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a b s t r a c t

This paper presents an innovative data-integration that uses an iterative-learning method, a deep neural
network (DNN) coupled with a stacked autoencoder (SAE) to solve issues encountered with many-
objective history matching. The proposed method consists of a DNN-based inverse model with SAE-
encoded static data and iterative updates of supervised-learning data are based on distance-based
clustering schemes. DNN functions as an inverse model and results in encoded flattened data, while
SAE, as a pre-trained neural network, successfully reduces dimensionality and reliably reconstructs geo-
models. The iterative-learning method can improve the training data for DNN by showing the error
reduction achieved with each iteration step. The proposed workflow shows the small mean absolute
percentage error below 4% for all objective functions, while a typical multi-objective evolutionary al-
gorithm fails to significantly reduce the initial population uncertainty. Iterative learning-based many-
objective history matching estimates the trends in water cuts that are not reliably included in dynamic-
data matching. This confirms the proposed workflow constructs more plausible geo-models. The
workflow would be a reliable alternative to overcome the less-convergent Pareto-based multi-objective
evolutionary algorithm in the presence of geological uncertainty and varying objective functions.
© 2021 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This
is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/

4.0/).
1. Introduction

Data analytics is relevant in reservoir simulation. Data deluge
needs robust and reliable tools for interpreting different-scaled
data that is related to a broad range of disciplines, such as geol-
ogy, geophysics, petrophysics, and reservoir engineering. The de-
gree of confidence and granularity assist in the performance
evaluation of data-driven models to ensure field applicability.
However, data processing with acceptable standard forms is chal-
lenging in history matching; the key questions are related to
establishing right links among the spatiotemporal values in time
and space. It must incorporate all available data, and account for
field data observed at wells, which is evaluated by geological and
geophysical studies. The challenging tasks of many-objective
k).
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history matching, i.e., matching independently different histories,
can be categorized as uncertainty quantification and dimension
reduction (Deb et al., 2002; Guria et al., 2014; Min et al., 2016; Kim
et al., 2017; Carneiro et al., 2018).

Geological uncertainty is inevitable due to the lack of accurate
data in reservoir characterization (Hegstad and More, 2001;
Carneiro et al., 2018; Koneshloo et al., 2018; Scheidt et al., 2018).
The spatial uncertainty of reservoir properties creates difficulty in
the reliable analysis of fluid transport. Production histories are
related to the geological characteristics within drainage areas,
while geological interpretations should explain the entire reservoir.
The differences in decomposition concepts between the local area
and entire area can result in erroneous evaluation. Geological un-
certainty increases production performance outliers, and thereby
has a negative effect on converging the global minima. The ill-
posed nature of history matching hinders utilization of all the
available objective functions that are weighted comparably.

The robustness demands to keep parameter dimensionality as
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small as possible. As the number of objectives increases, divergence
or scale-dependency problems occur, which are known as “the
curse of dimensionality.” Dimensional reductions, such as linear
objective reduction, principal component analysis, and clustering,
have been introduced to manage implications from “the curse of
dimensionality (Scheidt and Caers, 2009; Min et al., 2016; Siena
et al., 2016; Esmaeilzadeh et al., 2020; Lim et al., 2020).” Howev-
er, choosing the most significant components may ignore the local
characteristics of unselected objectives. Individual producers have
their own production characteristics, but field-averaged data do not
sufficiently explain the observations. A higher number of dynamic
responses requires additional objective functions to be allocated to
each observation, thereby causing the convergence to global
minima to be impossible. Pareto-based multi-objective evolu-
tionary algorithms have been applied in solving history matching
problems, and Pareto-front solutions with non-dominated rela-
tionship have been explored (Guria et al., 2014; Hutahaean et al.,
2017; Kim et al., 2017). A typical Pareto-based many-objective
history matching limits the number of objective functions that do
not comprise the divergence matter; however, it satisfies a limited
number of objectives within an acceptable error.

Clustering schemes, such as k-mean clustering and k-medoids
clustering, are additional dimension reductions. Having a pre-
defined distance results in the creation of different distance maps
and similarity matrices. It also helps to select reliable geo-models
based on flow responses. Clustering relies on distance being
defined with respect to flow responses, such as liquid production
rates and pressure, and geological characteristics (Scheidt and
Caers, 2009; Kim et al., 2020b; Lim et al., 2020). Lim et al. (2020)
implemented k-medoids clustering separately for observed well-
based responses and used their union as initial ensembles for
data assimilation. Kim et al. (2020b) proposed geo-model selection
based on k-medoids clustering with expansion of the searching
domain. Despite that the different distances can be defined as the
production rates observed at each producer, how to use the
selected geo-models in many-objective history matching remains
challenging. For example, the distance based on field production
can represent field characteristics, but the non-overlap zone among
drainage areas is uncertain, which can cause inaccurate forecasting
of liquid production rates. However, if the distance is defined as the
linear weighted sum of observed data, it follows single-objective
history matching and thus, the requirements of many-objective
history matching are no longer applicable.

Machine learning that uses big data typically includes training
processes, e.g., supervised or unsupervised-learning. Supervised
learning is a machine training method that uses specific output
values, such as labels, for input data. In other words, it is a data
learning process that predicts or classifies output values for new
input data through training of a given data set. Unsupervised
learning does not aim to classify or predict output data because it
does not have specific output values for the input data, but rather
learns data features by training the given input data itself. An
autoencoder is a typical unsupervised learning algorithm, which is
a neural network-based algorithm that is widely used for dimen-
sion reduction (Hinton and Salakhutdinov 2006; Vincent et al.,
2010; Zhang et al., 2018), anomaly detection (Zhou and
Paffenroth, 2017; Ribeiro et al., 2018), and image processing (Zeng
et al., 2017; Han et al., 2020). Recently, in addition to its effective-
ness in dimension reduction, it has been used as a pre-trained
learning method. This method uses bottleneck neurons that learn
input data characteristics through autoencoders as input data for a
conventional supervised learning algorithm (Erhan et al., 2010;
Weston et al., 2012; Ahn et al., 2018; Mo et al., 2019; Liu et al., 2019;
Liu and Grana, 2020).

Recent advances in neural networks with normalized datasets
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provide alternative methods for controlling differently scaled
available data (Hinton et al., 2006; Hinton and Salakhutdinov 2006;
LeCun et al., 2015; Goodfellow et al., 2016; Ahn et al., 2018; Chan
and Elsheikh, 2019; Liu et al., 2019; Mo et al., 2019; Ki et al.,
2020; Kim et al. 2020a, 2020b). Neural networks, such as deep
neural network (DNN) that has some hidden layers, can input
various types or scales of data in a normalized form, and establish
an empirical relationship between input and output layers. Modern
neural-network research has concentrated on big-data analytics
and data-integration by combining network design using deep
learning, dimensional reduction, and feature extraction. By con-
trolling neurons and hidden layers, users can design the optimum
framework of neural networks to minimize computational costs
and achieve accuracy. Several successful case studies have
demonstrated the benefits of applying data analytics to transform
the traditional reservoir model to data-driven decision support
(Mehta, 2016; Cavalcante et al., 2019; Saputelli, 2019; Kim et al.
2020a, 2020b). Cavalcante et al. (2019) proposed a continuous
learning algorithm in data assimilation and showed its algorithm
could be applied to a history matching problem. Kim et al. (2020a)
implemented DNN with the latent features and constructed the
prior geo-models to mitigate the overshooting problem of
ensemble smoother with multiple data assimilation. Kim et al.
(2020b) confirmed the applicability of DNN-based inverse
modeling in fluvial channel reservoirs where flow paths are not
complex andmainly occur in sandstone channels. Applicability was
limited because the production histories were four kinds and 2D
geo-models that typical Pareto-based multi-objective evolutionary
algorithms could be applicable successfully.

This research examines an iterative-learning scheme to produce
more reliable and less error-prone geo-models as a supervised-
learning dataset of DNN-based inverse models. By updating the
supervised-training dataset iteratively, this study tries to develop a
methodology to upgrade the empirical correlations made by DNN.
The objective of this research is to develop a robust workflow that
can help mitigate many-objective history matching issues. This
workflow consists of DNN-based inversemodeling and an iterative-
learningmethod that can update more reliable supervised-learning
datasets and produce plausible and heterogeneous geo-models
with matching production histories. This can be applied to rem-
edy or prevent issues encountered in many-objective history
matching. The applicability to many-objective history matching is
examined by comparing typical Pareto-based multi-objective
evolutionary algorithms, i.e., Nonedominated Sorting Genetic
AlgorithmeII (NSGA-II) (Deb et al., 2002; Guria et al., 2014; Min
et al., 2016; Kim et al., 2017), in a 3D heterogeneous reservoir.

2. Many-objective history matching problem: PUNQ-S3
benchmarking field and geostatistical construction of initial
geo-models

A 3D heterogeneous reservoir with many objective functions,
PUNQ-S3 (Production forecasting with uncertainty quantification-
S3) reservoir, has been widely used as a benchmark to examine
the pros and cons of history matching schemes (Gu and Oliver,
2005; Hutahaean et al., 2017; Lee et al., 2017; Carneiro et al.,
2018). PUNQ-S3 has a corner-point grid system with ðx; y; zÞ ¼
ð19; 28; 5Þ, and five layers along the z direction. The number of
permeable grids is 1761, i.e., 396 in the first and the second layers
and 323 in the others. An impermeable fault surrounds the reser-
voir on the southeast part while a strong aquifer is placed at the
northeast zone (Lee et al., 2017). Fig. 1 illustrates the permeability
distribution transformed using natural logarithm and the locations
of production wells. Table 1 summarizes the ranges of absolute
permeability and porosity with z layers; the first, third, and fifth



Fig. 1. Spatial distribution of permeability converted by natural logarithm in the PUNQ-S3 field: (a) layer 1; (b) layer 2; (c) layer 3; (d) layer 4; and (e) layer 5. Layers 1 and 2 do not
contain production wells, while the other layers have various perforated zones with six producers.
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Table 1
Porosity and permeability ranges at each layer in the PUNQ-S3 field.

Layers 1, 3, 5 2 4

Porosity (fraction) 0.01e0.30 0.01e0.17 0.01e0.22
Horizontal permeability (xy-plane), mD 0.1e1000 0.1e200 0.1e500
Vertical permeability (z direction), mD 0.1e500 0.1e50 0.1e100
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layers have similar properties with high productivity, while the
second layer has less productivity, and the fourth layer has the
intermediate values. Six producers are perforated at the fourth, the
fifth, and third layers (Fig. 1). The observed data include oil pro-
duction rates, well bottom-hole pressure (well flowing pressure
observed at the well bottom), gas-oil ratios (surface volume ratio of
gas to oil production rates), and water cut (the volume ratio of
water production to liquid production), which accounts for the
availability of 24 different categories of dynamic data. Tables 2 and
3 describe well operations including shut-in processes, and show
that the reservoir experiences irregular shut-in operations, which
results in nonlinear production performances. Table 2 summarizes
well operations during the history matching period (until 2936
days) and Table 3 shows them during the prediction period of
2937e6025 days.

The many-objective history matching problem that needs
solving is to match 18 different production histories, except for
water cut, until 2936 days. The water cut is implemented as a blind
test to evaluate the reliability of the proposed workflow since it is
not included in history matching. Most values of water cut during
the history matching period (0e2936 days; 20 time steps; see
Table 2) are zero, and therefore the water cut trends represent
Table 2
Time steps of the PUNQ-S3 field during the history matching period.

Time step 1 2 3 4 5

Time, days 1.01 91 182 274 366*

Time step 11 12 13 14 15

Time, days 2008 2192 2206* 2373 2557

Notes: * shut-in wells.

Table 3
Time steps of the PUNQ-S3 field during the prediction period.

Time step 21 22 23 24 25

Time, days 2937 3103 3287 3288* 330

Time step 31 32 33 34 35

Time, days 3668 3834 4018 4019* 403

Time step 41 42 43 44 45

Time, days 4398 4564 4748 4749* 476

Time step 51 52 53 54 55

Time, days 5129 5295 5479 5480* 549

Time step 61 62

Time, days 5859 6025

Notes: * shut-in wells. Time step and time are continued in Table 2.

1468
whether it is feasible for the workflow to construct the plausible
geo-models. The 18 types of objective functions are defined in Eqs.
(1) and (2):

argminFðyÞ¼
n
f1;1;/; fi;j;/; fo;W

o
(1)

fi;jðyÞ ¼
1
tn

Xtn
k¼1

�������
ytruei;j � bysimi;j

ytruei;j

������� (2)

where FðyÞ is the set of objective functions (fi;jÞ; subscripts i, j, o, and
W represent the production response (i ¼ 3; oil rates, bottom-hole
pressure, and gaseoil ratio), the name of production well (j ¼ 6;
PROD1, PROD2, PROD3, PROD4, PROD5, and PROD6), the total
number of observed response used in history matching problem
(o ¼ 3), and the total number of production well (W ¼ 6),
respectively; the superscript ‘true’means the ith observed response
(y) at jth production well in the target field; the superscript ‘sim’

denotes that (by) in the geo-models resulted from inverse modeling;
and tn is the number of time steps until the end of the history
matching period (tn ¼ 20 as shown in Table 2). The many-objective
history matching minimizes FðyÞ by calibrating absolute perme-
ability assigned in each grid.

Well operations influence the production performances and
thereby further complicate production performances forecasting
without changing the operation conditions. The initial geo-models,
made using Stanford University's SGeMS software (Remy et al.,
2009), are implemented to train the DNN and the SAE at the first
stage. The size of the initial population is 100. ECL100
6 7 8 9 10

1461* 1642 1826 1840* 1841

16 17 18 19 20

2571* 2572 2738 2922 2936*

26 27 28 29 30

1* 3302 3469 3653 3654* 3667*

36 37 38 39 40

2* 4033 4199 4383 4384* 4397*

46 47 48 49 50

2* 4763 4930 5114 5115* 5128*

56 57 58 59 60

3* 5494 5660 5844 5845* 5858*
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(Schlumberger, 2018), a commercial black oil simulator, outputs
production performance results. Fig. 2 depicts the production his-
tories observed at the producers including oil rates (Fig. 2(a)),
bottom-hole pressure (Fig. 2(b)), gas-oil ratio (Fig. 2(c)), and water
cut (Fig. 2(d)), respectively. Fig. 2 presents productionwell histories
making it conducive to the conflicted-objectives problems.

3. Materials and methods

Fig. 3 depicts the workflow of the iterative learning-based
many-objective history matching, and is divided into two parts:
(1) DNN-based inverse modeling with SAE encoding/decoding
process (DNN-SAE); and (2) the iterative-learning process with
training dataset updating of DNN for the next stage.

SAE is established using the initial models as the pre-trained
process so that the training set updates are applied to upgrade
the DNN structure. The DNN-SAE process results in encoded static
data and the geo-models are constructed again through decoding.
SAE is implemented not only to encode the static data as the output
neurons of DNN, but also to decode the output values estimated by
DNN to grid properties for reservoir simulations. The iterative-
learning process is to update the supervised-training dataset for
next stage; it applies distance-based clustering schemes. The up-
date continues until the given stage (20 stages in this work) and
stops early when the most of the error values tend to converge to
the minimum.

3.1. DNN-SAE: DNN-based inverse modeling with SAE encoding/
decoding process

DNN-based inverse modeling places the observed histories at
the input layer and the static properties at the output layer. DNN-
SAE framework replaces the original static data with SAE-
encoded data; the encoded values of permeability. Fig. 4 divides
DNN-SAE into SAE encoding (Fig. 4(a)), a DNN-based inverse model
(Fig. 4(b)), and SAE decoding (Fig. 4(c)), respectively. To train DNN,
the input layer has the observed production data (Y) that are
normalized, and the output neurons are encoded data (Z) of the
static property (grid permeability) in training dataset (100 initial
geo-models at the first stage). The trained DNN assigns the input
neurons as the true responses until history matching (2936 days) is

completed and produces the output neurons (bZ) that are the same

format of encoded values (Fig. 4(b)). The output results (bZ) are

decoded, converted to permeability values (bX), and the geo-model
is constructed by history matching (Fig. 4(c)).

Training neural networks (DNN and SAE) is a process that ad-
justs weights to find a nonlinear function to minimize the predic-
tion error between actual values and neural network predictions. A
learning algorithm, which is typically used in neural networks, is a
gradient descent method that calculates the actual slope using a
backpropagation method. The slope descent method obtains the
slope by differentiating the function, and then finds the optimal
solution by incrementally changing the factor the direction of the
slope (Reed andMarks, 1999). The sum of theweights in the neuron
is calculated through the operator, and the calculated values are
finally implemented using the activation function. This study im-
plements a continuous log-sigmoid function as an activation
function of SAE and a tan-sigmoid function for DNN. The optimizer
for SAE, the training (learning) algorithm, is a scaled conjugate
gradient backpropagation (trainscg in MATLAB; MathWorks, 2018),
while for the optimizer for DNN is a gradient descent with mo-
mentum and adaptive learning rate backpropagation (traingdx in
MATLAB; MathWorks, 2018). In short, DNN-SAE estimates the
encoded values honor to the observed data, and the pre-trained
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SAE reconstructs the geo-model. For training DNN-SAE, the input
uses the simulated responses of the geo-model, while the output is
set with encoded values of permeability in the model.
3.1.1. Training SAE encoding/decoding system: geo-model
reconstruction

SAE can stack multiple hidden layers for learning complex data.
The purpose of training SAE is to reconstruct the input data as it is,
so that the neural network structure has the same number of
neurons in the input and the output layers (Fig. 5). The dimension
of the input data can be modified by the number of neurons in the
hidden layer, the bottleneck, which is located in the middle of the
SAE structure. If the number of neurons in the bottleneck is set
smaller than the number of input data, the input data can be
compressed (dimensionally reduced). In SAE training, learning
from the input layer to the bottleneck is called the encoder, while
the learning stage of reconstructing the compressed data in the
bottleneck to the input data is called the decoder. Training the SAE
framework aims to minimize the mean squared error (MSE), which
is a function of loss or cost (Eq. (3)):

L
�
X; bX�

¼1
n

Xn
i¼1

�
xi � bxi

�2

(3)

where LðX; bXÞ is the MSE; n is the number of input data; xi is the ith
input data; and bxi is the ith reconstructed data. The dimensions of
input and output layers (the superscript D of RD in Fig. 5) are the
same as the calibrating permeabilities in the geoemodel with a grid
number of 2660 (the total grid number is 19� 28� 5 ¼ 2660). The
calibrating positions for historymatching include all grids in PUNQ-
S3. The bottleneck dimension, or encoded data (the superscript E of
RE in Fig. 5), is set as 100. The supervised-training dataset of SAE
consists of 100 geo-models generated as the initial population
except for the true model; 80% of which is for the training set and
the remaining 20% for the validation set.
3.1.2. Training the DNN-based inverse model
The DNN-based inverse model in this study is a multiple-

hidden-layered neural network consisting of two hidden layers,
one input, and one output layer. The DNN training follows the
training process of SAE; however, input and output neurons are
different with SAE's. The input neurons are the production his-
tories, while the output is the encoded values related to perme-
ability in the geo-models. Because three kinds of observed histories
are used as the input neurons, the values should be normalized in
the range of �1 and 1 (Eq. (4)):

Ii;jðtÞ ¼ 2� ji;jðtÞ � jminðtÞ
jmaxðtÞ � jminðtÞ

� 1; (4)

where Ii;jðtÞ is the observed histories as input neurons; for inverse

modeling, ji;jðtÞ ¼ ytruei;j is the response observed at the PUNQ-S3

field that is the ith observed response from jth production well at

time t; and for training DNN, ji;jðtÞ ¼ bysimi;j is the ith response from
jth production well at time t, resulted from the flow simulation of
the geoemodel. The subscripts ‘min’ and ‘max’ represent the
minimum value and the maximumvalue of ji;jðtÞ at the given time,
t. The total number of input neurons (Ii;jðtÞ) is 360; the multipli-
cation of the number of objective functions and that of time steps
(18� 20¼ 360; refer toTable 2), while that of output neuron sets as
the data encoded by SAE are 100, instead of the full set of grid
permeability (2660 data).



Fig. 2. Production histories of the PUNQeS3 field and the initial geo-models: (a) oil production rate, (b) bottom-hole pressure, (c) gas-oil ratio, and (d) water cut.
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Fig. 2. (continued).
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Fig. 3. Workflow of the iterative learning-based many-objective history matching.
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3.2. Iterative-learning method with supervised-training dataset
updates

The iterative-learning method iteratively updates DNN. A key
component of the process is to determine the DNN supervised-
training dataset at the next stage. The first consideration applies
a method to include the reliable geo-models that can represent or
show the production performances similar to those of true field
conditions (PUNQ-S3 field). The geo-models selected should
contain geological characteristics that can show all production
performances similar to the observed histories (refer to Section
3.2.1). The other consideration is how to maintain the adequate
population size or sufficient training size to train the DNN system. If
the dataset size is small, the training performances would be poor.
Fig. 4. DNN-SAE workflow: (a) SAE encoding process that encodes grid permeability (X
production-related dynamic data (Y) as input neurons and the encoded data (Z) by SAE; and
(bZ) estimated by DNN.
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However, as computing time increases, the convergence activity
might be poor, and could cause the DNN-SAE to experience a
divergence problem in which it would not converge to the optimal
solutions. This study intends to maintain the dataset size for
training DNN similar to the initial population of 100 geo-models
(refer to Section 3.2.2).
3.2.1. Geo-model selection using a distance-based map
A key idea of an iterative-learning method for many-objective

history matching is to draw a distanceemap in compliance with
the individual production performance given at each producer (Lim
et al., 2020; Kim et al., 2020b). Fig. 6 demonstrates a way to select
geoemodels in distance-maps. Fig. 6(a) is the result of typical k-
medoid clustering and Fig. 6(b) shows the addition of geo-models
) of individual geo-models; (b) DNN-based inverse model consisting of normalized
(c) SAE decoding process to reconstruct the grid permeabilities from the output values



Fig. 5. Schematic diagram of SAE. X and Z denote neurons in the input layer and
bottleneck neurons in the autoencoder, respectively. bX represents the reconstructed
output neurons. The superscripts D and E denote the dimensionality numbers of each
data space. 4 is the activation function for encoder and 4� is for decoder in the fully
connected layers.

Fig. 7. Schematic diagram to determine the training set of DNN stages. The SAE
encoding/decoding system was constructed using the initial population.
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nearer to the true response. Because we have three types of re-
sponses and six producers, the number of the distance maps is 18.

The distance (da;bi;j ) between the ath and the bth response at the ith

observed response from jth production well is determined using
(Eq. (5)):

da;bi;j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
Iai;j � Ibi;j

��
Iai;j � Ibi;j

�Tr
;
ca ¼ 1;2;/;n; nþ 1
cb ¼ 1;2;/;n; nþ 1 (5)

where Iai;j is the normalized input value related to the ith observed

response from the jth productionwell of the ath geoemodel. There
are (nþ 1) points, the number of geoemodels (n) plus one true
response, that are placed in individual distance map. This equation
assumes that we do not know the true reservoir, but know the
production response in PUNQeS3. The user knows the geoemodels
(property distribution) that were generated, as well as the simu-
lated production data. The geoemodels selected in each distance
map are defined as Si;j in Eq. (6):

Si;j ¼ Ci;j∪Ei;j (6)

where Si;j is the set of geoemodels selected at the ith observed
response from jth production well; Ci;j is the set of geoemodels
within the cluster containing the ith observed response from jth
production well (Fig. 6(a)); and Ei;j is the geoemodel within the
Fig. 6. Schematics to determine the set of geoemodels, (Si;j), on the distance map of the ith o
(after k-medoids clustering) and (b) to include the geoemodels near the true response (Ei;
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circle of which the radius is the distance between the true response
and the medoid of selected cluster (Fig. 6(b)). This modeleselection
is repeated in the population (Pk) at the kth stage, and each distance
map has the same number of points (nþ 1) but that of the geo-
models selected (Si;j) in each distance map would be different. A
reason that this study does not assign the true response as one
medoid is not only to conserve the random data selection, but to
also examine whether the suggested methodology (the iterative
update of geo-models) can choose the more reliable dataset as the
iteration steps.
3.2.2. Iterative-learning of DNN with generating new training
datasets

The first training set, (T1), of DNN is the same as the initial
population generated by the geostatistical method, (the 100 geo-
model), which preserves uncertain geological scenarios to the
greatest extent possible. Inverse modeling with DNN-SAE trained
by Tk results in plausible geo-models, which is the set of Hk at the
kth stage. DNN-SAE can reconstruct the geo-models as many times
as the user wants, and certain important features that can improve
the convergence to the optimal front can be indirectly transferred
to the next stage. Uk is the union set of Tk and Hk at the kth stage
before determining Ski;j (Eq. (8) and (9)). The term Ski;j for the ith
bserved response from the jth production well (a) k-medoid clustering to determine Ci;j
j) (after completing the geoemodel selection) (modified from Kim et al., 2020b).



Table 4
Summary of reconstruction errors and computing time for encoding/decoding
processes depending on the number of hidden neurons.

Number of hidden neurons (HENC ¼
HDEC) of SAE

Reconstruction error
(MAPE), %

Computing
time, s

200 1.60 374
300 2.10 538.2
500 3.70 861.2
1000 4.00 1770.2

Fig. 8. Trends of the reconstruction error and computing time depending on the
number of hidden neurons for SAE encoding/decoding processes.

Table 5
Design of DNN-SAE structure.

Type of layer Number of neurons

SAE Input layer X

Output layer bX
2660

Hidden layer HENC 200
Encoded layer Z 100

DNN Input layer Y 360
Hidden layer 1 HDNN1
Hidden layer 2 HDNN2
Hidden layer 3 HDNN3

500

Output layer bZ 100
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observed response from the jth production well at kth stage is
determined; 18 types of Ski;j sets are obtained. The training set of

DNN for the (kþ 1)th stage (Tkþ1) is determined at the intersection

of union of all Ski;j results (Eq. (9); Fig. 7). The purpose of this process

is to prevent the divergence of training performances and to pre-
serve the effective traits that are similar to the true responses.
However, as the step progresses, the number of Tk values is at risk of
decreasing and thereby causes the training ability of DNN to
decrease. To maintain sufficient Tkþ1 values for improving DNN, the
number of models in Hk is set to 500.

Uk ¼Hk∪Tk;ck ¼ 1; 2; 3; / (8)

Tkþ1 ¼ ∩
i;j

�
∪
i;j
Ski;j

	
;

ck ¼ 1; 2; 3;/
ci ¼ 1; 2; 3
cj ¼ 1; 2; /; 6

(9)

4. Results and discussion

4.1. Design of DNN-SAE system

The SAE encoding/decoding extracts some important features of
permeability (encoding) and reconstructs the permeabilities
(decoding the output neurons of DNN). SAE system does not use
iterative-learning but only permeability values. Therefore, SAE is a
preetraining process based on static datasets from geo-model
encoding and decoding workflow. It uses the permeability tensors
of the initial population set (100 geo-models; P0 ¼ T0). SAE
encoder/decoder had three hidden layers (HENC, Z, and HDEC in
Fig. 4(a) and (c)). The width of bottleneck (Z) was fixed as 100
neurons, and the remaining hidden layers (HENC and HDEC) had the
same number of neurons.

As the number of encoding/decoding hidden neurons (HENC ¼
HDEC) changed, the mean absolute percentage error (MAPE in Eq.
(9)) and its arithmetic mean as the reconstruction error of SAE (εR
in Eq. (10)) was introduced:

ε

�
X; bX�

¼100
n

Xn
i¼1

����xi � bxi
xi

���� (9)

εR ¼ EP0

n
ε

�
X; bX�o

(10)

where εðX; bXÞ is the MAPE; n is the number of permeabilities as
same as the total grid number; xi represents the permeability at the
ith grid that assumes the value before the encoding process; and bxi
is the permeability at the ith grid reproduced from the encoded
bottleneck layer (Z). Each geoemodel has its own MAPE and thus
the reconstruction error is the averaged MAPEs (Eq. (10)). The case
study was performed by changing the number of neurons of the
first hidden layer; 200, 300, 500, and 1000. Table 4 summarizes the
reconstruction errors and computing time, and Fig. 8 depicts their
trends in relation to the number of the initial hidden neurons in the
SAE system. As the number of neurons was increased, both
computation time and reconstruction error increased. The SAE
capacity was obtained at 200 as thewidth of the hidden layer that is
sufficient for ensuring computational efficiency and training per-
formance. The reconstruction error (εR) in the case of 200 neurons
was smallest up to 1.6% and the SAE training required 374 s to be
completed.

This study assumed a fixed DNN structure (Fig. 4(b)) because it
was expected that the iterative-learning process can improve DNN;
1474
three hidden layers with 500 units. Table 5 summarizes the DNN-
SAE structure. The DNN consisted of normalized dynamic his-
tories (PUNQ-S3 has 360 production data within the matching
period) minus three hidden layers (500-500-500) and minus the

output layer, bZ , (100). The SAE structure had three hidden layers,
which consisted of 200 neurons for the encoding layer, 100 for the
bottleneck layer, and 200 for the decoding layer, respectively.
4.2. DNN-SAE with iterative-learning for many-objective history
matching

The reliability of DNN-SAE with iterative-learning process was
examined by comparing with the typical Pareto-optimal algorithm
(NSGA-II). The comparison method consisted of non-dominated
sorting and crowding-distance sorting for diversity preservation
in such a way that it generated Pareto-optimal solutions with
stages. The stop criterion of NSGA-II was 20 stages, and was the
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same as the maximum number of stages of the proposed workflow.
Three tests were performed; dynamic-data matching ability, pre-
diction accuracy of unknown production profiles, and the plausible
geo-models. Eq. (11) defines the error (εW ), which is the averaged
MAPE calculated at the given producer to effectively demonstrate
the error trends during the history matching:

εW ¼ ETkE0�tn

n
ε

�
Y ; bY�o

(11)

where εðY ; bY Þ is MAPE with the true production value (Y) and the
Fig. 9. Error bars for MAPE (εW ) with relation to the stages: (a) oil p

Table 6
Summary of the MAPE (εW ) during the history matching period.

MAPE εW , %

PROD1 PROD2

Oil production rate Initial models 1.4 1.8
NSGA-II 1.3 1.8
DNN-SAE 0.0 0.0

Bottom-hole pressure Initial models 3.8 5.3
NSGA-II 3.0 5.4
DNN-SAE 0.3 0.9

Gas-oil ratio Initial models 5.2 6.9
NSGA-II 5.5 6.8
DNN-SAE 1.2 0.6
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estimated value (bY ); the subscriptsW, Tk, and tn are the production
well, the sample set, and the time step at the end of history
matching, respectively (tn¼20; see Eq. (1)). Fig. 9 describes the
distribution of εW with relation to the stages. Errors with small
values converge up to the 20th stage, and early stopping is reached
at the 18th stage. All errors decrease with the stages for the three
objective functions. Therefore, these decreased trajectories validate
the effectiveness of the iterative-learning process on matching the
production histories. As a result of examining the data matching,
the iterative-learning workflow can improve data matching of
roduction rate; (b) bottom-hole pressure; and (c) gas-oil ratio.

PROD3 PROD4 PROD5 PROD6 Average

0.0 0.1 0.7 0.0 0.6
0.0 0.1 1.2 0.0 0.7
0.0 0.0 0.0 0.0 0.0

1.4 3.7 3.8 0.5 1.4
0.9 3.3 3.4 0.5 1.4
1.2 0.6 3.0 0.0 0.7

0.2 0.4 0.4 0.2 2.6
0.2 0.3 0.3 0.1 2.6
0.1 0.0 0.1 0.0 0.4
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DNN-SAE.
Table 6 compares εW with initial models (100 models; P0), the

final geo-models of NSGA-II (100 models at the 20th generation),
and the final geo-models of DNN-SAE with iterative-learning (the
proposed method; 251 models at the 18th generation). The aver-
aged values of εW , EWfεWg, prove that the proposed workflow
more effectively reduced the error ranges of the initial geo-models.
Fig. 10. Oil production profiles: (a) NSGA-II and (b) the study. The vertical dashed line indica
and 251 in this study.

1476
Reducing all errors of 18 objective functions is difficult, and is
referred to as “the curse of dimensionality”. This results in some
error reduction by the producers; however, other errors are not
decreased by either method. A notable comparison is that NSGA-II
fails to reduce overall errors in the initial models; however, the
proposed method is effective in reducing individual error and
improving overall data-matching. The averaged errors do not
tes the end of the history matching period. The number of trajectories is 100 by NSGA-II
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necessarily represent successfully satisfying many objectives
because the outlier can govern the average value. Based on this
problem, consideration of both the number of geo-models selected
in distance maps (Tk) and the error bars is a valid indicator to es-
timate the robustness of DNN-SAE history matching at each stage.

Figs. 10e12 show production performances that allow exami-
nation of prediction accuracy for results of NSGA-II and the
Fig. 11. Bottom-hole pressure profiles: (a) NSGA-II and (b) this study. The vertical dashed lin
NSGA-II and 251 in this study.
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proposed method. The best-fit model denotes one geo-model that
has the smallest error during the matching period, i.e., a plausible
model with the minimum error, which is the min½EWfεWg]. The
number of trajectories is 100 models for NSGA-II, while 251 models
were used in this study. Notwithstanding the proposed workflow,
that accomplished early stopping before 20 stages, i.e., it was
stopped at the 18th generation. The proposed method significantly
e indicates the end of the history matching period. The number of trajectories is 100 by



Fig. 12. Gas-oil ratio profiles: (a) NSGA-II and (b) this study. The vertical dashed line indicates the end of the history matching period. The number of trajectories is 100 by NSGA-II
and 251 in this study.
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reduced the trajectory ranges as compared with NSGA-II. Another
notable result is that the iterative learning-basedmethod generates
more geo-models with higher accuracy. A representative objective
of many-objective history matching is to construct as many plau-
sible and consistent geo-models as possible. Thus, the proposed
workflow can successfully perform many-objective history
matchingwith less divergence. In addition, the forecasting ability of
the proposed method is shown to be sufficiently reliable by
1478
satisfying 18 objectives. The best-fit model can explain the well-
based production performances even though some cases are
greater than the others, e.g., oil rates from PROD5 and PROD6.
However, the predictability of the compared method (NSGA-II) is
not generally insufficient, but the predictability of oil rates is rela-
tively poor.

As water cuts are not used in matching, the reliability of plau-
sible geo-models can be analyzed quantitatively through water cut



Fig. 13. Comparison of estimating water cut profiles: (a) NSGA-II and (b) the iterative learning-based many-objective history matching. The number of trajectories is 100 by NSGA-II
and 251 in this study.
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forecasting performances (Fig. 13). The proposed method forecasts
water cuts more accurately than PROD2, 4, and 5, but is less accu-
rate for PROD3. The developed workflow predicts more accurately
for high water cut and water breakthrough time, and shows the
lower overall error. Fig. 14 compares the field production volumes
for oil, gas, and water as decision-making data. As shown in Fig. 14,
there are decreases in the error ranges of the initial population, i.e.,
1479
uncertainty level, and they can provide more reliable predictions.
Table 7 summarizes the prediction errors (εP; Eq. (12)) of developed
method and the comparison:

εP ¼ ETkEtn�
n
ε

�
Y ; bY�o

(12)

where εP is the MAPE from the end of history matching until the



J. Kim, C. Park, S. Ahn et al. Petroleum Science 18 (2021) 1465e1482
end of production. The other variables are previously defined for
Eq. (11). This method reduces the errors in initial geo-models and
accurately forecasts unknown well-based production perfor-
mances. The typical Pareto-based evolutionary algorithm does not
significantly decrease the errors and the errors are similar to those
of the initial population due to the “curse of dimensionality.” The
typical Pareto-based algorithm is not suitable for attaining global
optimality in many-objective problems because it does not effec-
tively reduce the initial errors. The proposed iterative learning-
based DNN-SAE method is a promising alternative for mitigating
“the curse of dimensionality.”

Fig. 15 shows the permeability distribution of the best-fit geo-
model and the MAPE between the true permeability and the esti-

mated value, i.e., εðXtrue; bXÞ, where Xtrue is the normalized and

natural-log transformed permeabilities in PUNQ-S3 and bX is the
estimated value of the best-fit model by the developed method. A
notable observation is that the errors are minimal near the pro-
duction wells. The best-fit model results from calibrating the per-
meabilities to match production histories to successfully decrease
the error within the drainage. However, outside the drainage areas,
Fig. 14. Total production of oil and gas: (a) initial models; (b) NSGA-II; and (c) the proposed
this study.
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there is no significant improvement as shown by higher errors.
The aforementioned results discuss the pros and cons of itera-

tive learning-based many-objective history matching. There are
three main advantages to using this method that are described as
follows: (1) it reliably considers the observed dynamic data (well-
based production characteristics) with equal weights. This advan-
tage would be helpful in independently matching well-based pro-
duction performances, and thereby would reduce the occurrence of
overall errors; (2) iterative-learning provides the possibility to
reduce the errors of all objective functions. The typical Pareto-
based many-objective history matching has used some schemes
to expand the search domain, e.g., non-dominated sorting and
crowd distance; however, they are not always effective in many-
objective problems. If the DNN structure is reliable for generating
the equi-probable models, the model selection based on
unsupervised-learning, e.g., k-modoids clustering and the expan-
sion of searching domain for each objective function, would be
effective for identifying geological uncertainty; and (3) minimal
computing effort is required, despite the dependence on neural
network design. The training of neural networks takes much less
time than the typical Pareto-based multi-objective evolutionary
method. The number of trajectories is 100 by initial models, 100 by NSGA-II, and 251 in



Table 7
Summary of prediction accuracy (MAPE; εP) for initial models, NSGA-II, and the proposed method (from 2937 to 6025 days).

Prediction accuracy (MAPE) εP , %

PROD1 PROD2 PROD3 PROD4 PROD5 PROD6 Average

Oil production rate Initial models 3.7 11.5 0.0 10.2 4.3 7.6 3.5
NSGA-II 2.4 11.5 0.0 9.0 4.1 6.8 3.4
DNN-SAE 0.0 0.9 0.0 3.0 1.1 8.8 2.4

Bottom-hole pressure Initial models 6.7 4.4 2.6 3.0 7.8 3.8 1.7
NSGA-II 5.4 4.1 2.0 2.9 8.0% 3.6 1.6
DNN-SAE 0.5 2.6 1.5 0.9 6.8 4.7 1.9

Gas-oil ratio Initial models 10.0 2.1 0.9 7.8 1.0 11.4 4.2
NSGA-II 11.2 1.7 0.9 7.6 1.1 10.5 4.3
DNN-SAE 1.1 0.6 0.5 5.3 0.2 13.1 3.8

Water cut Initial models 0.0 22.5 48.9 21.5 352.1 0.0 92.6
NSGA-II 0.0 24.0 46.2 20.0 352.7 0.0 93.0
DNN-SAE 0.0 13.7 55.9 13.4 210.2 0.0 56.1

Fig. 15. Best-fit model resulting from the iterative learning-based DNN-SAE: (a) natural-log transformed permeabilities and (b) their error with the reference field (PUNQ-S3;
Fig. 1(c), (d), (e)). The 3rd, 4th, and 5th layers are presented as they contain producers.
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algorithm. It can generate plausible geo-models with small
computing efforts. The weaknesses or challenges can be addressed
to improve the iterative learning-based many-objective history
matching by constructing standard forms of neural networks and
correlation of the conflicted objectives. As deep learning is a data-
driven neural-network method and searches the more accurate
empirical relationship between the input and output units, some
user interactions are required, e.g., detailed design of neural
network, selection of activation functions, and tuning hyper pa-
rameters. If the overall errors are addressed, reduction in solving
local erroneous objectives is the next challenge. If the initial pop-
ulation is sufficient for explaining the production profiles, the
performances of many-objective history matching would be
1481
unsatisfied. The indicators, e.g., the stopping criteria, are chal-
lengeable that can evaluate the convergence of many-objective
optimization. The iterative learning-based neural network imple-
ments some assumptions and thereby it is difficult to conclude
whether or not the proposed workflow is optimal. Introducing
various neural networks and integrating the parameterization or
dimensionality reduction may efficiently secure global optimality
as future works. The reliability of latent features (dimensionality-
reduced parameters) extracted from the field-scaled three-
dimensional geo-models is a key factor to secure the applicability of
deep-learning-based data analytics.
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5. Conclusions

This paper presented iterative learning-based many-objective
history matching that is applicable to solving problems that occur
when using many-objective methods. This workflow consisted of
deep neural network for inverse modeling, stacked autoencoder to
reduce dimensionality of static data, and geo-model selection in an
individual objective-based distance map. The suggested workflow
successfully addressed the divergence issue of many-objective
optimizations by showing reliable performances and accurate
predictability. Comparison with the Pareto-based multi-objective
evolutionary algorithm confirmed that this proposed method
improved the learning performance of the neural network by
selecting the distance-based candidate group. The proposed
method is applicable as a decision-making tool for reservoir
development as proven by its ability to estimate dynamic responses
with high reliability; even in a reservoir containing many produc-
tion wells in three-dimensional geo-models.
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