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a b s t r a c t

The estimated ultimate recovery (EUR) of shale gas wells is influenced by many factors, and the accurate
prediction still faces certain challenges. As an artificial intelligence algorithm, deep learning yields
notable advantages in nonlinear regression. Therefore, it is feasible to predict the EUR of shale gas wells
based on a deep-learning algorithm. In this paper, according to geological evaluation data, hydraulic
fracturing data, production data and EUR evaluation results of 282 wells in the WY shale gas field, a
deep-learning-based algorithm for EUR evaluation of shale gas wells was designed and realized. First, the
existing EUR evaluation methods of shale gas wells and the deep feedforward neural network algorithm
was systematically analyzed. Second, the technical process of a deep-learning-based algorithm for EUR
prediction of shale gas wells was designed. Finally, by means of real data obtained from the WY shale gas
field, several different cases were applied to testify the validity and accuracy of the proposed approach.
The results show that the EUR prediction with high accuracy. In addition, the results are affected by the
variety and number of input parameters, the network structure and hyperparameters. The proposed
approach can be extended to other shale fields using the similar technic process.
© 2021 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This

is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

As exploration and development processes continuously
advance, the contradiction between oil and gas resources has
become increasingly notable. Meanwhile, the development pros-
pects of unconventional oil and gas resources are progressively
highlighted (Dong et al., 2016; Liu et al. 2019a, 2019b, 2020; Zou
et al. 2015, 2016, 2019, 2019). With the shale gas revolution in
North America and the continuous optimization of the energy
structure, shale gas, as an unconventional oil and gas resource, has
become one of the important pillars of the increase in reserves and
enhancement of the production of oil and gas resources in China
and even worldwide in the future (Dong et al., 2012; Ma, 2017a,
2017b; Ma and Xie, 2018). Large-scale horizontal well and
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multistage hydraulic fracturing have been usually adopted in shale
gas wells to obtain the maximum economic benefits (Ma, 2018;
Zhao et al., 2020).

The estimated ultimate recovery (EUR) of shale gas wells de-
termines the life cycle of their development, and it is also one of the
most important parameters of shale gas wells establishing their
economic benefits. Due to varying geological conditions, con-
struction conditions, production systems, etc., the EUR of many
different shale gas wells in similar areas or the same area largely
differs, and even the EUR of many horizontal shale gas wells
completed on the same drilling platform is also quite different.
Therefore, the rapid, effective, reasonable and accurate EUR pre-
diction of shale gas wells is facing great challenges by the control of
a series of factors.

EUR evaluation methods of shale gas wells mainly include the
empirical production decline method, modern production decline
method (including the flow material balance method), simulation
prediction method (analytical model method and numerical
simulation method) and probability method (Bi et al., 2020; Zhao
et al., 2019; Zhang et al. 2018, 2020). The deep learning algorithm
has been adopted in EUR prediction of natural gas wells, but for
mmunications Co. Ltd. This is an open access article under the CC BY license (http://

http://creativecommons.org/licenses/by/4.0/
mailto:yuyang.liu@pku.edu.cn
mailto:xinhuam@petrochina.com.cn
mailto:xinhuam@petrochina.com.cn
http://crossmark.crossref.org/dialog/?doi=10.1016/j.petsci.2021.08.007&domain=pdf
www.sciencedirect.com/science/journal/19958226
www.keaipublishing.com/en/journals/petroleum-science
https://doi.org/10.1016/j.petsci.2021.08.007
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.petsci.2021.08.007
https://doi.org/10.1016/j.petsci.2021.08.007


Y.-Y. Liu, X.-H. Ma, X.-W. Zhang et al. Petroleum Science 18 (2021) 1450e1464
shale gas wells, the current research is limited, and most studies
still mainly apply conventional methods such as empirical pro-
duction decline curves to perform EUR prediction.

Researchers have also achieved a series of improvements in the
EUR prediction for shale gas wells. Knowledge-driven approaches
are the main EUR prediction in shale gas development practice.
Coupled parameters such as normalized production and pressure
data are applied to predict the EUR of shale gas wells and suc-
cessfully applied this approach in the Zhaotong and Changning-
Weiyuan shale gas demonstration zone in China (Zhang et al.
2018, 2020). A quick EUR evaluation method for shale gas wells
under variable production rates based on data noise reduction is
developed to improve the EUR prediction accuracy (Zhao et al.,
2019). In the above attempts, analysis and optimization are con-
ducted based on the conventional production law of shale gas
wells, and most of these methods are knowledge-driven EUR
evaluation methods of shale gas wells (Zhang et al. 2018, 2020;
Zhao et al., 2019). There are only a few attempts at deep learning-
based or data-driven EUR evaluation methods. Bi et al. selected
the Changning shale gas demonstration zone in China as an
example and implemented the probability method to estimate the
EUR value of undeveloped areas based on the EUR value of devel-
oped areas with similar geological and engineering conditions,
thereby revealing that under similar geological and engineering
conditions, in the absence of interaction among wells, the pro-
duction laws in developed and undeveloped areas are similar, and
the EUR of shale gas wells in undeveloped areas could be calculated
by means of certain relevant parameters of developed areas (Bi
et al., 2020). By means of a data-driven method, Hector and Hor-
acio adopted a deep convolutional neural network to predict un-
conventional shale reservoir behavior, and the matching degree
between their prediction and actual results was relatively high
(Hector and Horacio, 2020). It shows the potentials of deep-
learning in shale gas EUR prediction.

The above studies also indicate that a certain theoretical basis
and application foundation are generated by evaluating the EUR of
undeveloped areas by means of the integration of geological fac-
tors, engineering factors, production factors and other constraints
and the deep learning algorithm to establish the EUR evaluation
model of developed areas.

A deep learning algorithm is an algorithm that learns from data,
and it extracts corresponding patterns from a variety of complex
raw data. With the continuous improvement in computing power,
researchers have applied deep learning algorithms in various fields
such as rock type division (Arns et al., 2001; Ismail et al., 2013;
Ismail, 2014; Yang et al., 2017), prediction of rock reservoir pa-
rameters (Iturrar and Parra, 2014; Zerrouki et al., 2014), determi-
nation of the boundaries of sedimentary facies and lithofacies (Liu
et al., 2017b; Singh, 2011; Silversides et al., 2015), restoration and
reconstruction of logging curves (Alizadeh et al., 2012; Rolon et al.,
2009; Salehi et al., 2016), establishment and simulation of digital
cores (Liu and Pan, 2017; Liu et al., 2017a; Wang et al., 2019c),
production history matching of oil and gas wells (Zhou, 2017; Xu,
2018; Liu et al., 2021) and calculation of shale gas reservoir's
characteristics like TOC and gas content (Wang et al., 2019a; Zhu
et al. 2019, 2020a, 2020b), which has resolved the problems of
related scientific research and engineering practices in the process
of oil and gas production, thereby demonstrating the great poten-
tial of deep learning algorithms in the oil and gas field.

The geological factor of shale gas reservoirs is one of the key
factors controlling the EUR of shale gas wells. The effective thick-
ness, organic matter maturity and matrix porosity of shale reser-
voirs directly affect the corresponding shale gas reserves. The
engineering factor of shale gas wells is another main factor con-
trolling the EUR of shale gas wells. The horizontal section length,
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drill-in rate of high-quality reservoirs, number and length of frac-
turing sections and hydraulic fracture length of shale gas wells
control the output of shale gas. The production factor of shale gas
wells is the final main factor influencing the EUR of shale gas. Pa-
rameters such as the test output and average daily output in the
first year are also related to the EUR of shale gas wells. Joint control
of the above factors determines the EUR of shale gas wells.

Based on the existing attempts of researchers, this paper pre-
dicts the EUR of shale gas wells by means of a deep learning al-
gorithm, the deep feedforward neural network in detail, and
integration of geological factors, engineering factors, production
factors and other constraints. The structure of the paper is as fol-
lows: first, the basic mathematical background of gas well EUR
evaluation and the deep feedforward neural network is introduced;
second, the EUR evaluationmethod of shale gas wells with the deep
feedforward neural network is designed and realized; then, the
feasibility and accuracy of the method are systematically analyzed
through real data of marine shale gas wells in theWY shale gas field
of the Sichuan Basin, China; and finally, based on the above results,
conclusions are obtained.

2. Basic mathematical background

2.1. Conventional EUR evaluation method of shale gas wells

With the EUR prediction method of natural gas wells as a
reference, previous EUR evaluation methods of shale gas wells have
mostly comprised knowledge-driven methods. The knowledge-
driven method, based on a relevant theoretical model or empir-
ical equation of the target parameters to be calculated, involves the
selection of required input parameters to perform calculations. EUR
evaluation methods of shale gas wells mainly include the empirical
production decline method, modern production decline method
(including the flow material balance method), simulation predic-
tion method (analytical model method and numerical simulation
method) and probability method (Zhang et al., 2018, 2020; Zhao
et al., 2019; Bi et al., 2020), as listed in Table 1. By means of anal-
ysis of these EUR evaluation methods of shale gas wells, the main
factors influencing the EUR are determined.

The analytical model method, largely based on the simplified
seepage mechanism under specific hypothetical conditions, estab-
lishes a gas seepage model of shale reservoirs to predict the EUR of
shale gas wells. This method has mostly been applied in theoretical
analysis and less in real production applications. However, by
means of mathematical model integration by researchers, the
relevant factors influencing the EUR of shale gas wells can be
determined. The numerical simulation method, based on the
simplified seepage mechanism mentioned above, implements the
numerical method to fit production data and then predict the EUR.
However, the numerical simulation method requires many pa-
rameters, and its application conditions are relatively limited.

The empirical production decline method includes the Arps
empirical production decline method, Duong method, modified
Duong method, power exponent decline method, modified power
exponent decline analysis method and expanded exponent decline
method. These methods are primarily based on the assumption of
constant-pressure production but do not consider the complex
seepage mechanism. Only a large number of production data is
employed to analyze the EUR of shale gas wells, and this method
has been widely applied. However, continuous production data of
shale gas wells must be acquired, and the uncertainty is high for
wells with less production data.

The material balance method, mainly based on the mass con-
servation law, captures the relationship among geological, recov-
erable and residual reserves and has beenmostly applied to analyze



Table 1
Evaluation methods of the EUR of shale gas wells (adapted from Bi et al., 2020; Zhang et al., 2018; Zhang et al., 2020; Zhao et al., 2019).

EUR prediction method Function Applicable flow pattern Applicable condition

Empirical production decline
method

Arps decline method Production/EUR prediction Boundary-dominated flow Constant-pressure
production

Expanded exponent decline method Production/EUR prediction Linear flow/boundary-
dominated flow

Constant-pressure
production

Duong method Production/EUR prediction Linear flow section Constant-pressure
production

Modified Duong method Production/EUR prediction Linear flow/boundary-
dominated flow

Constant-pressure
production

Power exponent decline analysis method Production/EUR prediction Linear flow/boundary-
dominated flow

Constant-pressure
production

Modified power exponent decline analysis
method

Production/EUR prediction Linear flow/boundary-
dominated flow

Constant-pressure
production

Modern production decline
analysis method

Flow material balance method EUR prediction Boundary-dominated flow Variable-pressure/rate
production

Fetkovich type curve method EUR prediction Boundary-dominated flow Constant-pressure
production

Blasingame type curve method EUR prediction Transient flow/boundary-
dominated flow

Variable-pressure/rate
production

Normalized pressure integral (NPI) type
curve method

EUR prediction Transient flow/boundary-
dominated flow

Variable-pressure/rate
production

Agarwal-Gardner (A-G) type curve method EUR prediction Transient flow/boundary-
dominated flow

Variable-pressure/rate
production

Wattenbarger method EUR prediction Transient flow/boundary-
dominated flow

Variable-pressure/rate
production

Simulation prediction method Analytical method Production/pressure/EUR
prediction

All flow patterns Variable-pressure/rate
production

Numerical simulation method Production/pressure/EUR
prediction

All flow patterns Variable-pressure/rate
production

Probabilistic method Probabilistic cumulative production
prediction method

EUR prediction Transient flow/boundary-
dominated flow

Variable-pressure
production

Phasic cumulative production prediction
method

EUR prediction Transient flow/boundary-
dominated flow

Variable-pressure
production
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the relationship between gas production and formation pressure.
The modern production decline method largely includes the Fet-
kovich type curve method, Blasingame type curve method and
Wattenbarger method. The EUR of shale gas wells is evaluated
based on the unsteady seepage theory and empirical methods, and
this method is greatly influenced by artificial factors in the process
of parameter or type curve matching, while numerous parameters
are required.

The probabilistic method mainly includes the probabilistic cu-
mulative production prediction method and probabilistic phasic
production prediction method. This method comprehensively
considers the uncertainty of the factors impacting the production of
shale gas wells and emphasizes data uncertainty analysis to
determine the EUR of shale gas wells based on data uncertainty
factors, but the calculation method remains similar to the above
methods. In the production practices of shale gas wells, each
method requires specific application conditions. Hence, the un-
certainty of EUR evaluation is high, and the selection of methods
greatly impacts the EUR prediction of shale gas wells.

2.2. Deep feedforward neural network algorithm

Deep learning establishes complex expressions through other
relatively simple expressions, namely, deep learning builds com-
plex concepts based on relatively simple concepts, and the deep
feedforward neural network is a typical deep learning model, as
shown in Fig. 1. The deep feedforward neural network (DFNN) is a
kind of artificial neural network, also called the feedforward neural
network or multilayer perceptron. It is a typical deep learning al-
gorithm model and better simulates and predicts the nonlinear
relationship between input and output variables. From the math-
ematical perspective of the network model composition, the deep
feedforward neural network with a nonlinear activation function
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and a certain complexity can approach any continuous function,
and it squares integrable functions with an arbitrary precision to
accurately realize finite training sample sets (Hornik et al., 1989).
Neurons are the most basic computing units of deep feedforward
neural networks and are distributed in layers in the network. In
each layer, the neurons are independent of each other and similar
to multiple parallel operation units. They only receive information
from the previous layer of neurons as input and then output in-
formation to the next layer of neurons. Because no information
exchange occurs among neurons in the same layer and information
is only transmitted forward in a stepwise manner, this method is
called the deep feedforward neural network. The number of neuron
distribution layers in the network determines the depth of the
network, and the number of neurons in each layer determines the
width of the network. Each neuron contains two parts: one part is
the function compositionmodel of the input part, which produces a
weighted array of the information input received from the previous
layer of neurons through weight allocation, and combined with the
bias function, the function composition model is then formed; the
other part is the activation function, mainly including the sigmoid
function, tanh function, rectified linear unit (ReLU) function and
Leaky-ReLU function (Eqs. (1)e(4)), which is applied to generate
the nonlinear output of the function composition model.

In the 1980se1990s, some basic ideas have appeared, like neural
network back propagation algorithm, two-layer BP neural network,
which is the basic model for convolutional neural network, recur-
rent neural network and feedforward neural network. Due to the
computation limitation, these approaches have not yet beenwidely
applied in practice. Until 2010, with the development of compu-
tation resources, deep learning has been better than traditional
machine learning and artificial expert system in many fields. Since
2015, some mature deep learning networks have gradually devel-
oped, which has lowered the technical threshold for the



Fig. 1. Schematic diagram of the deep feedforward neural network (adapted from Liu, 2020).
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popularization of deep learningmethods in petroleum geology, and
many scholars have begun to pay attention to this field. Since 2017,
the related research results are no longer based on the application
of traditional neural networks (BP networks). According to their
characteristics and advantages, deep feed-forward network, con-
volutional neural network, recurrent neural network and genera-
tive adversarial network are gradually applied to the processing
and interpretation of different areas in petroleum geology and
engineering. Several researches have been operated in different
shale reservoirs and different areas based on the DFNN. Production
forecasting of Bakken Shale reservoirs is performed with high ac-
curacy (Wang et al., 2019b). Traditional three layers neural network
and DFNN is always applied in well logging prediction, interpre-
tation, seismic interpretation and attributes prediction (David et al.,
2018; Lu et al., 2021; Mattia, 2015; Shi et al., 2016). Although deep
learning has made huge progress in petroleum related field, there
are a lot of works need to be done to improve the accuracy and to
explore the inner connection between different parameters.

Fig. 1 shows a typical network model of the deep feedforward
neural network. Themodel contains three parts: input layer, hidden
layer and output layer. The input and output layers generally
contain only one layer, corresponding to the input and output data
nodes, respectively. The hidden layer may contain multiple layers.
Each neuron contains the output of the previous layer (which does
not contain the input layer), the link weight, the bias function, the
activation function and the output of the next layer (which does not
contain the output layer); the output of the previous layer, the link
weight and the bias function comprise the neuron input (Eq. (5)),
while the activation function is implemented to nonlinearly output
the above neuron input (Eq. (6)).

sigmoidðxÞ ¼ 1
1þ e�x (1)

tanhðxÞ ¼ ex � e�x

ex þ e�x (2)
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ReLUðxÞ¼
�
0; x<0
x; x � 0 (3)

Leaky� ReLUðxÞ¼
�
a� x; x<0; 0<a<1
x; x � 0 (4)

xðiÞ ¼
XN
n¼1

wðiÞ
n yði�1Þ

n þ bðiÞ (5)

yðiÞn ¼ f
�
xðiÞ

�
(6)

where xðiÞ is the input of the network neurons in the i layer; wðiÞ
n is

the link weight of the i� 1 layer output parameters at the time of

input in the i layer; yðiÞn and yði�1Þ
n are the output of the neurons in

the i and i� 1 layers, respectively; bðiÞ is the bias of the neurons in
the i layer; N is the number of neurons in the previous layer con-
nected to the neuron; and f ðÞ is the activation function.
3. Method design

Based on the deep feedforward neural network, a deep learning-
based EUR prediction method for shale gas wells is designed. As
shown in Fig. 2, input data selection is performed first, data input is
then performed based on the selected data. The input data are
preprocessed to meet the demands of model training and predic-
tion, and the data are divided into prediction and training data sets.
Based on the training data set, the network model structure and
parameters are defined. Subsequently, the network model is
trained tomeet the precision requirement, and finally, based on the
prediction data set and the trained network model, EUR prediction
of shale gas wells is carried out. The algorithm is realized by Python
3.7 and TensorFlow 1.15.

In the aspect of input data selection, a combination of knowl-
edge- and data-driven modes is adopted, and the knowledge-
driven mode is adopted as the basic and main mode, while the



Fig. 2. Technical process of deep learning-based EUR prediction of shale gas wells.
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data-driven mode is adopted as the auxiliary and supplementary
mode. The knowledge-driven mode constitutes the basis: theo-
retical models generally establish relationships between input pa-
rameters and those in a target table in the ideal state from the
perspective of the material composition and reservoir structure,
thus reflecting the internal relation of objects. Empirical equations
are commonly established in long-term scientific research and
production practices, which statistically express the relationships
between input parameters and those in a target table within a
certain range. Therefore, the parameters used in these models and
equations are usually strongly related to the target parameters and
can be adopted as the main input parameters. The data-driven
mode is supplementary: for specific data sets, on the one hand, a
poor data quality of certain parameters may interfere with the deep
learning model, and these interferences must be eliminated, while
on the other hand, assessment of more parameters provides a
better understanding of the selection of model input parameters. At
the time of parameter selection, a variety of theoretical models and
empirical equations to obtain the target parameters should be
comprehensively considered, and relevant parameters should be
selected as input to reconstruct the relationship between them and
1454
target parameters through deep learning.
In the aspect of data preprocessing, the selected input data

should be systematically processed. Before training, all input pa-
rameters must be standardized to eliminate any differences in the
order of magnitude between the various input parameters and
prevent certain parameters from dominating due to their order of
magnitude, which further affects training and prediction. Based on
the function of data sets, the data samples are divided into training
and prediction data sets according to a certain proportion through
random sampling. The training data set is primarily used to train
the neural network model, and the prediction data set comprises
the main data for EUR prediction.

The objective of setting the network model structure and pa-
rameters is to obtain a suitable rather than optimal network
structure and parameter combination, and the standard of the
former is based on the actual application requirements. In partic-
ular, the model size is related to the task objective and the size of
the data set. The EUR prediction of shale gas wells is influenced by
factors such as geological factors, engineering factors, production
systems, data acquisition modes and raw data processing modes
and exhibits an obvious regionality. The establishment of data sets



Y.-Y. Liu, X.-H. Ma, X.-W. Zhang et al. Petroleum Science 18 (2021) 1450e1464
is only based on one area and one place. Compared to the existing
data sets analyzed for image and natural language processing
purposes, a large gap in quantity and quality occurs. Therefore, the
direct use of network structures commonly applied in these fields
easily leads to high training costs and unsatisfactory learning ef-
fects, and networks of an appropriate size should be designed ac-
cording to different application scenarios.

Model training requires a certain number of trials and errors to
obtain a suitable model that meets the demand of the application.
On the one hand, randomness occurs in the initialization process of
the deep learning network. On the other hand, it is necessary to
determine suitable model types, input data and parameter com-
binations. At the time of prediction, the input parameters are
entered into the network to obtain the EUR of target shale gas wells.

4. Application test

4.1. Introduction of the regional basic situation

The WY shale gas field is located in the south of the Sichuan
Basin, China, with an area of approximately 4204 km2. To the north,
a mountainous landform is present, andmost of the central areas to
the south are hilly landforms. The terrain is tilted fromnorthwest to
southeast, while both low mountains and hills occur, and the
elevation ranges from 300 to 800 m. Tectonically, the WY shale gas
field belongs to the low fold belt in the paleoslope of southwestern
Sichuan Province, where the Weiyuan anticline is developed,
Triassic and Jurassic formations crop out, Devonian and Carbonif-
erous formations are absent vertically, and Silurian formations are
missing to varying degrees in the northwest of the anticline. The
burial depth of the bottom of the Wufeng Formation, the Longmaxi
Formation, of the WY shale gas field ranges from 1500 to 4000 m,
strata suffer from different degrees of denudation in the northwest,
and the burial depth increases from northwest to southeast.

The target horizon of the WY shale gas field in the study area is
the Longmaxi Formation, specifically, the Long 11 sublayer. The
organic matter abundance of this interval is high as a whole, with a
measured total organic carbon (TOC) content of 0.1%e8.2% (2.9% on
average), and the TOC value got by well logs is between 1.3% and
7.7% (3.6% on average). The porosity is high and relatively stable,
with a measured porosity of 2.0%e7.4% (5.4% on average) and
porosity got bywell logs is between 3.5% and 9.1% (6.1% on average).
The gas saturation is relatively high, with ameasured gas saturation
of 32.7%e84.6% (64.7% on average) and gas saturation got by well
logs is between 5.3% and 74.7% (53.6% on average). The measured
gas content ranges from 0.9 to 11.4 m3/t (4.3 m3/t on average), and
gas content got bywell logs is between 2.6 and 8.7m3/t (5.7m3/t on
average). The measured brittle mineral content is relatively high as
a whole, from 50.0% to 95.6% (72.1% on average), and the brittle
mineral content got by well logs is between 58.0% and 88.3% (70.7%
on average). The distribution of the ground stress is highly uneven,
with the maximum principal stress ranging from 70.00 to
89.50 MPa (80.71 MPa on average), and the minimum principal
stress ranging from54.00 to 80.00MPa (68.66MPa on average). The
horizontal stress difference varies greatly and ranges from 7.65 to
18.70 MPa. The direction of the maximum horizontal principal
stress changes little and basically remains the same, nearly east-
west, between NE70� and NE130� (approximately 90� on
average). The preservation conditions of the shale gas reservoir are
good, with the formation temperature varying from 71.80 to
133.92 �C and the formation pressure varying from 13.79 to
73.31 MPa, while the pressure coefficient ranges from 0.92 to 1.99.
As of October 2020, a total of 419 wells has been drilled in the WY
shale gas field, among which 282 wells have EUR evaluation data.
According to real production data, the above wells all adopt natural
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production, without pressure control, pressure channeling and
other special circumstances, and no well stimulation measures
such as artificial lift have been applied.

4.2. Data dependency analysis

Data dependency analysis was conducted on the basis of the 282
shale gas wells with EUR evaluation data in the region, mainly
including 17 influencing parameters such as geological factors
(TOC, porosity, high-quality reservoir thickness, gas saturation,
pressure coefficient, and brittle mineral content), engineering fac-
tors (fracturing section length, number of fracturing sections, true
vertical depth, average section spacing, liquid strength, sanding
strength, average displacement, drilling length of high-quality
reservoirs, and drilling length of the target layer) and production
factors (test output and first-year daily gas flow rate), as listed in
Table 2.

The high-quality reservoir thickness and drilling length of high-
quality reservoirs are all related to high-quality reservoirs. Based on
the actual production situation in the test area, high-quality res-
ervoirs mainly exhibit a high TOC content (>4%), high porosity
(>6%), high gas saturation (>70%) and high brittle mineral content
(>75%) (Ma et al., 2020a, 2020b). The target layer largely refers to
the Long 11 sublayer of the Longmaxi Formation. The drilling length
of high-quality reservoirs mostly refers to the distribution area of
high-quality shales in the drilling length of the target layer, so in
general, the drilling length of high-quality reservoirs is smaller than
or equal to the drilling length of the target layer.

The factor correlation was analyzed based on the above 17 fac-
tors and EUR evaluation results. The data dependency was deter-
mined by the correlation coefficient between factors (Eq. (7)), with
the results listed in Table 3. When a strong correlation occurs be-
tween factors at a correlation coefficient greater than 85%, the test
output and daily gas flow rate (0.98), the true vertical depth and
pressure coefficient (0.87), the test output and EUR (0.94) and the
daily gas flow rate and EUR (0.96) exhibit notable correlation
relationships.

Overall, the EUR demonstrates a strong correlation with multi-
ple parameters. In particular, 9 factors such as the fracturing section
length (0.54), number of fracturing sections (0.45), test output
(0.94), first-year daily gas flow rate (0.96), high-quality reservoir
thickness (0.35), gas saturation (0.41), brittle mineral content
(0.41), drilling length of high-quality reservoirs (0.50) and drilling
length of the target layer (0.49) exhibit a very strong dependency
on the EUR, while 8 factors such as the true vertical depth (�0.11),
TOC (�0.17), porosity (�0.05), pressure coefficient (�0.02), average
section spacing (�0.06), liquid strength (0.03), sanding strength
(0.18) and average displacement (0.08) do not exhibit an obvious
dependency on the EUR, which basically agrees with the findings of
other researchers (Ma et al., 2020a, 2020b).

rðx; yÞ¼ Covðx; yÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SðxÞ,SðyÞp (7)

where rðx; yÞ is the correlation coefficient between variables x and
y; Covðx; yÞ is the covariance between variables x and y; and
SðxÞ; SðyÞ are the variance in variables x and y, respectively.

Normalization processing (Eq. (8)) was conducted for each
influencing factor to eliminate any differences in the order of
magnitude among the various input parameters, the results box
chart and distribution histogram is listed in Figs. 3 and 4, and linear
dependence analysis of the data was then conducted, while the
correlation between EUR and aforementioned parameters was
determined after normalization. Fig. 5 shows the correlation anal-
ysis results between the geological factors and EUR, Fig. 6 shows



Table 2
Statistics of the data.

Data type Unit Data size Mean Standard deviation Maximum Minimum

Fracturing section length m 281 1515.87 308.47 2577.00 502.00
Number of fracturing sections Dimensionless 281 22.63 5.56 36.00 3.00
Test Production 104 m3/d 281 20.94 12.10 78.08 1.81
First-year average daily gas production 104 m3/d 281 9.47 5.28 34.02 0.98
True vertical depth m 279 3008.24 352.49 3800.00 2200.00
TOC % 282 5.39 0.76 7.80 3.30
Porosity % 282 7.11 0.96 8.90 5.00
High-quality reservoir thickness m 282 5.17 1.36 7.50 2.30
Gas saturation % 279 75.70 3.14 83.00 60.00
Pressure coefficient Dimensionless 282 1.74 0.19 2.05 1.35
Brittle mineral content % 282 78.67 7.79 96.00 62.50
Average section spacing m 281 69.94 27.81 479.33 43.10
Liquid strength m3/m 281 27.25 4.51 47.94 7.12
Sanding strength t/m 281 1.63 0.38 3.00 0.29
Average displacement m3/min 281 11.80 1.33 15.00 6.19
Drilling length of high-quality reservoirs m 208 1002.24 460.57 2380.50 0.00
Drilling length of the target layer m 195 1349.79 443.87 2315.50 0.00
EUR 108 m3 282 0.89 0.43 2.65 0.12

Table 3
Correlation coefficient between the main factors and EUR.

Data type Correlation coefficient with the EUR Data type Correlation coefficient with the EUR

Fracturing section length 0.54 True vertical depth �0.11
Number of fracturing sections 0.45 TOC �0.17
Test output 0.94 Porosity �0.05
First-year daily gas flow rate 0.96 Pressure coefficient �0.02
High-quality reservoir thickness 0.35 Average section spacing �0.06
Gas saturation 0.41 Liquid strength 0.03
Brittle mineral content 0.41 Sanding strength 0.18
Drilling length of high-quality reservoirs 0.5 Average displacement 0.08
Drilling length of the target layer 0.49
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the correlation analysis results between the production factors and
EUR, Fig. 7 shows the correlation analysis results between the en-
gineering factors and EUR, and the linear dependence analysis re-
sults between the main factors and EUR are listed in Table 4.

8>>>>>>>>>>><
>>>>>>>>>>>:

xn ¼ x� mðxÞ
sðxÞ

mðxÞ ¼ 1
N

XN
i¼1

xi

sðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN
i¼1

ðxi � mðxÞÞ
vuut

(8)

where x; xn are factor variables before and after normalization;
mðxÞ is the expectation of variable x; sðxÞ is the standard deviation
of variable x; and N is the number of sample points of variable x.

The above results indicate that among the geological, engi-
neering, and production factors, parameters such as the test output
(0.9300) and first-year daily gas flow rate (0.8907) exhibit a more
obvious linear relationwith the EUR, while other parameters do not
exhibit an obvious linear dependence on the EUR of shale gas wells.
Therefore, a nonlinear relation between the various influencing
factors and EUR is effectively captured by the adopted deep
learning algorithm.
4.3. Deep feedforward neural network-based EUR prediction

Based on the data size and data dependency analysis results,
selecting the EUR as the final evaluation target, 6 different data
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combinations were designed as input data for network training and
prediction purposes. The specific network training data combina-
tions are as follows (Table 5): (1) high-correlation parameter
combination: fracturing section length, number of fracturing sec-
tions, test output, first-year daily gas flow rate, high-quality reser-
voir thickness, gas saturation, brittle mineral content, drilling
length of high-quality reservoirs and drilling length of the target
layer; (2) low-correlation parameter combination: true vertical
depth, TOC, porosity, pressure coefficient, average section spacing,
liquid strength, sanding strength and average displacement; (3) full
parameter combination: contains 17 parameters; (4) combination
of high- and low-correlationmixed samples and the largest amount
of sample data: all parameters except the drilling length of the
target layer and high-quality reservoir; (5) combination of high-
and low-correlationmixed samples, with the same number of input
samples as case 3 including static parameters: all parameters
except production factors (test output and first-year daily gas flow
rate), i.e., combination of static geological and engineering pa-
rameters; and (6) all parameters except the drilling length of high-
quality reservoirs.

For the deep feedforward network, the design of the network
structure and hyperparameters must consider the size of the data
set to balance the learning ability, training efficiency and training
difficulty of the model. A deeper network provides a stronger
learning ability, but this does not greatly improve the effect. After
testing, a deep feedforward neural network with an 8-layer struc-
ture exhibits obvious advantages in regard to the accuracy and
training efficiency of the EUR prediction network model. Therefore,
the network is set to 8 layers, and the network structure is X (the
number of neuron nodes in the input layer determined based on
the number of input parameters, namely, 9 in case 1, 8 in case 2, 17



Fig. 3. Box chart of the WY shale field normalized data.
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in case 3, 15 in cases 4 and 5, and 16 in case 6)-50-40-30-20-10-5-1
(the grid node of the output layer, i.e., the normalized EUR of shale
gas wells).

The activation function is applied to achieve nonlinear mapping
between the input and output, and its derivative is propagated at
the time of back propagation and optimization of the network
parameters. Therefore, the properties of the activation function and
its derivative impose an important influence on the application
effect of the deep learning model. The sigmoid and tan activation
functions are commonly applied in traditional neural networks, but
in the process of back propagation in deep model training, the
derivatives are smaller than 1 and rapidly decrease at positions
deviating from 0. After multiple product calculations, the gradient
readily disappears. The derivative of the ReLU function (Eq. (3))
which has attained a breakthrough in deep learning at the early
stage, is identically equal to 1 when the x value is greater than 0,
and this solves the problem of gradient disappearance to a certain
extent (Krizhevsky et al., 2012). However, when the x value is less
than 0, the activation function and its derivative value are all 0,
which results in invalid neurons, thus leading to an unstable model
training process, and the final training effect is impacted. To allow
the activation function to better meet the training needs of the
deep network, the ReLU function has been improved by processing
the function form at a x value less than 0. Among the improved
ReLU functions, the Leaky-ReLU function (Eq. (4)) is one of the most
commonly used activation functions. When the x value is less than
0, the derivative of the activation function is identically equal to a
coefficient greater than 0, which solves the problem occurring in
traditional activation functions (Maas et al., 2013). Therefore, in the
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deep learningmodel of this paper, the Leaky-ReLU function (Eq. (4))
is mainly adopted as the activation function, in which a ¼ 0.2.

Deep learning adopts the loss function as the optimization
objective and adjusts model parameters to obtain a set of param-
eters ensuring that the model output value approaches the actual
value. The optimization parameters are used to control the process
of model parameter adjustment, which exerts a direct impact on
the training efficiency and learning effect of the model. The
learning rate is one of the parameters that are difficult to set
(Goodfellow et al., 2016), and it notably impacts the network per-
formance. If the learning rate is too low, training convergence oc-
curs very slowly, and if the learning rate is too high, this may also
hinder convergence and cause the loss function to fluctuate near its
minimum value. Therefore, an adaptive learning rate method is
proposed. Hinton and his colleagues developed the RMSProp
learning rate adjustment method (Hinton et al., 2006; Hinton and
Salakhutdinov 2006; Tieleman and Hinton, 2012), which is auto-
matically adjusted based on the model scale and greatly facilitates
the learning rate parameter setting process. Hence, the learning
rate adjustment method adopted in this paper is RMSProp. What's
more, the initializer algorithm is glorot_uniform, the regulate
parameter is 0.3 and the moving average decay is 0.9.

Normalized processing was performed for all data based on the
data composition of the different test cases. A ratio of 3:1 of the
training set to the test set was adopted, and the training and pre-
diction sets were divided by random sampling, after which
network training and prediction were performed. First, the deep
neural network was trained based on the training data set. Second,
with the help of the trained deep neural network model, combined
with the prediction data set, prediction of the normalized EUR of
shale gas wells was conducted. Third, with Eq. (8), inverse
normalizationwas carried out of the prediction results to obtain the
EUR prediction results of wells. Finally, the EUR prediction results of
wells were compared to the actual EUR results. In regard to the test
results of each case, the average relative error, absolute value of the
average relative error and root mean square error between the true
values of the training and prediction sets of each case and the
model prediction values were calculated, with the evaluation re-
sults summarized in Table 6 and shown in Fig. 8.

4.4. Results and discussion
The above results reveal that network prediction and simulation

based on the high-correlation parameters of the EUR (case 1)
greatly reduce the error of the prediction results, and the error of
the training set is controlled within 5%, while the data accuracy of
the prediction set is high, within 15%. Moreover, the data deviation
degree is also very low. However, compared to the other cases, e.g.,
cases 3 to 6, the input data and data size of the high-correlation
factors are relatively small, which imposes a certain impact on
the training and prediction stages of the model and thus affects the
EUR evaluation results. The data size of the low-correlation pa-
rameters (case 2) is obviously large, but the EUR prediction results
are generally poor, the relative error is large, and the data deviation
degree is obviously high. However, the prediction results demon-
strate that the low-correlation parameters also yield a certain data
pattern and a certain control effect on the EUR.

After comprehensively considering the effect of the data corre-
lation degree and data size, the high- and low-correlation param-
eters were integrated to perform EUR prediction (case 3). Although
the data size was reduced to a certain extent, the results of the
training and prediction sets had been obviously improved over the
previous results, and the data deviation degree notably decreased.
The above results further show that under certain conditions, the
low-correlation data also impose a certain impact on the EUR
prediction results. In terms of the EUR prediction results controlled



Fig. 4. Distribution histogram of the WY shale field normalized data.
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by multiple parameters, even if the data dependency is unclear,
good EUR prediction results could be obtained by prediction and
evaluation based on integrated parameters.

In the case whereby the sample size of the high- and low-
correlation comprehensive parameter evaluation data is small,
parameter combination under the condition of maximum data
samples (case 4) was applied to predict the EUR. The data sample
size in case 4was 45.7% larger than that in case 3, but the parameter
combination did not contain the drilling length of high-quality
reservoirs and drilling length of the target layer with a high cor-
relation (the effective data points of these two factors were
1458
relatively scarce). The data sample size in case 4 was the same as
that in case 2, but high-correlation input parameters were included.
Compared to case 2, the training and prediction effects were greatly
improved, and the relative error and root mean square error were
notably reduced, showing that the number and correlation of input
parameters greatly influence the EUR prediction results. However,
compared to case 3, although the sample size had largely increased,
shortcomings remained in regard to the training and prediction
effects due to the lack of the above two high-correlation influencing
factors, further indicating that the data dependency also exerts a
certain impact on the EUR prediction results. The relationship



Fig. 5. Linear dependence analysis of the normalized geological factors and EUR.

Fig. 6. Linear dependence analysis of the normalized production factors and EUR.
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between the above two high-correlation factors and EUR is also
consistent with the research results of other researchers (Ma et al.,
2020a, 2020b).

A test was carried out in case 5 by removing 2 high-correlation
production factors while maintaining the same data sample size as
that in case 3. Compared to cases 2 and 4, the data size was also
reduced to a certain extent. The test results demonstrate that the
accuracy of the training and prediction sets was still relatively low,
and the data deviation degree remained lower than that of the low-
1459
correlation sample combination of case 2. In the case of fewer input
parameters, the correlation between the considered factors and
EUR imposes a major effect on the prediction results. It is expected
that the prediction effect may also be further improved by
increasing the sample size. Overall, the effect of factor correlation
on the prediction results is obviously greater than that of the data
sample size. Moreover, case 5 also further revealed that in the case
when production factors are unavailable, only through the combi-
nation of static geological parameters and engineering parameters



Fig. 7. Linear dependence analysis of the normalized engineering factors and EUR.

Table 4
Linear dependence analysis results of the main factors and EUR data.

Data type Linear correlation coefficient Data type Linear correlation coefficient

Fracturing section length 0.2961 TOC 0.0281
Number of fracturing sections 0.2025 Porosity 0.0025
True vertical depth 0.0119 High-quality reservoir thickness 0.1263
Average section spacing 0.0011 Gas saturation 0.1655
Liquid strength 0.0009 Pressure coefficient 0.0006
Sanding strength 0.0345 Brittle mineral content 0.1716
Average displacement 0.0066 Test output 0.9300
Drilling length of high-quality reservoirs 0.2665 First-year daily gas flow rate 0.8907
Drilling length of the target layer 0.3130
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may the method proposed in this paper be applied to predict the
EUR of shale gas wells, and the prediction results also exhibit a
1460
certain accuracy.
A test was carried out in case 6 by removing the drilling length



Table 5
Classification of the network training parameters.

Data type Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

Fracturing section length ✓ e ✓ ✓ ✓ ✓

Number of fracturing sections ✓ e ✓ ✓ ✓ ✓

Test output ✓ e ✓ ✓ e ✓

First-year daily gas flow rate ✓ e ✓ ✓ e ✓

True vertical depth e ✓ ✓ ✓ ✓ ✓

TOC e ✓ ✓ ✓ ✓ ✓

Porosity e ✓ ✓ ✓ ✓ ✓

High-quality reservoir thickness ✓ e ✓ ✓ ✓ ✓

Gas saturation ✓ e ✓ ✓ ✓ ✓

Pressure coefficient e ✓ ✓ ✓ ✓ ✓

Brittle mineral content ✓ e ✓ ✓ ✓ ✓

Average section spacing e ✓ ✓ ✓ ✓ ✓

Liquid strength e ✓ ✓ ✓ ✓ ✓

Sanding strength e ✓ ✓ ✓ ✓ ✓

Average displacement e ✓ ✓ ✓ ✓ ✓

Drilling length of high-quality reservoirs ✓ e ✓ e ✓ e

Drilling length of the target layer ✓ e ✓ e ✓ ✓

Note: the ‘√’ means that this factor is included in the network input data and ‘-’ refers to the opposite.

Table 6
Network training and prediction results.

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

Data sample size 192 274 188 274 188 201
Sample size of the training set 134 206 141 206 141 151
Sample size of the prediction set 48 68 47 68 47 50
Average relative error of the training set, % 0.97 4.85 1.19 1.89 �2.52 �1.29
Average relative error of the prediction set, % �3.81 14.41 7.07 �2.88 10.07 �0.68
Absolute value of the average relative error of the training set, % 4.63 14.41 3.79 4.42 10.60 4.48
Absolute value of the average relative error of the prediction set, % 13.58 48.33 12.81 13.53 16.60 5.02
Root mean square error of the training set 0.06 0.25 0.07 0.06 0.23 0.05
Root mean square error of the prediction set 0.14 0.50 0.14 0.13 0.21 0.07
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of high-quality reservoirs with few data points and a high corre-
lation degree, but the types of neural network input samples
increased over cases 4 and 5 (16 input samples in case 6 and 15
input samples in cases 4 and 5). Although the data sample size was
not large, the data accuracy had been obviously improved, and the
data deviation degree was also relatively low. The above results
show that the high-correlation factors of the EUR, such as the
drilling length of the target layer, greatly contribute to the accuracy
of the EUR prediction results of shale gas wells.

In summary, the EUR prediction model of shale gas wells in this
area has basically been built based on the deep neural network, the
feasibility of themethod proposed in this paper has been effectively
demonstrated, a good effect has been attained through regional
data testing, and the accuracy of the method has been verified.
However, certain constraints may still remain in the application
and popularization of the EUR prediction model of shale gas wells
established using the above method in other areas, i.e., the model
applicability must be further investigated. The results of WY shale
gas well EUR prediction is good, for the other areas, the same kind
of data need to be collected and the network hyperparameters
should be adjusted. For the current training model, some new pa-
rameters of other areas should be added to enrich this model and
extended to some new area. On the hand, the data using in this
manuscript, mainly including the data variety, needed to be
collected and the hyperparameters should be adjust to train a new
network for another area following the procedure proposed in this
manuscript. Thus, this method needs a large number of data group.
On the other hand, whenwe deal with some areawhich is similar to
the situation ofWYarea, we only using a small group data to retrain
this model and using the same network can perform it to another
area. The number of shale gas wells in the area continuously
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increases, and the EUR evaluation results and influencing factor
data are continuously enriched, which are of great significance to
the further improvement of the deep learning EUR prediction
model for this area. Moreover, based on the training and prediction
results of the deep neural network, the data size (including the
number of input parameters, the method of data combination and
the number of data sample points) also exerts a certain impact on
the training and prediction results of the model. Detailed analysis
and demonstration should be further performed regarding the
specific influence to provide a certain theoretical support.
5. Conclusions

This paper systematically analyzes the existing EUR evaluation
methods of shale gas wells, describes the basic connotation of the
deep learning algorithm, introduces the deep learning algorithm in
the EUR evaluation process of shale gas wells, establishes a deep
feedforward neural network-based EUR evaluation method of shale
gas wells, and analyzes actual data acquired from 282 wells in the
WY shale gas field to test the validity of the method. The prediction
results demonstrate a good consistency with the actual results, and
the error is small. The following main conclusions are drawn:

(1) This paper first systematically analyzes the existing EUR
evaluation methods of shale gas wells and the deep learning
algorithm and then designs a deep feedforward neural
network-based EUR evaluation method of shale gas wells. By
integrating geological factors, engineering factors and pro-
duction factors, this method quickly and effectively predicts
the EUR of shale gas wells based on relevant basic parame-
ters, and the prediction results exhibit a high accuracy.



Fig. 8. Predicted vs actual EUR: (a) Case 1; (b) Case 2; (c) Case 3; (d) Case 4; (e) Case 5; (f) Case 6.
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(2) On the basis of 282 shale gas wells with EUR evaluation re-
sults in the WY area, this paper performs data dependency
analysis on 17 parameters of the geological, engineering and
production factors involved in the EUR prediction method of
shale gas wells. The analysis results show that the EUR ex-
hibits a strong correlation with multiple parameters, such as
the fracturing section length, but exhibits no obvious
1462
correlation with various other parameters, such as the true
vertical depth. Nine factors, such as the fracturing section
length, number of fracturing sections, test output, first-year
daily gas flow rate, high-quality reservoir thickness, gas
saturation, brittle mineral content, drilling length of high-
quality reservoirs and drilling length of the target layer,
reveal a very high data dependency on the EUR. Eight factors,
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including the true vertical depth, TOC, porosity, pressure
coefficient, average section spacing, liquid strength, sanding
strength and average displacement, reveal no obvious data
dependency on the EUR.

(3) In regard to the 282 shale gas wells in the WYarea, based on
correlation analysis of the influencing factors, 6 different test
cases are designed to test the EUR predictionmethod of shale
gas wells proposed in this paper. The test results demon-
strate that the proposed method could be used to effectively
build an EUR prediction model of the shale gas wells in the
study area. The type of input data and the correlation be-
tween the input data and prediction results (EUR) are the
main controlling factors of the model accuracy, and the data
size (including the number of input data and the data sample
size) also exerts a certain impact on the model accuracy. This
paper preliminarily analyzes the influence of hyper-
parameters such as the activation function and loss function
on the method. In subsequent studies, the influence of the
general applicability of the deep learning model established
with the above method and factors such as the network
depth, network width and hyperparameters including the
activation function on the EUR prediction effect of shale gas
wells should be examined.
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