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a b s t r a c t

Parameter inversions in oil/gas reservoirs based on well test interpretations are of great significance in
oil/gas industry. Automatic well test interpretations based on artificial intelligence are the most prom-
ising to solve the problem of non-unique solution. In this work, a new deep reinforcement learning (DRL)
based approach is proposed for automatic curve matching for well test interpretation, by using the
double deep Q-network (DDQN). The DDQN algorithms are applied to train agents for automatic
parameter tuning in three conventional well-testing models. In addition, to alleviate the dimensional
disaster problem of parameter space, an asynchronous parameter adjustment strategy is used to train the
agent. Finally, field applications are carried out by using the new DRL approaches. Results show that step
number required for the DDQN to complete the curve matching is the least among, when comparing the
naive deep Q-network (naive DQN) and deep Q-network (DQN). We also show that DDQN can improve
the robustness of curve matching in comparison with supervised machine learning algorithms. Using
DDQN algorithm to perform 100 curve matching tests on three traditional well test models, the results
show that the mean relative error of the parameters is 7.58% for the homogeneous model, 10.66% for the
radial composite model, and 12.79% for the dual porosity model. In the actual field application, it is found
that a good curve fitting can be obtained with only 30 steps of parameter adjustment.
© 2021 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This
is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/

4.0/).
1. Introduction

Well test analysis plays an important role in understanding the
characteristics of wellbore, reservoir and boundary, especially in
the discovery and development of some important oil and gas fields
(Yao and Ge, 2011; Chen et al., 2018; Mohammed et al., 2020). One
of the most important means of well test interpretation is the type
curve match. In the early days, curve matching was performed
based on the chart (Earlougher, 1977; Horne, 1995). The parameters
are obtained by moving the measured curve to find the most
consistent theoretical curve on the chart. Since the number of
curves on the chart is limited, this method will cause large errors.
At present, manual parameter adjustment assisted by computer
software become the primary method for curve matching (Bourdet,
2002). However, the human bias, non-unique solutions, and low
, zhimingchn@utexas.edu

y Elsevier B.V. on behalf of KeAi Co
efficiency caused by artificial interpretation cannot adapt to the
rapid development of oil and gas fields (AlMaraghi and El-Banbi,
2015).

In recent decades, with the improvement of calculation tech-
nology and test instrument precision, many optimization algo-
rithms have been gradually applied to the automatic matching of
well test curve. Among them, nonlinear regression is the classical
method, and the least square method represented by Levenberg-
Marquardt method is the most common solution method (Nanba
and Horne, 1992; Dastan, 2010; Dastan and Horne, 2011). Howev-
er, the method is greatly affected by the initial value, and the pa-
rameters obtained are locally optimal. Therefore, some global
optimization algorithms, such as genetic algorithm and particle
swarm optimization algorithm, are also applied to the automatic
matching of well test curve (Guyaguler et al., 2001; Gomez et al.,
2014; Awotunde, 2015). But the global optimization algorithm
has the problem of low efficiency.

With the great progress made in computer science in recent
years, artificial intelligence (AI) algorithms have been widely used
in the oil and gas industry (Zhu et al., 2019; Liu et al., 2020; Gao
mmunications Co. Ltd. This is an open access article under the CC BY-NC-ND license
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et al., 2021; Huang et al., 2021). Meanwhile, AI algorithms are also
tried for automatic well test interpretation. Al-Kaabi and Lee (1990)
firstly deployed artificial neural network (ANN) in well test model
recognition. They used a number of independent ANN to calculate
the probability that the curve fell into each type of well test model.
Adibifard et al. (2014) trained an ANN to automatically identify well
test curve parameters. The coefficients interpolated by Chebyshev
polynomial on pressure derivative data are used as the input of
ANN to improve the accuracy of parameter identification. Li et al.
(2020) used the convolutional neural network to train the deep
learning model for identifying curve parameters by taking the
complete curve as input, without manually extracting curve fea-
tures. In addition, the application of deep learning on well-test
interpretation for identifying pressure behavior and character-
izing reservoirs was also performed (Dong et al., 2021). However,
training neural network requires the acquisition or synthesis of a
large number of samples, and the interpretability of the parameter
inversion results is weak. Sometimes unrealistic interpretation re-
sults are prone to appear and the reasons cannot be known (Zhang
and Zhu, 2018). To make the parameter inversion results more
interpretable and reasonable, this work proposes for the first time a
robust automatic well test curve matching method based on rein-
forcement learning (RL).

RL is inspired by relevant principles of animal psychology
(Sutton and Barto, 2018). By imitating the trial-and-error mecha-
nism of humans or animals, the agent can interact with the envi-
ronment and learn the mapping relationship between state and
behavior to obtain the maximum cumulative expected return.
Compared with supervised learning algorithms, RL algorithms have
the potential to achieve results beyond human performance
through active learning, exploration and exploitation. Because of
this, RL tends to be a harder learning task. Among RL algorithms, Q
learning is one of the most popular (Gao et al., 2020). Recently, the
original DRL algorithm naive DQN and its improved algorithm DQN,
which combines Q learning with deep neural network, have been
introduced and applied into Atari games to achieve automatic
control at or beyond the human level (Mnih et al., 2013, 2015).
However, these two algorithms lead to overoptimistic value esti-
mates, so van Hasselt et al. (2016) proposed DDQN algorithm to
alleviate this problem. DDQN algorithm has been successfully used
for battery energy storage system, power system, and stock trading
(Arulkumaran et al., 2017; Bui et al., 2019; Shi et al., 2021). These
studies show that the DDQN algorithm can avoid the agent trapped
into local optimization and is suitable for the environment with
large state space.

At present, only limited work about RL has been done in the oil
and gas industry. Hourfar et al. (2019) used the DRL algorithm to
optimize reservoir water injection. By allowing the agent to
dynamically adjusting the water injection rate, higher NPV can be
obtained than the traditional optimizationmethod. Miftakhov et al.
(2020) use reservoir pressure and water saturation distribution as
direct observations to train agents to optimize injection and pro-
duction parameters. Li and Misra (2020) transformed the history
matching problem into a continuous decision problem, and
adapted the reservoir permeability using a RL algorithm to achieve
automatic history fitting. Guevara et al. (2018) used RL to optimize
the gas injection strategy in steam-assisted gravity drainage pro-
cess. The field test results show that the RL method increases the
NPV by at least 30% and reduces the calculation cost by more than
60%. Unfortunately, although the RL has lots of advantages, few
work about RL has been done in well test interpretation.

In this study, the DDQN algorithm based agent learns to match
the well test data in optimal number of steps by iteratively
adjusting the parameters of well test model. This work represents,
to our knowledge, the first application of DRL approach for
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automatically match the well test curves. The new proposed
method has a fast speed and reliable results in automatic well test
interpretation, which is of great significance to improve the
repeatability of well test interpretation.
2. Theory

2.1. Reinforcement learning

The reinforcement learning (RL) is an important paradigm of
machine learning, whose goal is to find an optimal strategy to
obtain the largest cumulative expected return by train an agent.
Markov Decision Process (MDP) is a basic theoretical framework to
solve the problem of RL. Within this framework, machines that
learn and implement decisions are called agent. Anything outside
the agent that interacts with it is called the environment. In the
interaction process, the agent observes the state s of the current
environment and chooses the action an under a certain policy p,
the environment responds to the action, and the new state sʹ and
reward r will be fed back to the agent. Therefore, assuming that
starting from the initial state s0, executing the MDP will result in a
sequence, s0;a0; r0; s1;a1; r1; :::; sn;an; rn.

The agent's job is to optimize the policy for taking action to
maximize the cumulative expected return (Sutton and Barto, 2018).
The return at step t is the sum of the discount rewards

Gt ¼
P∞
k¼0

gkrtþkþ1; where g2½0; 1� is discount rate, which de-

termines the present value of future rewards. In RL, it is the most
important method to train agents for solving MDP problem based
on action value function Qpðs; aÞ. Qpðs; aÞ represents the expected
return on the action a taken in accordancewith policy p at state s, as
in Eq. (1).

Qpðs; aÞ¼Ep½½Gt js; a�; (1)

Qpðs; aÞ calculates the value of the action in a certain state. Simply
speaking, Qpðs; aÞ expresses how good it is for an agent to be in a
certain state (Sun, 2020). Therefore, the optimal strategy is based
on the optimal value of the action. Specifically, when the optimal
action value function Q*ðs; aÞ ¼ max

p
Qpðs; aÞ is obtained, the

optimal policy p*ðsÞ ¼ argmax
a2A

Q*ðs; aÞ is to pick the action corre-

sponding to the maximum Q*ðs; aÞ in each state. In general, Q*ðs; aÞ
can be solved by Bellman optimality equation (Sutton and Barto,
2018), as Eq. (2), which shows the relationship between the cur-
rent optimal action value function and the subsequent optimal
action value function.

Q*ðs; aÞ¼Es0
hh
rþgmax

a0
Q*ðs0; a0Þ

���s; ai; (2)

where sʹ is the next state reached after taking action a, and aʹ is the
action taken in the next state. As long as iterates on Eq. (2), it will
eventually converge to the optimal action value function Q*ðs; aÞ
(Watkins and Dayan, 1992).

However, the action value function described above can only
represent discrete states. For a continuous state space, like the well
test curve, the function approximator, denoted as Qðs; a; qÞzQ*ðs;
aÞ, must be used to estimate the action value function. Qðs; a; qÞ is
usually designed as a neural network (NN) with weights q, as
shown in Fig. 1, which method is called deep reinforcement
learning (DRL). This study uses the DDQN algorithm, a value based
DRL algorithm, proposed by van Hasselt et al. (2016) to train the
agent for curve matching, and the details will be discussed in
Section 3.



Fig. 1. Schematic diagram of NN function approximator. Wherein, the input layer ac-
cepts the state s consisting of the target and the predicted derivative pressure curve,
and the output layer returns the action value Q(s,a).
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2.2. Well test model

In this work, three classical well test models are used to
construct an environment for training agents respectively, and the
performance of agents in different environments is evaluated to
verify the generalization ability of the proposed method. The three
well test models are: homogeneous model, dual-porosity model,
and radial composite model. To facilitate analysis, the parameters
are dimensionless and are defined in Appendix 1. This section
briefly introduces these three well test models.
2.2.1. Homogeneous model
It is assumed that a production well in homogeneous infinite

formation is affected by wellbore storage effect and skin effect.
According to the solution of Lee et al. (2003), the dimensionless
bottom hole pressure pwD is a function of tD, CD, and S, which can be
denoted as follows:

pwD ¼ f ðtD;CD; SÞ (3)

where CD is the dimensionless wellbore storage, S is the skin factor,
Fig. 2. The typical well test curves for homogeneous model.
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tD is the dimensionless time. Therefore, the required inversion
parameters are CD, S. A typical log-log plots of bottomhole pressure
and its derivative curve is shown in Fig. 2. The derivative curve type
used in this work is Bourdet pressure derivative curve (Bourdet
et al., 1984).
2.2.2. Dual-porosity model
It is assumed that there are two types of pore media in the

formation: the fracture system, which is the fluid flow channel, and
the matrix rock system, which is the fluid reservoir space. Ac-
cording to the solution of Lee et al. (2003), the pwD is a function of
tD, CD, S, u, and l, which can be expressed as follows:

pwD ¼ f ðtD;CD; S;u; lÞ (4)

with

u¼ ðfCtÞf
ðfCtÞf þ ðfCtÞm

l¼ ar2w
km
kf

where u is the storativity ratio, which represents the storage ca-
pacity of the fracture; l is the inter-porosity flow factor, which
represents the communication between the fracture and the ma-
trix; f is porosity; Ct is the total compressibility, MPa�1; a is the
parameter characteristic of the system geometry; rw is the well
radius, m; k is permeability, mD; Subscript m represents matrix;
Subscript f represents fracture. Therefore, the parameters need to
be inverted are CD, S, u, and l. A typical log-log plots of pressure and
its derivative curve is shown in Fig. 3.
2.2.3. Radial composite model
It is assumed that there are two seepage zones with different

physical parameters in the formation and there is no additional
pressure drop at the interface of the two zones. According to the
solution of Chu and Shank (1993), The pwD is a function of tD, CD, S,
M, and Ri, which can be denoted as follows:

pwD ¼ f ðtD;CD; S;M;RiÞ (5)

with
Fig. 3. The typical well test curves for dual-porosity model.



Fig. 4. The typical well test curves for radial composite model.
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M¼ ðk=mÞir
ðk=mÞer

where M is mobility ratio; Ri is inner zone radius, m; m is viscosity,
mPa$s; Subscript ir represents inner zone; Subscript er represents
outer zone. Therefore, the parameters to be inverted are CD, S, M,
and Ri. A typical log-log plots of pressure and its derivative curve is
shown in Fig. 4.

3. Method

Based on concepts of DRL, the well test curve matching process
can be regarded as an MDP. Therefore, the automated well test
curvematching process can be achieved by applying DRL algorithm.
Fig. 5 is a schematic diagram of automatic curve matching process
based on MDP. In this process, the target and predicted pressure
derivative curve are considered as state st at first. Here, the target
curve p0wD;target comes from the measured curve, and the predicted

curve p0wD is calculated from thewell test model. Following that, the
agent provides the action at of parameter adjustment and updates
the policy based on the reward rt. Next, the environment based on
the well test (WT) model receives action at and then updates the
parameters of theWTmodel. Finally, the environment outputs new
states stþ1 and rewards rtþ1 back to the agent. In this way, the agent
continuously interacts with the environment to obtain more re-
wards, which will make the prediction parameters continuously
update to the target parameters to complete the curve matching.

In the remainder of this section, we will detail the agent and
environment of the study in turn.
Fig. 5. Schematic diagram of agent interacting with the environment in MDP. The
environment is encapsulated by the well test model (WT model).
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3.1. Agent

This section will introduce the double deep Q-network (DDQN)
algorithm used to train the agent, the policy used when the agent
interacts with the environment, and the discrete mode of action
space to avoid the curse of dimensionality in the parameter
adjustment process.

3.1.1. DDQN algorithm
As noted earlier, in this work the double deep Q-network

(DDQN) (van Hasselt et al., 2016) algorithm is considered. DDQN is a
value-based DRL algorithm that can be used with continuous state
spaces. DDQN uses the policy based on the online Q-network
Qðs; a; qÞ to select actions that interact directly with the environ-
ment, and the target Q-network Qðs; a; q0Þ to evaluate the selected
actions separately, as shown in Fig. 6. Separating the action selec-
tion from the evaluation can alleviate the overly optimistic estimate
of the value of the action and improves the accuracy of the action
value estimation. In addition, to improve the utilization efficiency
of data, the transition tuples at timestep t, et ¼ ðst ; at ; rt ; s0tÞ gener-
ated by the interaction between the agent and the environment is
stored in a buffer called experience replay memoryD t ¼ fe1; e2; :::;
etg (Mnih et al., 2015), as Fig. 6. Therefore, by extracting experi-
ments randomly in D , it is possible to use minibatch samples to
update these two Q-networks. More precisely, the loss function, as
Eq. (6), is used to updates theweights q of online Q-networks, while
theweights q’ of target Q-network is a delayed copy of the online Q-
networks, which is to copy after a certain number of training. The
complete training process is discussed in Section 3.3.

LossðqÞ ¼ E ðs;a;r;s0Þ�U ðD Þ
hh�

r þ gQ
�
s0; apred

0; q0
�
� Qðs; a; qÞ

�2�
;

(6)

with

apred
0 ¼ argmax

a
Qðs0; a; qÞ;

where q is the weight of online Q-networks, q0 is the weight of
target Q-networks, g is discount factor. The notation
ðs; a; r; s0Þ � U ðD Þ represents a minibatch samples are uniformly
sampled from the replay memory.

Once the training of the agent is completed, the online Q-net-
works is used for prediction. For a particular state, the online Q-
networks will provide a Q-value for each of the possible actions for
that state. Finally, the action is determined by the policy in terms of
Q-value, which will be discussed in detail later.

3.1.2. Policy
When agents interact with the environment, an important

problem is to trade-off exploration and exploitation. Exploitation
Fig. 6. Schema of the DDQN model in training process.



Table 1
Action spaces in three environments based on well test models.

Well test model Parameters Parameter bounds Action space Action index Reward weight

Homogeneous CD 50e5000 [ þ DCD, �DCD] 1/2 1
S 0e10 [ þ DS, �DS] 3/4 1

Dual porosity CD 50e5000 [ þ DCD, �DCD] 1/2 1
S 0e10 [ þ DS, �DS] 3/4 1
u 0.02e0.6 [ þ Du, �Du] 5/6 2
l 1.0 � 10�8�1.0 � 10�5 [ þ Dl, �Dl] 7/8 1.5

Radial composite CD 50e5000 [ þ DCD, �DCD] 1/2 1
S 0e10 [ þ DS, �DS] 3/4 1
M 0.1e10 [ þ DM, �DM] 5/6 1.5
Ri, m 30e300 [ þ DRi, �DRi] 7/8 2
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means that the agent takes the most valuable action it estimates
every time, and exploration means that the agent randomly takes
actions to explore the environment. Proper exploration will help
the agent find better policy and improve the accuracy of the action
value estimation. However, the agent cannot simultaneously
exploration and exploitation in the same action selection. There-
fore, the selection of action needs to obey a certain probability
distribution to make exploration and exploitation alternate. In
Section 5.1, we discussed the influence of different policies on the
training process. The results show that Boltzmann exploration
policy (Derhami et al., 2008) can better balance the exploration and
exploitation of agents in the curve matching task. In the Boltzmann
exploration policy, the probability distribution of the agent's action
selection is determined by Eq. (7).

pðajsÞ ¼ eQðs;aÞ=tP
a
eQðs;aÞ=t;

(7)

where t2ð0;1� is the temperature parameter, which controls the
certainty of the action.

3.1.3. Curse of dimension
The DRL algorithm based on value function Qðs; aÞ needs to

clarify the actions that an agent can perform, which means that the
action space of the agent is discrete. Therefore, when it is applied to
a high-dimensional continuous action space, such as well test curve
matching problem, the continuous action needs to be discrete.
However, this will lead to huge combinatorial increase in the
number of actions with the number of well-test parameter di-
mensions. For example, for the homogeneous model, it is assumed
that the parameters to be inverted are dimensionless well storage
coefficient CD and skin coefficient S. If the parameter space is dis-
cretized into 100 intervals, the action space of the two parameters
CD and Swill reach 1002. For the agent, the value of this 1002 action
needs to be calculated, that is, the output dimension of the Q
network is 1002. Generally, if the number of parameters to be
inverted is N and the number of parameter discrete spaces is nd,

then the total action space to be considered is
YN

d¼1
nd. When the

parameter precision requirement is high or the number of pa-
rameters is large, the agent will not be able to handle the resulting
huge action space. To alleviate the problem, an asynchronous
parameter tuning method is proposed. To be more specific, the
agent only adjusts one well test parameter at a time, and the action
for each parameter is only set to increase and decrease the value of
the parameter, and the step length of the increase or decrease is set
to a fixed value. Obviously, the total action space that needs to be
considered is only 2N based on this approach. This allows the
current discrete action DRL algorithm to be applied to well test
curvematching task. In this work, three typical well test models are
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used to verify the proposed method. The parameter range and ac-
tion space of each well test model are shown in Table 1. In addition,
the reward weights are given for different parameters to make the
agent pay more attention to those parameters that are important in
reflecting the reservoir characteristics, as shown in Table 1. In the
next section, we will discuss how these weights are used.

For the action step length, it can be set as follows.

a) The well test model parameters j are uniformly distributed in
the interval:

ji )ji±Di; (8)

with

Di ¼
jimax � jimin

nd
:

b) The sensitivity of the double log curve to the parameter values in
different ranges is different. We hope to have smaller step length in
more sensitive areas. Therefore, somewell test model parameters j
are exponentially distributed in the interval:

ji )ji � 10Di or ji)ji=10
Di ; (9)

with

Di ¼
log 10jimax � log 10jimin

nd
:

In this work, the S is set to uniformly distributed, and other
parameters are set to exponentially distributed. nd is set to 100.
3.2. Environment

After the agent takes an action, its state will change and the
environment will generate feedback (reward). The environment is
constructed based on the test well model and is designed for the
agents to interact with it for curve matching. In an environment,
the state and reward provided to the agent are two basic elements.
For the state, we define it as in Eq. (10).

s¼
h
log 10p

0
wDðjÞ; log 10p

0
wD;target

�
jtarget

�i
; (10)

where p0wD is the predicted dimensionless pressure derivative
curve, and p0wD;target is the target dimensionless pressure derivative

curve. It should be noted that to ensure the good versatility of the
trained agent, the parameters and pressure data are all dimen-
sionless. In the training process, p0wD;target comes from the theo-

retical curve. In the inference process, p0wD;target comes from the



Fig. 7. DDQN performance on different well test models. The results are obtained by
running 5 random simulations. The darker line shows the median over 5 random
simulations and the shaded area shows 95% confidence interval.
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measured curve. In addition, p0wD;target needs to be interpolated to

ensure consistency with p0wD in the time dimension. For the reward,
we give the definition as in Eq. (11).

r¼

8>><
>>:

wðiÞ if errs � errs
0
>0

�1:1 �wðiÞ if errs � errs
0 � 0

�2 if out of scope
10 if errs � errs

0 � d

; (11)

where wðiÞ is the reward weight of the ith well test model
parameter, and its value is shown in Table 1. The interpretation
results of important or insensitive parameters can be improved by
setting different reward weights. d is the maximum error when
curve matching is completed. The definition of err is as follows:

err¼
X��j�jtarget

��; (12)

Equation (12) indicates that when the agent takes an action, the
parameter error becomes smaller and the reward will be positive.
Otherwise, the reward will be negative. In addition, negative
Fig. 8. The result of 100 times curve matching

269
rewards need to be greater than positive rewards, which helps the
agent reach its goal faster and reduce unnecessary actions
(Wiewiora, 2003).The quality of reward design significantly affects
the performance of the agent. Therefore, in Section 5.2, we discuss
the influence of different reward design methods on the results.

3.3. Training process and implementation details

Algorithm 1 is the training process for the proposed method to
accomplish automated pressure derivative curve matching. The
process starts with an initial target pressure derivative curve at the
beginning of each episode. We trained the agent to perform a total
of 200 episodes of curve matching. The termination condition of
each episode is that the curve matching is completed or the
number of timesteps exceeds 300. To allow the agent to fully
explore the environment, the agent's action in the first ten episodes
are randomly sampled. After completing the exploration, the agent
enters the training state.

Algorithm 1. The training process of an agent in this work

In this work, the Adam algorithm (Kingma and Ba, 2014) was
of the agent on the homogeneous model.



Fig. 9. The result of 100 times curve matching of the agent on the dual porosity model.
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used to updates the weight q of the online Q-network by mini-
mizing the loss function in Eq. (6) with a learning rate of 0.0001.
The weight q0 of target Q-network was updated every 1000 time-
steps by the delayed copy. The discount factor g in Eq. (6) is set to
0.99. The capacity of the replay memory is 105, and the minibatch
size is set to 128. The temperature parameter t in Eq. (7) is 1 during
the training and 10 during the inference.

The Q-network used in this work is a neural network composed
of three hidden layers, and the number of neurons in each layer is
500, 500, 300, respectively. The hidden layer activation function is
ReLU, while the output layer is not activated. The input layer takes
the state with a feature number of 80 as input, and the output layer
gets the Q-value for each action. The output dimension is deter-
mined by the environment. In this work, the output dimension
based on the homogeneous model environment is 4, and others
environment is 8. The agent is implemented based on PyTorch and
trained on NVIDIA 1060Ti graphic processing unit. The average
training time was 26 min, and the average time for each curve
matching was only 2.86 s. In addition, the raw data, due to the data
noise from human factors, measuring instruments, and production
270
conditions, which will affect the results of automatic parameter
inversion. In this work, wavelet threshold denoising method
(Valencia et al., 2016) is used to denoise the original pressure and
derivative data.

4. Method verification

4.1. Result verification

To show the reliability of DDQN, Fig. 7 compares the perfor-
mance of DDQN on different well test models. To avoid the influ-
ence of randomness on the results (Mania et al., 2018; Henderson
et al., 2018), we perform 5 random simulations and draw the
training curve with 95% confidence interval. The results show that
the agent trained based on the DDQN algorithm takes the fewest
timesteps to complete the curve matching and obtains the highest
reward in the homogeneous model. However, for the dual porosity
and radial composite model, the agent has similar performance in
both. This indicates that the number of parameters to be inverted,
that is, the size of the action space, has a greater impact on the



Fig. 10. The result of 100 times curve matching of the agent on the radial composite model.
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performance of the agent than the well test model itself.
In order to verify the reliability of the proposed method, the

trained agent based on DDQN algorithmwas asked to complete 100
times of curve matching on different well testing models, and the
error of the finally obtained parameters was analyzed. In the
inference process, the agent only selects actions and does not up-
date the parameters of its action value network Q. The parameter
inversion results on the three well test models are shown in
Figs. 8�10. The results show that the predicted parameters have a
pronounced correlation with the actual parameters (considering
R2), which proves that the trained agent are able to invert the curve
parameters accurately. Furthermore, we can observe that the ac-
curacy of parameter inversion on the homogeneousmodel is higher
than the other two models, which indicates that the parameter
inversion error increases correspondingly with its number.

We performed further statistical analysis of the errors in the
parameter inversions. Table 2 is the statistical indicators used and
their calculation formulas. The statistic results of parameter errors
are reported in Table 3. Concretely, the mean of relative error (MRE)
of the parameters is 7.58% for the homogeneous model, 10.66% for
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the radial composite model, and 12.79% for the dual porosity
model. In addition, the median is substantially lower than the
mean, as Table 3, which indicates that the accuracy of the param-
eter inversion is quite high without considering the effect of
extreme values. Standard deviation of relative error reflects the
effect of parameter sensitivity on the inversion results. We can
observe that the standard deviation of relative error of the skin
factors (S) is generally larger due to its low sensitivity. Moreover,
mean absolute error (MAE) and root mean square error (RMSE) are
calculated to visualize the magnitude of the error, as shown in
Table 3. Finally, coefficient of determination R2 are calculated to
synthetically evaluate the performance of the parameter inversion.
The results show that the agents perform well in these three
models, and the error of parameter inversion and the parameter
inversion results balance accuracy and stability.

4.2. Result comparison

In this section, to further show the advantages of DDQN, we
compare its results with other two DRL algorithms and three classic



Table 2
The calculation formula of evaluation index. K is the number of inferences.
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Fig. 11. Performance curves of different a

Table 4
Performance scores for all models.

Mean of relative error, %

Homogeneous model ANN 8.09
SVR 18.64
RF 4.97
DDQN 7.58

Dual porosity model ANN 18.07
SVR 21.69
RF 19.65
DDQN 10.66

Radial composite model ANN 18.21
SVR 18.59
RF 16.24
DDQN 12.79

Table 3
Error statistical of parameter inversion results.

Well test model j Mean of relative error, % Median of relative error, %

Homogeneous model CD 5.48 4.63
S 9.69 3.67

Dual porosity model CD 7.59 5.97
S 11.83 4.82
u 15.29 8.43
l 16.42 10.54

Radial composite model CD 11.37 5.11
S 16.35 6.30
M 4.75 2.89
Ri 10.17 6.07
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machine learning (ML) algorithms.
The other two DRL algorithms are Naive DQN (Mnih et al., 2013),

DQN (Mnih et al., 2015). Fig. 11 shows the single-step rewards ob-
tained by the Naive DQN (Mnih et al., 2013), DQN (Mnih et al.,
2015), and DDQN algorithms when performing curve-fitting
training on the homogeneous, dual porosity, and radial composite
well test model. Fig. 11 indicates that DDQN algorithm finally
converges to a stable reward value on all well test models and the
reward is the highest with the smallest variance. The Naïve DQN
single-step reward has been hovering at 0, indicating that a good
strategy cannot be learned. The performance of DQN lies between
these two algorithms. The training results show that the DDQN
algorithm is more suitable for the problem of automatic curve
matching.

Three alternative supervised ML algorithms are: artificial neural
network (ANN), random forest (RF), support vector regression
(SVR) with multiple output. In this work, the input of ML algorithm
is set to the measured pressure derivative curve with a feature
number of 40, and the output is set to the unknown parameters of
gents on different well test models.

Median of relative error, % Std. of relative error R2

3.08 26.90 0.9925
16.43 9.25 0.9336
4.11 4.62 0.9979
4.15 10.02 0.9958
7.64 32.45 0.9289
13.48 46.13 0.9025
6.71 47.65 0.9590
7.44 18.45 0.9776
7.11 52.81 0.9316
14.95 13.34 0.9207
5.44 41.44 0.9392
5.09 20.71 0.9649

Std. of relative error Mean absolute error Root mean square error R2

3.95 63.62 129.19 0.9978
16.09 0.21 0.32 0.9937
6.74 76.53 149.60 0.9941
20.07 0.33 0.55 0.9807
31.76 0.017 0.036 0.9688
15.21 2.54 � 10�7 5.35 � 10�7 0.9668
18.47 152.63 448.38 0.9328
39.94 0.4466 0.6852 0.9807
5.32 0.13 0.28 0.9947
19.09 9.68 20.95 0.9513



Fig. 12. Performance curves of different policies. (a) Cumulative reward curve for each episode, and (b) single-step reward curve.

Fig. 13. Histograms of steps required to complete curve matching 100 times by different policies. (a) Boltzmann exploration policy, and (b) ε-greedy policy.

Fig. 14. Performance curves of different reward designs. (a) Cumulative reward curve for each episode, and (b) single-step reward curve.
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the well test model. The sample size of training set and validation
set are 900 and 100, respectively.

Table 4 shows the comparison between the inference results of
DDQN and the prediction results of ML algorithm in the validation
set. The indicator in Table 4 are averages of all parameters for each
well test model. We can observe that, for the homogeneous model,
RF has obtained the best parameter inversion results (considering
R2), and DDQN has obtained the suboptimal results. For dual
porosity model and radial composite model, DDQN achieved the
optimal results, followed by RF, ANN and SVR. When the unknown
parameters of the well test model are few (homogeneous model),
273
the ML algorithm generally performs well. However, when the well
test model becomes complex, the parameter inversion results of
DDQN will be more robust, which can be observed from the fluc-
tuation of Mean of Relative Error in different well test models.

5. Results and discussion

5.1. Impact of policy

In this section, we compare the effects of ε-greedy policy and
bBoltzmann exploration policy, two commonly used exploration



Fig. 15. Histograms of steps required to complete curve matching 100 times by different reward designs. (a) Parameter-based reward design, and (b) curve-based reward design.

Fig. 16. Visualization of the step-by-step parameter adjustment process in Example 1. A: action index.
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and balance methods, on the performance of the agent's well test
curve matching. Among them, the action probability distribution of
the ε-greedy policy is shown in Eq. (13).

Fig. 12 presents the training process under different policies. The
results show that the Boltzmann exploration policy will enable the
agent to obtain higher cumulative rewards and single-step rewards.
In addition, the agent under Boltzmann exploration policy has
Table 5
Case 1 parameter inversion result.

CD S

Manual matching 87.3 2.63
Automatic interpretation 79.0 2.64
Relative error, % 9.51 0.38
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fewer steps when completing curve matching, as shown in Fig. 13.
This is because Boltzmann exploration policy is more suitable

for a highly certain environment such as well test curve matching
tasks. Besides, the use of Boltzmann exploration policy allows the
agent to be biased towards exploration in the early stages of
training and towards exploitation in the later stages. Therefore, the
action certainty of the agent using Boltzmann exploration policy
will improve with training, and converge to a better strategy.

pðajsÞ ¼

8><
>:

1� εþ ε

jA ðsÞj if a ¼ A*

ε

jA ðsÞj if asA*
; (13)



Fig. 17. Visualization of the step-by-step parameter adjustment process in Example 2. A: action index.

Table 6
Case 2 parameter inversion result.

CD S u l

Manual matching 1809 1.10 0.125 7.76 � 10�7

Automatic interpretation 2032 0.86 0.130 6.40 � 10�7

Relative error, % 12.33 21.82 4.00 17.53
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where A* is the optimal action, a2A ðsÞ, jA ðsÞj is the number of
actions, ε is the probability of taking a random action.
5.2. Reward design

In this section, we discuss the impact of two different reward
design methods on the agent performance in the task of automatic
curve matching. In RL, the design of reward function will signifi-
cantly affect the training effect of the agent (Ng et al., 1999; Laud,
2004). Therefore, it is very important to find a reward function
suitable for the current environment for the agent. For curve
matching problems, an intuitive reward function design method is
based on the error between the target curve and the prediction
curve, as in Eq. (14). However, the reward design based on curve
error is not a good practice. In fact, when the agent takes the action
of parameter adjustment, the reduction of the error between the
target curve and the prediction curve sometimes does not mean
that the parameter error is reduced. As a result, this ambiguous
reward design causes the agent's training to oscillate or diverge.
Correspondingly, a more accurate reward design method is to
directly use the error between the target curve parameters and the
prediction curve parameters. So, we adopt this method to design
the reward function, as shown in Eq. (12).
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err¼
X���p0wD �p0wD;target

���; (14)

Fig. 14 compares the training process of the two reward design
methods. The training process is based on Algorithm 1 and the
reward value is still as shown in Eq. (11). It is shown that when the
agent uses the curve error-based reward design, the cumulative
reward is more, as in Fig. 14(a), but the single-step reward is lower,
as in Fig.14(b). This indicates that the agent has taken an action that
can be rewarded but does not help accomplish the goal. Moreover,
Fig.15 compares the histograms of steps required to complete curve
matching 100 times by these twomethods. The results indicate that
setting the reward based on the parameter error will complete the
curve matching task faster.

6. Field application

To further show the practicality of the proposed automatic
matching method, case studies were carried out with 3 typical
wells as examples. To make the agent suitable for reservoirs and
wellbore under different conditions, the data used is
dimensionless.

6.1. Example 1

Example 1 is an exploration well from the Dagang Oilfield. The
permeability is interpreted as 5.4 mD. The well was produced
222 min before the test at a rate of 13.8 m3/d, shut in 621 min
during the test, and a good build-up pressure curve was measured.
The pressure derivative curve of this well shows the characteristics
of a homogeneous reservoir. After dimensionless, the agent trained
on the homogeneous model is used to automatically fit the curve.



Fig. 18. Visualization of the step-by-step parameter adjustment process in Example 3. A: action index.
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After 26 steps of parameter adjustments, the agent completed the
matching process. To understand the curvematching process of the
agent, the parameter adjustment action is shown in Fig. 16 step by
step. Finally, the automatic interpretation result is S¼ 2.64, CD¼ 79.
In curve matching process, the agent prefers to adjust CD with
obvious features first, and then adjust S. Table 5 compares the re-
sults of automatic matching and computer-assisted manual
matching, and the average relative error between them is 4.9%. It is
shown that the automatic fitting method has the potential to reach
the level of manual interpretation.
6.2. Example 2

Example 2 is a well test data from the Sichuan Basin. The well is
a high-pressure gas well, and the reservoir has the characteristics of
dual porosity. The permeability is interpreted as 0.23 mD. Due to
the extremely low permeability of the reservoir, radial flow char-
acteristics still did not appear after 934 h of shut-in testing. After
Table 7
Case 3 parameter inversion result.

CD S M Ri

Manual matching 315.5 7.8 0.23 44.3
Automatic interpretation 300.0 8.0 0.23 40.0
Relative error, % 4.91 2.56 0.00 9.71
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dimensionless, the agent trained on dual porosity model is used to
automatically fit the curve. The agent completed the curve
matching by adjusting the parameters 27 times, as shown in Fig. 17.
The result of automatic interpretation is S ¼ 0.86, CD ¼ 2032,
u ¼ 0.13, l ¼ 6.4 � 10�7. The results show that in the case of
insufficient test time, the agent can also fit the curve well. Table 6
compares the results of automatic matching and computer-
assisted manual matching, and the average relative error between
them is 13.92%. The error in Case 2 is higher than in Case 1, but still
acceptable.
6.3. Example 3

Example 3 is a gas well in the Tarim Basin. The well was tested
for 72 h of shut-in pressure build-up, and a pressure build-up curve
has been obtained. The pressure derivative curve dropped at the
end of the test, showing the characteristics of a composite forma-
tion. After dimensionless, the agent trained on radio composite
model is used to automatically fit the curve. The agent completed
the curve matching by gradually adjusting the parameters, as
shown in Fig. 18. The result of automatic interpretation is S ¼ 8,
CD ¼ 300,M ¼ 0.23, Ri ¼ 40 m. The interpretation results show that
the skin of the well is large. It turns out that there is pollution
around the well and there is serious sanding problem. 4.3. Table 7
compares the results of automatic matching and computer-
assisted manual matching, and the average relative error between
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them is 4.30%. The result of automatic interpretation in this case is
very close to the result of manual interpretation, which proves the
practical value of the proposed method.
7. Conclusions

In this work, we successfully applied DRL to the task of auto-
matically interpreting well test data. In the automatic interpreta-
tion process, the agent interacts in an environment encapsulated
based on the well test model to learn how to adjust the parameters
to match the well test curve. By testing the performance of the DRL
algorithms on different well test models, the following key con-
clusions are drawn:

(1) By making the agent adjust the curve parameters asyn-
chronously, the dimensioning disaster was alleviated, and
DDQN algorithm was successfully used in the automatic
curve matching task on different well test models. Using
DDQN algorithm to perform 100 curve matching tests on
three well test models, the results show that the mean
relative error of the parameters is 7.58% for the homoge-
neous model, 10.66% for the radial composite model, and
12.79% for the dual porosity model.

(2) Comparing the performance of Naïve DQN, DQN, DDQN al-
gorithms on the homogeneous model, radial composite
model, and dual porosity model, it is shown that the agent
based on the DDQN algorithm obtains the highest cumula-
tive reward on these three well test models. In addition,
compared with the supervised ML algorithm, DDQN has the
least fluctuation of evaluation index on different well test
models, which reflects its robustness in curve matching.

(3) The experimental results show that the use of parameter-
based reward design can achieve better training results. In
addition, Boltzmann exploration policy is more suitable for
agents to balance exploration and exploitation on curve
matching tasks.

(4) In the three field case tests, the agent completed the curve
matching within 30 steps. By visualizing the process of the
step-by-step parameter tuning, it was verified that the agent
learned the correct strategy.
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Appendix 1. Dimensionless definitions
Dimensionless bottom hole pressure PwD ¼ khDp
1:842� 10�3 �

Dimensionless wellbore storage
CD ¼ C

2pfcthr2w
,

Dimensionless time
tD ¼ 3:6kt

fmctr2w
,
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