and producers, 5000 m3/d and 1800 m3/d,
respectively. This reservoir is divided into 139 � 48 � 9 cells. The
first 20 steps are used for history matching and the last 20 steps are
used for prediction and verification of production data. To reduce
the computational cost, we also set the cumulative oil production
and water production as the history matching target.

The improved DSI is applied to generate posterior forecasts of
state fields via the observed production data. Figs. 14e17 show a
comparison of the state fields between the true field and the pre-
dicted field at times (2700, 5400) and layers (1, 5, 9). Generally, the
predicted state field can match the true state field well. Similar to
the previous reservoir examples, the prediction effect of oil satu-
ration is usually better than that of pressure. In practice, accurate
saturation forecast can provide more help for engineer to regulate
production plans. Moreover, it is importantly to emphasize that
there is no repeated simulation in forecast process and the calcu-
lation procedure only cost a few minutes.
1140
5. Conclusions

This paper introduces the improved DSI method to predict the
state field of reservoir. In this method, served as extra data vari-
ables, the reservoir state data is put into the data space but not
participated in history matching procedure. Therefore, the
improved DSI can not only obtain a posterior production forecast
given the observed data, but also predict the pressure and satura-
tion profiles in a fewminutes. Throughout the whole paper, several
key conclusions are summarized here:

(1) High accuracy: The improved DSI can directly predict the
reservoir state fields without inversion of reservoir geolog-
ical parameters. The numerical examples and field case prove
that the predicted pressure and oil saturation are basically
consistent with reliable results. Although bad predictions
may perform on some cells, but these cells only account for a
small part of the whole reservoir model.



Fig. 17. The comparisons of the pressure profiles at the 5400th day (Pressure, MPa).
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(2) High computational efficiency: The improved DSI method
can quickly predict production and state fields data without
additional simulations when data space is constructed.

(3) SPSA algorithm is adopted for solving this problem to avoid
overfitting phenomenon and enhance the practicability of
this method. The computational efficiency of SPSA algorithm
is lower than gradient-class algorithm, and it can be
improved in the future work.
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Appendix. SPSA algorithm

The stochastic gradient of the target function OðxÞ for kth
1141
iteration is given by

bgk�xk�¼O
�
xk þ ckDk

�
� O

�
xk � ckDk

�
2ck

D�1
k (23)

where Dk2RNr�1 is the random column vector that satisfies the þ1
Bernoulli distribution; ck is a positive coefficient to control the size
of perturbation with the fixed value of 0.1. The vector x can be
updated using steepest descent,

xkþ1 ¼ xk þ akþ1
bbgk

�
xk
�

(24)

where akþ1 is the iteration step size with the fixed value of 0.5; the

average gradient bbgkðxkÞ is defined by

bbgk

�
xk
�
¼1
n

Xn
i¼1

bgk�xk� (25)

where n is the number of perturbation at each iteration with the
fixed value of 5. The iteration step is set to be 50 in this paper. In
addition, if the target function value do not decrease for more than
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15 iteration steps, the iteration procedure will stop.
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